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Abstract

In this paper, we define the rough approximation operators in an algebra using its congruence
relations and study some of their properties. Further, we consider the rough approximation operators
in orthomodular lattices. We introduce the notion of rough ideal (filter) with respect to a p-ideal in
an orthomodular lattice. We show that the upper approximation of an ileath respect to a p-
ideal I of an orthomodular lattice is the smallest ideal containinand J. Further we study the
homomorphic images of the rough approximation operators.
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1 Introduction

The basic notions of rough set theory proposed by Pawlak [8] are approximation(&pdte where
R is an equivalence relation dii and rough approximations (lower and upper approximation). The
lower and upper approximations of a sub&ebf U are respectively defined as follows:

XY = {z€U/R(z) C X} (1)
X4 = {z€U/R(x)NX # ¢}

whereR(x) is the equivalence class containing

When the rough approximation operators are defined in an algebraic system using its congruence
relations, there arise some interesting properties in the algebraic systems. Biswas and Nanda [1] first de-
fined rough substructures in groups. Following them, Davvaz and Kuroki applied the concept of rough
approximation operators in algebras like semigroups[7], groups[1], rings[2, 4], modules[3] etc. In this
paper, we apply the concept of rough approximation operators in an algebra (universal algebra). We
consider the approximation spacé, 6), whereA is an arbitrary algebra arttis a congruence relation
on A. In (A,0), we define the lower and upper approximation operators with respect to the congru-
ence relatiord and study some of their properties. There exists a one-one correspondence between the
congruence relations and p-ideals in an orthomodular lattice. We consider the rough approximation op-
erators defined with respect to p-ideals in orthomodular lattices. We introduce the notion of rough ideal
and rough filter in orthomodular lattices and give their characterization in the lattice of ideals and the
lattice of filters respectively.
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2 Basic Concepts and Definitions

An n-ary operatior on a nonempty sed is a map fromA™ into A. In other words, if11, as,- - - ,a, €
A, thena(aq,ag, -+ ,ay) € A.

Definition 2.1. A type of algebras is a set F of function symbols such that a nonnegative integer n is
assigned to each member o of F. This integer is called the arity of o« and « is said to be an n-ary

function symbol.

Definition 2.2. If F is a language of algebras then an algebra A of type F is an ordered pair (A, F')
where A is a nonempty set and F’ is a family of finitary operations on A indexed by the language F such
that corresponding to each n-ary function symbol « in F there is an n-ary operation a* on A. The set

A is called the underlying set of A = (A, F') and the a*’s are called fundamental operations of A.

Let A andB be two algebras of the same type. THens a subalgebra oA if B C A and ev-
ery fundamental operation & is the restriction of the corresponding operationfofLet (A, F') be
an algebra of typegr and# be an equivalence relation oh. Thend is a congruence odl if 6 sat-
isfies the following compatibility property : for eachary function symbokr € F anda;,b; € A,
aMay,ag, -+, ay)0a(by, ba, - -+, by,) holds ifa;0b; holds forl < i < n.

Definition 2.3. Let A and B be two algebras of the same type. Then a function f : A — B is said to be
a homomorphism from A into B if f(a?(ay,as,--- ,a,)) = oB(f(ay), f(az), -, f(an)) for every

n-ary o € F where aq, a0, - ,a, € A.

Let f : A — B be a homomorphism. Then the kernel ff written asker(f), is defined by
ker(f) ={(z,y) € Ax A/f(z) = f(y)}. ker(f) is a congruence relation of.

Let (L,V,A,0,1) be a bounded lattice. An elemebhbf L is said to be a complement of an
elemenwuin Lif anb = 0andaVvb = 1. Abounded latticé L, \V, A, 0, 1) is said to be an ortholattice if
there exists a unary operatin. — L called as orthocomplement satisfying the conditionsr’ = 1,
xAr =0,z <y =1y <2 andz” = z. An orthomodular lattice is an ortholattice satisfying the
orthomodular law: <y = =V (¢ Ay) = y. Leta,b € L. Thena is said to be perspective tpa ~ b
if a andb have a common complement. A p-idealliris an ideal closed under perspectivity. A p-filter
in L is a filter closed under perspectivity.

Proposition 2.4.[6] If I is an ideal of an orthomodular lattice (L, V, A, ,0,1), then the following state-

ments are equivalent:
i. I is a p-ideal.
ii. a € I impliesx A\ (' Va) € I, forallz € L.

Theorem 2.5.[6] If I is a p-ideal of an orthomodular lattice (L,V, A, ,0, 1), then the following state-

ments are equivalent: For any a,b € L,
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i. (aVb)A(dVY)el.
ii. there existst € I such thataVit="bVt.
jii. @/ A(aVvb)eTlTandb A(aVb)el

For further definitions and results in lattice theory the reader can refer [5, 6].
3 Rough Approximations in algebraic systems

Let (A, F') be any algebra anfibe a congruence relation oh Let X be a nonempty subset df.
Then we define the sets

0(X)={z e L/[z]p C X}and
0(X) ={z € L/[z]oN X # ¢}

as the lower and upper approximationsXfrespectively with respect to a congruence relatiaf A,
where[z]y = {y € A/z0y} is the congruence class containingA subsetX of A is said to be exact
or definable ifg(X) = X = 6(X).

Since the congruence relations are stronger than the equivalence relations, in any(algébrand
for any congruence relatiotion A, the rough approximation operatatsandd satisfy the following
properties of rough approximation operators determined by an equivalence relation, ¥ar A,

1. 0(¢) =

¢
2. 0(A) = A =0(A).

6. 0(X NY) = (X) NO(Y).

7.9(XUY)=0(X)UB(Y).

Remark 3.1.

i. If 0 is an identity relation on A, then every subset of A is definable.

ii. IfG(A) = A or(A) = A, then A is definable.

iii. O(A) and 0(A) are definable. Therefore, if z € 6(A), then [x]g C 0(A).

Proposition 3.2.Let (A, F') be an algebra and 0 be a congruence relation on A. Then for any subalgebra
B of A, 0(B) is a subalgebra of A.
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Proof. Let B be a subalgebra ofd. Let aj,as,---,a, € 6(B) anda € F. Then
for eachi = 1,2,---.n, [ai]Jo " B # ¢. Therefore for eachi = 1,2,---,n, there
exists b, € A such thata;0b; and b; € B. Then a(ai,ag, - ,an)0a(by, b, -, by)
and «(by,be,---,b,) € B. Therefore [a(ai,az, -+ ,an)]lg N B #  ¢. Then
a(ay,az,- -+ ,a,) € 0(B) and hencé(B) is a subalgebra of.. [

Proposition 3.3.Let (A, F') be an algebra and 0 be a congruence relation on A. If « € F is a unary
operator such that a(a(a)) = a for all a € A, then for any B C A, the following hold.

i. 9(a(B)) = a(8(B)).

ii. 9(c(B)) = a(6(B)).

Proof. Let B C A.

i. r € a(0(B)) <= a(z) € (B)
<~ [a(x)]p N B # ¢
<= 3 y € B such thatn(x)0y
< J a(y) € a(B) such thatrfa(y)
= [zlpNa(B) # ¢
<=z € 0(a(B)).

Henced(a(B)) = a(6(B)).
ii. Letz € a(8(B)). Thena(z) € 9(B) if and only if [a(x)]y C B, if and only if a([a(x)]s) C a(B).
We havea([a(z)]p) = [z]p. Therefore[z]g C «(B) if and only if x € 8(«(B)). Hencef(«(B)) =
a(0(B)).

Proposition 3.4.Let (A, F') and (B, F') be any two algebras of the same type. Let f : A — B be a
homomorphism. Then for any subset X C A, f(ker(f)(X)) = f(X). Further, if f is one-one, then

fker(f)(X)) = f(X).

Proof. Let z € f(ker(f)(X)). Thenz = f(y), for somey € ker(f)(X). This implies that,
there exists: € X such thaty ker(f)z. Thenf(y) = f(z) andx = f(z) € f(X). Therefore,

flker(f)(X)) C f(X). Also, X C ker(f)(X) implies f(X) C f(ker(f)(X)). Hence we have
f(ker(f)(X)) (X). If fis one-one, theiker(f) is an identity relation and consequently we have
f(ker(f)

=f
(ker(f)(X)) = f(X). u

4 Rough Approximations in Orthomodular Lattices

X
X

Let L be an orthomodular lattice arddbe a p-ideal of.. Then
0r = {(a,b) € L?/(a VD) A (d' V) € T}

is a congruence relation oh [6]. Fora,b € L, we saya is congruent td with respect tol, af;b,
if (avVb)A(a'VY) el Foranya € L. letla]; = {b € L/(aVb)A(aVV¥) e I} denote the
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congruence class @f; containinga. Let A be a nonempty subset éf We denote the lower and the
upper approximation operatofs andé; defined with respect to the congruence relaipiy I and].
That s,

I(A)={z e L/[z]; C A}and
1(A) = {z € L/[e]; N A # ¢}

For any subsetl of L, A’ = {da’/a € A} whered' is the orthocomplement afin L and the annihilator
of AisAt ={z e L/zny=0,forally € A}. If A, B C Lsuchthatd C B, thenB+ C AL,

Proposition 4.1.Let I be a p-ideal of an orthomodular lattice L and A be a nonempty subset of L. Then
i. [(A") = I[(A) and I(A") = I(A)'.
ii. I(A+) CI(A)* and I(A)*: C I(AY).
jii. If A is a subalgebra of L, then I(A) is a subalgebra of L.
iv. If A is an ideal of L, then I(A) is also an ideal of L.
v. If A is a filter of L, then I(A) is also a filter of L.
Vi. If A is a p-ideal of L, then 1(A) is a p-ideal of L.

vii. If A is a p-filter of L, then 1(A) is a p-filter of L.

Proof. i. The proof follows from Proposition 3.3.

ii. We haveI(A) C A which impliesAt C I(A)L. Thereforel(A+) C AL C I(A)*. Dually, we
havel(A)+ C I(A™1).

iii. The proof follows from Proposition 3.2.

iv. Let A be an ideal ofL. It is enough to show that if,y € L such thatr < y andy € I(A), then
x € I(A). Letz,y € L be such that < y andy € I(A). Then[y]; N A # ¢ and there exists € L

such that € [y|;r anda € A. Sinced; is a congruence relation and A is an iddal\ x)0;(y A z) =

anda A x € A. This implies thafz]; N A # ¢ and sar € 1(A). Hence,[(A) is an ideal ofL.

v. The proof follows by the duality of (iv).

vi. Let A be a p-ideal of.. It is enough to show that € I(A) impliesz A (2’ V a) € I(A), for any
x € L. If a € I(A), then[a]; N A # ¢. There exist$ € L such thab € [a]; andb € A. Sinced; is a
congruence relation on Iz’ vV a)0;(z' v b) for anyx € L. Thisimplies thatz A (z'V a)]0r[z A (2' Vb))

foranyxz € L. Thus, we haver A (2 Vb) € [x A (' V a)];. SinceA is a p-ideal and € A, by
Proposition 2.4 we have A (2 V b) € Aforanyz € L. Thus[z A (z' V a)]r N A # ¢, which implies
thatz A (2' vV a) € I(A). Hence,I(A) is a p-ideal ofL.

vii. The proof follows by the duality of (vi). |

Example 4.2.1 = {0, c} is a p-ideal of the orthomodular lattice given in Figure 1. Then their corre-
sponding congruence classes of 0y are [0]; = [c]; = {0,c},[a]r = [V]1 = {a,b'}, [b]r = [d']1 =
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{a,b},[d); = [€']r = {d, €'}, el [d]r = {e,d'}, []r = [1]1 = {d,1}. Let A = {a,V,a’}. Then
At = {0,d,e}. This implies I(At) = {0,c,d,e,d',e'} and I(A)* = {0,d,e}. Similarly, we have
I(AY) = ¢ and I(A)* = {0,b,d, e}. Hence, I(A+) € T(A)t and I(A)* € I(AL).

Figure 1

Note that the subset/ = {c, '} is not a subalgebra of where asI(M) = {0,¢,c,1} is a
subalgebra of.. The subseti = {c} is not an ideal of. where as/(A4) = {0, c} is an ideal, in fact a
p-ideal of L.

On the other hand, for all the ideals bf its lower approximation is not an ideal &f For instance,
in the above example consider the iddat= {0, a} of L. We havel(A) = ¢, which is not an ideal of
L. Hence we have the following characterization.

Lemma 4.3.Let I be a p-ideal of an orthomodular lattice L. Then for an ideal A of L, the following are

equivalent:
i. I(A) is an ideal of L
i 1(A) # 6
ji. ITCA

Moreover, [(A) = A.

Proof. (i)=-(ii) SincelI(A)isanideal) € I(A). Thusi(A) # ¢.

(i) =(iii) Since I(A) # ¢, there existsx € L such thatr € I(A). This implies thafz]; C A. Let
y € I = [0];. Sinced is a congruence relatiofyVy)0;(xV0) = xz and consequentlyvy € [z]; C A.
So, we haver Vy € A. Since Aisanidealang=y A (zVy) <z Vy,y € A. ThusI C A.

(iii) = (i) Supposed C A. SinceA is an ideal, it is enough to show thatA) = A. We havel(A) C A.
Letz € A andy € [z];. By Theorem 2.5, we haveV ¢ = y V t, for somet € I. Sincel C A and
xeAxVte A, wegetyVite A Sincedisanidealand =y A (yVit) <yVvte A yec A Thus
[z]r € Aand sax € I(A). Therefore A C I(A) and hencd(A) is an ideal ofL. |

Dually, we have the following result for filter. If is an ideal of an orthomodular lattidg thenI’ is
a filter of L.
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Lemma 4.4.Let I be a p-ideal of an orthomodular lattice L. Then for any filter A of L, the following

are equivalent:

i. I(A) is a filter of L.

i 1(4) # 6.

iii. I' C A.
Moreover, I[(A) = A.

5 Rough Ideals and Rough Filters

Definition 5.1. Let I be a p-ideal of an orthomodular lattice L. and A be a nonempty subset of L. Then
A is said to be a rough ideal (filter) with respect to the p-ideal I, if both [(A) and I (A) are ideals (filters)
of L.

Lemma 5.2.Let I be a p-ideal and A be an ideal of an orthomodular lattice L. Then A is a rough ideal
with respect to a p-ideal I of L if and only if I C A.

Proof. SinceA is anideal,I(A) is also an ideal. Henca is a rough ideal with respect to the p-idéal
if and only if I(A) is anideal, if and only if C A. [ |

Let L be a lattice and € L. Then(a] = {z € L/z < a} and[a) = {x € L/a < z} are called
the principal ideal and principal filter respectively generated bylhe set of all ideals and filters &f
denoted byld(L) andF'(L) respectively form a lattice with respect to the set inclusion. They are called
the lattice of ideals and the lattice of filters bfrespectively.

Theorem 5.3.Let I be a p-ideal of an orthomodular lattice L. Then for A € Id(L), the following are

equivalent:
i. A=1I(B) forsome B C L.
ii. Ae[l)inld(L).
iii. A is definable with respect to the p-ideal I.

iv. A is a rough ideal of L with respect to the p-ideal I.

Proof. Let A be an ideal of..

()= (i) Supposed = I(B) for someB C L. SinceA is an ideal0 € A. Then by (iii) of Remark 3.1,
0 € I(B) impliesI = [0]; C I(B) = A. Thereforel C A and henced € [I)in Id(L).

(i) = (iii) SupposeA € [I) in Id(L), thenI C A. By Lemma 4.3, we havé(A) = A. Then by (ii) of
Remark 3.1, we havd is definable with respect to the p-iddal

(i) = (iv) SupposeA is definable with respect to the p-idealthenf(A) = A = I(A). SinceA is an
ideal of L, I(A) andI(A) are also ideals of. HenceA is a rough ideal of. with respect to the p-ideal
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1.
(iv)= (i) SupposeA is a rough ideal of. with respect to the p-idedl By Lemma 5.2, we havé C A.
ThenA = I(A). |

From the above theorem, we have the set of all rough ideals with respect to a p-addaforms a
principal filter generated by the p-idekln Id(L). Dually, we have the following results for filter.

Theorem 5.4.Let I be a p-ideal of an orthomodular lattice L. Then for A € F(L), the following are

equivalent:

i. A= I(B) forsome B C L.
i. Ae[l')in F(L).
iii. A is definable with respect to the p-ideal I.

iv. A is a rough filter of L with respect to the p-ideal I.

From the above theorem, we have the set of all rough filters with respect to a p-ioiealforms a
principal filter generated by the p-filtét in F(L).

Proposition 5.5.Let I be a p-ideal of an orthomodular lattice L and A C L. Then A is a rough ideal of
L if and only if A’ is a rough filter of L.

Proof. Ais arough ideal of. < I(A) andI(A) are ideals of.

< I(A) andI(A) are filters ofL

< I(A") andI(A') are filters ofLL (By Proposition 4.1)

< A’ is a rough filter ofL. [ |

Remark 5.6.1In an orthomodular lattice L, {0} is a p-ideal. Therefore 0y, is the null congruence on
L and [agoy = {a}, for all a € L. Then every subset of an orthomodular lattice L is definable with
respect to {0}. So, every ideal of an orthomodular lattice L is a rough ideal of L and every filter of L is

a rough filter of L.

Theorem 5.7.Let I be a p-ideal of an orthomodular lattice L and A be a subset of L. If I(A) is an ideal,
then I(A) is the smallest ideal containing the ideal I and the set A in L.

Proof. If I(A) is an ideal, thed C I(A). ThusI(A) is an ideal containing and A. SupposeB is any
other ideal containing andA. ThenA C B impliesI(A) C I(B). Sincel C B, by Theorem 5.3 we
havel(B) = B. Thereforel (A) C B. Hencel (A) is the smallest ideal containing the iddaind the
setAin L. [ |

Corollary 5.8. Let I be a p-ideal of an orthomodular lattice L and J be an ideal of L. Then I(.J) is the
smallest ideal containing the ideals I and J in L. That is, I(.J) is the join of the ideals I and .J in the
lattice of ideals Id(L).
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Proof. By Proposition 4.1, we havg(.J) is an ideal ofL. Then by Theorem 5.7, we havé.J) is the
smallest ideal containing the idedls&nd.J in L. |

The above theorem 5.7 is not true in general for any lattice. That is, for anyAdmad a congruence
relationd of an arbitrary latticed(A) needs not be the smallest ideal containing

Remark 5.9. Consider the lattice L given in Figure 2. Let 6 be a congruence relation on L such that
[alg = [blg = [c]lo = [1]¢ = {a,b,c,1} and [0]g = {0}. A = {0, a} is an ideal of L. But §(A) = L.

Hence §(A) is not the smallest ideal containing A.

0
Figure 2

Corollary 5.10. Let I, J be two p-ideals of an orthomodular lattice L. Then I(J) = J(I).

Proof. By Theorem 5.7](J) is the smallest ideal containing bottand.J. Similarly, we haveJ(I) is
also the smallest ideal containing the ideAnd.J. Hencel (J) = J(I). [

Corollary 5.11. Let I be a p-ideal of an orthomodular lattice L and .J be an ideal of L. Then the smallest
rough ideal containing the ideals I and J is 1(J).

Theorem 5.12.Let I be a p-ideal of an orthomodular lattice L and A be a nonempty subset of L. If
1(A) is a filter, then I (A) is the smallest filter containing the filter I and the set A in L.

Proof. If I(A) is a filter, thenl’ C T(A). ThusI(A) is a filter containingl’ and A. SupposeB is
any other filter containind” and A. ThenI(A) C I(B) and sincel’ C B, by Theorem 5.4 we have
I(B) = B. Thereforel (4) C B. Hencel (A) is the smallest filter containing the filtéf and the set
Ain L. [ |

Corollary 5.13. Let I be a p-ideal of an orthomodular lattice L and J be a filter of L. Then I(.J) is the
smallest filter containing the filters I’ and J in L. That is, I(J) is the join of the filters I’ and J in the
lattice of filters F'(L).

Proof. By Proposition 4.1, we hav&(J) is a filter. Then by the above theorem, we hdyd) is the
smallest filter containing the filtei® and.J in L. [ |
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Corollary 5.14. Let I be a p-ideal of an orthomodular lattice L and J be a filter of L. Then the smallest
rough filter containing the filters I' and J is I(J).

Proposition 5.15.Let f be a homomorphism from an orthomodular lattice L1 onto an orthomodular
lattice Ly. Let I be a p-ideal of Ly and I, = {x € L1/f(x) € Is2}. Then for any A C L, the
following hold:

i. I is a p-ideal of L.
ii. f(I1(A)) = L(f(A)).
i, F(1L(A)) € Lo(F(A)) and if f is I-1, then f(I1(A)) = Io(f(A)).

Proof. i. Letx,y € I;. Thenf(zx), f(y) € L. Sincely is a p-ideal,f(z vV y) = f(x) V f(y) € I2. So,

xVy € I. Nowletz,y € L; be such that € I; andy < zin L. Thenf(y) < f(x) in L. Sincel,

is a p-ideal andf(z) € Is, f(y) € I». So,y € I;. ThusI; is an ideal ofL;. Leta € I; andz € L.

Thenf(a) € Iy andf(x) € Lo. Sincely is a p-ideal,f(z A (' V a)) = f(z) A (f(x)' V f(a)) € L.

Thereforer A (2' V a) € I;. Hencel; is a p-ideal ofL;.

i. Letx € f(I1(A)). Thenz = f(y), wherey € I,(A) and so[y];, N A # ¢. Then there ex-
istsa € Ly such thata € [y];, anda € A, imply f(a) € [f(y)]1, and f(a) € f(A). So, we
havex = f(y) € I(f(A)). Thereforef(I;(A)) C I(f(A)). Conversely, let € L; be such that
f(z) € L(f(A)). So,[f(x)], N f(A) # ¢. Then there exists € A such thatf(a) € [f(z)];, which

impliesa € [z],. Thereforer € T, (A). Thatis,f(z) € f(I1(A)). Thusly(f(A)) C f(I,(A)). Hence

F(IL(A)) = I(f(A)).

ii. Let x € f(
f(A). So,f(y) €

(A)). Thenz = f(y), wherey € I,(A). Then[y|;, € A and hencéf(y)];, C
I(f(A)). Thatis,x € I(f(A)). Therefore,f(11(A)) C I(f(A)). Now suppose
fis 1-1. Letz € I5(f(A)). Sincef is surjectivex = f(y), wherey € Ly. Then[f(y)]r, C f(A).
Sincef is 1-1,[f(y)]r, € f(A) implies[y];, € A. Theny € I,(A) andz = f(y) € f(I1(A)). Hence
F(L(A)) = I(f(A)). u

LS}
€ I

Corollary 5.16. Let f be a homomorphism from an orthomodular lattice L onto an orthomodular lattice
Lo. Let I, be a p-ideal of Ly and I} = {x € L1/ f(x) € I2}. Then for a subset A of L1,

i. I1 (A) is an ideal of Ly if and only if I(f(A)) is an ideal of Lo,

ii. I, (A) is an ideal of L if and only if I(f(A)) is an ideal of Ly if f is I-1.

Proof. Sincef is a bijection,B is an ideal inL; if and only if f(B) is an ideal inL,. Hence the proof
follows from the Proposition 5.15. |

Corollary 5.17. Let f be an isomorphism from an orthomodular lattice L1 onto an orthomodular lattice
Lo. Let I be a p-ideal of Ly and I1 = {x € L1/f(x) € Is}. Then for A C Ly, A is a rough ideal of
L, with respect to the p-ideal I, if and only if f(A) is a rough ideal of Lo with respect to the p-ideal I.
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Proof. The proof follows from Proposition 5.16. |
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