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Abstract

In this paper, we define the rough approximation operators in an algebra using its congruence

relations and study some of their properties. Further, we consider the rough approximation operators

in orthomodular lattices. We introduce the notion of rough ideal (filter) with respect to a p-ideal in

an orthomodular lattice. We show that the upper approximation of an idealJ with respect to a p-

ideal I of an orthomodular lattice is the smallest ideal containingI andJ . Further we study the

homomorphic images of the rough approximation operators.
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1 Introduction

The basic notions of rough set theory proposed by Pawlak [8] are approximation space(U,R), where

R is an equivalence relation onU and rough approximations (lower and upper approximation). The

lower and upper approximations of a subsetX of U are respectively defined as follows:

XH = {x ∈ U/R(x) ⊆ X} (1)

XN = {x ∈ U/R(x) ∩X 6= φ}

whereR(x) is the equivalence class containingx.

When the rough approximation operators are defined in an algebraic system using its congruence

relations, there arise some interesting properties in the algebraic systems. Biswas and Nanda [1] first de-

fined rough substructures in groups. Following them, Davvaz and Kuroki applied the concept of rough

approximation operators in algebras like semigroups[7], groups[1], rings[2, 4], modules[3] etc. In this

paper, we apply the concept of rough approximation operators in an algebra (universal algebra). We

consider the approximation space(A, θ), whereA is an arbitrary algebra andθ is a congruence relation

on A. In (A, θ), we define the lower and upper approximation operators with respect to the congru-

ence relationθ and study some of their properties. There exists a one-one correspondence between the

congruence relations and p-ideals in an orthomodular lattice. We consider the rough approximation op-

erators defined with respect to p-ideals in orthomodular lattices. We introduce the notion of rough ideal

and rough filter in orthomodular lattices and give their characterization in the lattice of ideals and the

lattice of filters respectively.
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2 Basic Concepts and Definitions

An n-ary operationα on a nonempty setA is a map fromAn into A. In other words, ifa1, a2, · · · , an ∈
A, thenα(a1, a2, · · · , an) ∈ A.

Definition 2.1. A type of algebras is a set F of function symbols such that a nonnegative integer n is

assigned to each member α of F . This integer is called the arity of α and α is said to be an n-ary

function symbol.

Definition 2.2. If F is a language of algebras then an algebra A of type F is an ordered pair 〈A,F 〉
where A is a nonempty set and F is a family of finitary operations on A indexed by the language F such

that corresponding to each n-ary function symbol α in F there is an n-ary operation αA on A. The set

A is called the underlying set of A = 〈A,F 〉 and the αA’s are called fundamental operations of A.

Let A andB be two algebras of the same type. ThenB is a subalgebra ofA if B ⊆ A and ev-

ery fundamental operation ofB is the restriction of the corresponding operation ofA. Let 〈A,F 〉 be

an algebra of typeF andθ be an equivalence relation onA. Thenθ is a congruence onA if θ sat-

isfies the following compatibility property : for eachn-ary function symbolα ∈ F andai, bi ∈ A,

αA(a1, a2, · · · , an)θαA(b1, b2, · · · , bn) holds ifaiθbi holds for1 ≤ i ≤ n.

Definition 2.3. Let A and B be two algebras of the same type. Then a function f : A → B is said to be

a homomorphism from A into B if f(αA(a1, a2, · · · , an)) = αB(f(a1), f(a2), · · · , f(an)) for every

n-ary α ∈ F where a1, a2, · · · , an ∈ A.

Let f : A → B be a homomorphism. Then the kernel off , written asker(f), is defined by

ker(f) = {(x, y) ∈ A×A/f(x) = f(y)}. ker(f) is a congruence relation onA.

Let (L,∨,∧, 0, 1) be a bounded lattice. An elementb of L is said to be a complement of an

elementa in L if a∧b = 0 anda∨b = 1. A bounded lattice(L,∨,∧, 0, 1) is said to be an ortholattice if

there exists a unary operation′: L → L called as orthocomplement satisfying the conditionsx∨x′ = 1,

x ∧ x′ = 0, x ≤ y ⇒ y′ ≤ x′ andx′′ = x. An orthomodular lattice is an ortholattice satisfying the

orthomodular lawx ≤ y ⇒ x ∨ (x′ ∧ y) = y. Let a, b ∈ L. Thena is said to be perspective tob, a ∼ b

if a andb have a common complement. A p-ideal inL is an ideal closed under perspectivity. A p-filter

in L is a filter closed under perspectivity.

Proposition 2.4.[6] If I is an ideal of an orthomodular lattice (L,∨,∧,′ , 0, 1), then the following state-

ments are equivalent:

i. I is a p-ideal.

ii. a ∈ I implies x ∧ (x′ ∨ a) ∈ I , for all x ∈ L.

Theorem 2.5.[6] If I is a p-ideal of an orthomodular lattice (L,∨,∧,′ , 0, 1), then the following state-

ments are equivalent: For any a, b ∈ L,
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i. (a ∨ b) ∧ (a′ ∨ b′) ∈ I .

ii. there exists t ∈ I such that a ∨ t = b ∨ t.

iii. a′ ∧ (a ∨ b) ∈ I and b′ ∧ (a ∨ b) ∈ I .

For further definitions and results in lattice theory the reader can refer [5, 6].

3 Rough Approximations in algebraic systems

Let 〈A,F 〉 be any algebra andθ be a congruence relation onA. Let X be a nonempty subset ofA.

Then we define the sets

θ(X) = {x ∈ L/[x]θ ⊆ X}and

θ(X) = {x ∈ L/[x]θ ∩X 6= φ}

as the lower and upper approximations ofX respectively with respect to a congruence relationθ of A,

where[x]θ = {y ∈ A/xθy} is the congruence class containingx. A subsetX of A is said to be exact

or definable ifθ(X) = X = θ(X).

Since the congruence relations are stronger than the equivalence relations, in any algebra〈A,F 〉 and

for any congruence relationθ on A, the rough approximation operatorsθ andθ satisfy the following

properties of rough approximation operators determined by an equivalence relation. ForX, Y ⊆ A,

1. θ(φ) = φ = θ(φ).

2. θ(A) = A = θ(A).

3. X ⊆ Y impliesθ(X) ⊆ θ(Y ) andθ(X) ⊆ θ(Y ).

4. θ(θ(X)) = θ(X) andθ(θ(X)) = θ(X).

5. θ(θ(X)) = θ(X) andθ(θ(X)) = θ(X).

6. θ(X ∩ Y ) = θ(X) ∩ θ(Y ).

7. θ(X ∪ Y ) = θ(X) ∪ θ(Y ).

8. θ(A) = ∪x∈A[x]θ

Remark 3.1.

i. If θ is an identity relation on A, then every subset of A is definable.

ii. If θ(A) = A or θ(A) = A, then A is definable.

iii. θ(A) and θ(A) are definable. Therefore, if x ∈ θ(A), then [x]θ ⊆ θ(A).

Proposition 3.2.Let 〈A,F 〉 be an algebra and θ be a congruence relation on A. Then for any subalgebra

B of A, θ(B) is a subalgebra of A.
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Proof. Let B be a subalgebra ofA. Let a1, a2, · · · , an ∈ θ(B) and α ∈ F . Then

for each i = 1, 2, · · · , n, [ai]θ ∩ B 6= φ. Therefore for eachi = 1, 2, · · · , n, there

exists bi ∈ A such that aiθbi and bi ∈ B. Then α(a1, a2, · · · , an)θα(b1, b2, · · · , bn)
and α(b1, b2, · · · , bn) ∈ B. Therefore [α(a1, a2, · · · , an)]θ ∩ B 6= φ. Then

α(a1, a2, · · · , an) ∈ θ(B) and henceθ(B) is a subalgebra ofA.

Proposition 3.3.Let 〈A,F 〉 be an algebra and θ be a congruence relation on A. If α ∈ F is a unary

operator such that α(α(a)) = a for all a ∈ A, then for any B ⊆ A, the following hold.

i. θ(α(B)) = α(θ(B)).

ii. θ(α(B)) = α(θ(B)).

Proof. Let B ⊆ A.

i. x ∈ α(θ(B)) ⇐⇒ α(x) ∈ θ(B)
⇐⇒ [α(x)]θ ∩B 6= φ

⇐⇒ ∃ y ∈ B such thatα(x)θy
⇐⇒ ∃ α(y) ∈ α(B) such thatxθα(y)
⇐⇒ [x]θ ∩ α(B) 6= φ

⇐⇒ x ∈ θ(α(B)).

Henceθ(α(B)) = α(θ(B)).
ii. Let x ∈ α(θ(B)). Thenα(x) ∈ θ(B) if and only if [α(x)]θ ⊆ B, if and only if α([α(x)]θ) ⊆ α(B).
We haveα([α(x)]θ) = [x]θ. Therefore,[x]θ ⊆ α(B) if and only if x ∈ θ(α(B)). Hence,θ(α(B)) =
α(θ(B)).

Proposition 3.4.Let 〈A,F 〉 and 〈B,F 〉 be any two algebras of the same type. Let f : A → B be a

homomorphism. Then for any subset X ⊆ A, f(ker(f)(X)) = f(X). Further, if f is one-one, then

f(ker(f)(X)) = f(X).

Proof. Let x ∈ f(ker(f)(X)). Then x = f(y), for somey ∈ ker(f)(X). This implies that,

there existsz ∈ X such thaty ker(f) z. Thenf(y) = f(z) andx = f(z) ∈ f(X). Therefore,

f(ker(f)(X)) ⊆ f(X). Also, X ⊆ ker(f)(X) implies f(X) ⊆ f(ker(f)(X)). Hence we have

f(ker(f)(X)) = f(X). If f is one-one, thenker(f) is an identity relation and consequently we have

f(ker(f)(X)) = f(X).

4 Rough Approximations in Orthomodular Lattices

Let L be an orthomodular lattice andI be a p-ideal ofL. Then

θI = {(a, b) ∈ L2/(a ∨ b) ∧ (a′ ∨ b′) ∈ I}

is a congruence relation onL [6]. For a, b ∈ L, we saya is congruent tob with respect toI, aθIb,

if (a ∨ b) ∧ (a′ ∨ b′) ∈ I. For anya ∈ L. let [a]I = {b ∈ L/(a ∨ b) ∧ (a′ ∨ b′) ∈ I} denote the
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congruence class ofθI containinga. Let A be a nonempty subset ofL. We denote the lower and the

upper approximation operatorsθI andθI defined with respect to the congruence relationθI by I andI.

That is,

I(A) = {x ∈ L/[x]I ⊆ A}and

I(A) = {x ∈ L/[x]I ∩A 6= φ}.

For any subsetA of L, A′ = {a′/a ∈ A} wherea′ is the orthocomplement ofa in L and the annihilator

of A is A⊥ = {x ∈ L/x ∧ y = 0, for all y ∈ A}. If A,B ⊆ L such thatA ⊆ B, thenB⊥ ⊆ A⊥.

Proposition 4.1.Let I be a p-ideal of an orthomodular lattice L and A be a nonempty subset of L. Then

i. I(A′) = I(A)′ and I(A′) = I(A)′.

ii. I(A⊥) ⊆ I(A)⊥ and I(A)⊥ ⊆ I(A⊥).

iii. If A is a subalgebra of L, then I(A) is a subalgebra of L.

iv. If A is an ideal of L, then I(A) is also an ideal of L.

v. If A is a filter of L, then I(A) is also a filter of L.

vi. If A is a p-ideal of L, then I(A) is a p-ideal of L.

vii. If A is a p-filter of L, then I(A) is a p-filter of L.

Proof. i. The proof follows from Proposition 3.3.

ii. We haveI(A) ⊆ A which impliesA⊥ ⊆ I(A)⊥. ThereforeI(A⊥) ⊆ A⊥ ⊆ I(A)⊥. Dually, we

haveI(A)⊥ ⊆ I(A⊥).
iii. The proof follows from Proposition 3.2.

iv. Let A be an ideal ofL. It is enough to show that ifx, y ∈ L such thatx ≤ y andy ∈ I(A), then

x ∈ I(A). Let x, y ∈ L be such thatx ≤ y andy ∈ I(A). Then[y]I ∩ A 6= φ and there existsa ∈ L

such thata ∈ [y]I anda ∈ A. SinceθI is a congruence relation and A is an ideal,(a∧ x)θI(y ∧ x) = x

anda ∧ x ∈ A. This implies that[x]I ∩A 6= φ and sox ∈ I(A). Hence,I(A) is an ideal ofL.

v. The proof follows by the duality of (iv).

vi. Let A be a p-ideal ofL. It is enough to show thata ∈ I(A) impliesx ∧ (x′ ∨ a) ∈ I(A), for any

x ∈ L. If a ∈ I(A), then[a]I ∩ A 6= φ. There existsb ∈ L such thatb ∈ [a]I andb ∈ A. SinceθI is a

congruence relation on L,(x′∨a)θI(x′∨b) for anyx ∈ L. This implies that[x∧(x′∨a)]θI [x∧(x′∨b)]
for any x ∈ L. Thus, we havex ∧ (x′ ∨ b) ∈ [x ∧ (x′ ∨ a)]I . SinceA is a p-ideal andb ∈ A, by

Proposition 2.4 we havex ∧ (x′ ∨ b) ∈ A for anyx ∈ L. Thus[x ∧ (x′ ∨ a)]I ∩A 6= φ, which implies

thatx ∧ (x′ ∨ a) ∈ I(A). Hence,I(A) is a p-ideal ofL.

vii. The proof follows by the duality of (vi).

Example 4.2.I = {0, c} is a p-ideal of the orthomodular lattice given in Figure 1. Then their corre-

sponding congruence classes of θI are [0]I = [c]I = {0, c}, [a]I = [b′]I = {a, b′}, [b]I = [a′]I =
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{a′, b}, [d]I = [e′]I = {d, e′}, [e]I , [d′]I = {e, d′}, [c′]I = [1]I = {c′, 1}. Let A = {a, b′, a′}. Then

A⊥ = {0, d, e}. This implies I(A⊥) = {0, c, d, e, d′, e′} and I(A)⊥ = {0, d, e}. Similarly, we have

I(A⊥) = φ and I(A)⊥ = {0, b, d, e}. Hence, I(A⊥) 6⊆ I(A)⊥ and I(A)⊥ 6⊆ I(A⊥).
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Figure 1

Note that the subsetM = {c, c′} is not a subalgebra ofL where asI(M) = {0, c, c′, 1} is a

subalgebra ofL. The subsetA = {c} is not an ideal ofL where asI(A) = {0, c} is an ideal, in fact a

p-ideal ofL.

On the other hand, for all the ideals ofL, its lower approximation is not an ideal ofL. For instance,

in the above example consider the idealA = {0, a} of L. We haveI(A) = φ, which is not an ideal of

L. Hence we have the following characterization.

Lemma 4.3.Let I be a p-ideal of an orthomodular lattice L. Then for an ideal A of L, the following are

equivalent:

i. I(A) is an ideal of L

ii. I(A) 6= φ

iii. I ⊆ A

Moreover, I(A) = A.

Proof. (i)⇒(ii) SinceI(A) is an ideal,0 ∈ I(A). ThusI(A) 6= φ.

(ii)⇒(iii) Since I(A) 6= φ, there existsx ∈ L such thatx ∈ I(A). This implies that[x]I ⊆ A. Let

y ∈ I = [0]I . SinceθI is a congruence relation,(x∨y)θI(x∨0) = x and consequentlyx∨y ∈ [x]I ⊆ A.

So, we havex ∨ y ∈ A. Since A is an ideal andy = y ∧ (x ∨ y) ≤ x ∨ y, y ∈ A. ThusI ⊆ A.

(iii)⇒(i) SupposeI ⊆ A. SinceA is an ideal, it is enough to show thatI(A) = A. We haveI(A) ⊆ A.

Let x ∈ A andy ∈ [x]I . By Theorem 2.5, we havex ∨ t = y ∨ t, for somet ∈ I. SinceI ⊆ A and

x ∈ A, x ∨ t ∈ A, we gety ∨ t ∈ A. SinceA is an ideal andy = y ∧ (y ∨ t) ≤ y ∨ t ∈ A, y ∈ A. Thus

[x]I ⊆ A and sox ∈ I(A). Therefore,A ⊆ I(A) and henceI(A) is an ideal ofL.

Dually, we have the following result for filter. IfI is an ideal of an orthomodular latticeL, thenI ′ is

a filter ofL.
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Lemma 4.4.Let I be a p-ideal of an orthomodular lattice L. Then for any filter A of L, the following

are equivalent:

i. I(A) is a filter of L.

ii. I(A) 6= φ.

iii. I ′ ⊆ A.

Moreover, I(A) = A.

5 Rough Ideals and Rough Filters

Definition 5.1. Let I be a p-ideal of an orthomodular lattice L and A be a nonempty subset of L. Then

A is said to be a rough ideal (filter) with respect to the p-ideal I , if both I(A) and I(A) are ideals (filters)

of L.

Lemma 5.2.Let I be a p-ideal and A be an ideal of an orthomodular lattice L. Then A is a rough ideal

with respect to a p-ideal I of L if and only if I ⊆ A.

Proof. SinceA is an ideal,I(A) is also an ideal. HenceA is a rough ideal with respect to the p-idealI

if and only if I(A) is an ideal, if and only ifI ⊆ A.

Let L be a lattice anda ∈ L. Then(a] = {x ∈ L/x ≤ a} and[a) = {x ∈ L/a ≤ x} are called

the principal ideal and principal filter respectively generated bya . The set of all ideals and filters ofL

denoted byId(L) andF (L) respectively form a lattice with respect to the set inclusion. They are called

the lattice of ideals and the lattice of filters ofL respectively.

Theorem 5.3.Let I be a p-ideal of an orthomodular lattice L. Then for A ∈ Id(L), the following are

equivalent:

i. A = I(B) for some B ⊆ L.

ii. A ∈ [I) in Id(L).

iii. A is definable with respect to the p-ideal I .

iv. A is a rough ideal of L with respect to the p-ideal I .

Proof. Let A be an ideal ofL.

(i)⇒ (ii) SupposeA = I(B) for someB ⊆ L. SinceA is an ideal,0 ∈ A. Then by (iii) of Remark 3.1,

0 ∈ I(B) impliesI = [0]I ⊆ I(B) = A. ThereforeI ⊆ A and henceA ∈ [I) in Id(L).
(ii)⇒ (iii) SupposeA ∈ [I) in Id(L), thenI ⊆ A. By Lemma 4.3, we haveI(A) = A. Then by (ii) of

Remark 3.1, we haveA is definable with respect to the p-idealI.

(iii)⇒ (iv) SupposeA is definable with respect to the p-idealI, thenI(A) = A = I(A). SinceA is an

ideal ofL, I(A) andI(A) are also ideals ofL. HenceA is a rough ideal ofL with respect to the p-ideal
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I.

(iv)⇒ (i) SupposeA is a rough ideal ofL with respect to the p-idealI. By Lemma 5.2, we haveI ⊆ A.

ThenA = I(A).

From the above theorem, we have the set of all rough ideals with respect to a p-idealI of L forms a

principal filter generated by the p-idealI in Id(L). Dually, we have the following results for filter.

Theorem 5.4.Let I be a p-ideal of an orthomodular lattice L. Then for A ∈ F (L), the following are

equivalent:

i. A = I(B) for some B ⊆ L.

ii. A ∈ [I ′) in F (L).

iii.A is definable with respect to the p-ideal I .

iv. A is a rough filter of L with respect to the p-ideal I .

From the above theorem, we have the set of all rough filters with respect to a p-idealI of L forms a

principal filter generated by the p-filterI ′ in F (L).

Proposition 5.5.Let I be a p-ideal of an orthomodular lattice L and A ⊆ L. Then A is a rough ideal of

L if and only if A′ is a rough filter of L.

Proof. A is a rough ideal ofL⇔ I(A) andI(A) are ideals ofL

⇔ I(A)′ andI(A)′ are filters ofL

⇔ I(A′) andI(A′) are filters ofL (By Proposition 4.1)

⇔ A′ is a rough filter ofL.

Remark 5.6.In an orthomodular lattice L, {0} is a p-ideal. Therefore θ{0} is the null congruence on

L and [a]{0} = {a}, for all a ∈ L. Then every subset of an orthomodular lattice L is definable with

respect to {0}. So, every ideal of an orthomodular lattice L is a rough ideal of L and every filter of L is

a rough filter of L.

Theorem 5.7.Let I be a p-ideal of an orthomodular lattice L and A be a subset of L. If I(A) is an ideal,

then I(A) is the smallest ideal containing the ideal I and the set A in L.

Proof. If I(A) is an ideal, thenI ⊆ I(A). ThusI(A) is an ideal containingI andA. SupposeB is any

other ideal containingI andA. ThenA ⊆ B impliesI(A) ⊆ I(B). SinceI ⊆ B, by Theorem 5.3 we

haveI(B) = B. ThereforeI(A) ⊆ B. HenceI(A) is the smallest ideal containing the idealI and the

setA in L.

Corollary 5.8. Let I be a p-ideal of an orthomodular lattice L and J be an ideal of L. Then I(J) is the

smallest ideal containing the ideals I and J in L. That is, I(J) is the join of the ideals I and J in the

lattice of ideals Id(L).
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Proof. By Proposition 4.1, we haveI(J) is an ideal ofL. Then by Theorem 5.7, we haveI(J) is the

smallest ideal containing the idealsI andJ in L.

The above theorem 5.7 is not true in general for any lattice. That is, for any idealA and a congruence

relationθ of an arbitrary lattice,θ(A) needs not be the smallest ideal containingA.

Remark 5.9.Consider the lattice L given in Figure 2. Let θ be a congruence relation on L such that

[a]θ = [b]θ = [c]θ = [1]θ = {a, b, c, 1} and [0]θ = {0}. A = {0, a} is an ideal of L. But θ(A) = L.

Hence θ(A) is not the smallest ideal containing A.
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Corollary 5.10. Let I, J be two p-ideals of an orthomodular lattice L. Then I(J) = J(I).

Proof. By Theorem 5.7,I(J) is the smallest ideal containing bothI andJ . Similarly, we haveJ(I) is

also the smallest ideal containing the idealsI andJ . HenceI(J) = J(I).

Corollary 5.11. Let I be a p-ideal of an orthomodular lattice L and J be an ideal of L. Then the smallest

rough ideal containing the ideals I and J is I(J).

Theorem 5.12.Let I be a p-ideal of an orthomodular lattice L and A be a nonempty subset of L. If

I(A) is a filter, then I(A) is the smallest filter containing the filter I ′ and the set A in L.

Proof. If I(A) is a filter, thenI ′ ⊆ I(A). ThusI(A) is a filter containingI ′ andA. SupposeB is

any other filter containingI ′ andA. ThenI(A) ⊆ I(B) and sinceI ′ ⊆ B, by Theorem 5.4 we have

I(B) = B . ThereforeI(A) ⊆ B. HenceI(A) is the smallest filter containing the filterI ′ and the set

A in L.

Corollary 5.13. Let I be a p-ideal of an orthomodular lattice L and J be a filter of L. Then I(J) is the

smallest filter containing the filters I ′ and J in L. That is, I(J) is the join of the filters I ′ and J in the

lattice of filters F (L).

Proof. By Proposition 4.1, we haveI(J) is a filter. Then by the above theorem, we haveI(J) is the

smallest filter containing the filtersI ′ andJ in L.
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Corollary 5.14. Let I be a p-ideal of an orthomodular lattice L and J be a filter of L. Then the smallest

rough filter containing the filters I ′ and J is I(J).

Proposition 5.15.Let f be a homomorphism from an orthomodular lattice L1 onto an orthomodular

lattice L2. Let I2 be a p-ideal of L2 and I1 = {x ∈ L1/f(x) ∈ I2}. Then for any A ⊆ L1, the

following hold:

i. I1 is a p-ideal of L1.

ii. f(I1(A)) = I2(f(A)).

iii. f(I1(A)) ⊆ I2(f(A)) and if f is 1-1, then f(I1(A)) = I2(f(A)).

Proof. i. Let x, y ∈ I1. Thenf(x), f(y) ∈ I2. SinceI2 is a p-ideal,f(x ∨ y) = f(x) ∨ f(y) ∈ I2. So,

x ∨ y ∈ I1. Now letx, y ∈ L1 be such thatx ∈ I1 andy ≤ x in L1. Thenf(y) ≤ f(x) in L2. SinceI2

is a p-ideal andf(x) ∈ I2, f(y) ∈ I2. So,y ∈ I1. ThusI1 is an ideal ofL1. Let a ∈ I1 andx ∈ L1.

Thenf(a) ∈ I2 andf(x) ∈ L2. SinceI2 is a p-ideal,f(x ∧ (x′ ∨ a)) = f(x) ∧ (f(x)′ ∨ f(a)) ∈ I2.

Thereforex ∧ (x′ ∨ a) ∈ I1. HenceI1 is a p-ideal ofL1.

ii. Let x ∈ f(I1(A)). Thenx = f(y), wherey ∈ I1(A) and so[y]I1 ∩ A 6= φ. Then there ex-

ists a ∈ L1 such thata ∈ [y]I1 and a ∈ A, imply f(a) ∈ [f(y)]I2 and f(a) ∈ f(A). So, we

havex = f(y) ∈ I2(f(A)). Thereforef(I1(A)) ⊆ I2(f(A)). Conversely, letx ∈ L1 be such that

f(x) ∈ I2(f(A)). So,[f(x)]I2 ∩ f(A) 6= φ. Then there existsa ∈ A such thatf(a) ∈ [f(x)]I2 which

impliesa ∈ [x]I1 . Thereforex ∈ I1(A). That is,f(x) ∈ f(I1(A)). ThusI2(f(A)) ⊆ f(I1(A)). Hence

f(I1(A)) = I2(f(A)).

iii. Let x ∈ f(I1(A)). Thenx = f(y), wherey ∈ I1(A). Then[y]I1 ⊆ A and hence[f(y)]I2 ⊆
f(A). So,f(y) ∈ I2(f(A)). That is,x ∈ I2(f(A)). Therefore,f(I1(A)) ⊆ I2(f(A)). Now suppose

f is 1-1. Letx ∈ I2(f(A)). Sincef is surjective,x = f(y), wherey ∈ L1. Then[f(y)]I2 ⊆ f(A).
Sincef is 1-1,[f(y)]I2 ⊆ f(A) implies [y]I1 ⊆ A. Theny ∈ I1(A) andx = f(y) ∈ f(I1(A)). Hence

f(I1(A)) = I2(f(A)).

Corollary 5.16. Let f be a homomorphism from an orthomodular lattice L1 onto an orthomodular lattice

L2. Let I2 be a p-ideal of L2 and I1 = {x ∈ L1/f(x) ∈ I2}. Then for a subset A of L1,

i. I1(A) is an ideal of L1 if and only if I2(f(A)) is an ideal of L2,

ii. I1(A) is an ideal of L1 if and only if I2(f(A)) is an ideal of L2 if f is 1-1.

Proof. Sincef is a bijection,B is an ideal inL1 if and only if f(B) is an ideal inL2. Hence the proof

follows from the Proposition 5.15.

Corollary 5.17. Let f be an isomorphism from an orthomodular lattice L1 onto an orthomodular lattice

L2. Let I2 be a p-ideal of L2 and I1 = {x ∈ L1/f(x) ∈ I2}. Then for A ⊆ L1, A is a rough ideal of

L1 with respect to the p-ideal I1 if and only if f(A) is a rough ideal of L2 with respect to the p-ideal I2.
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Proof. The proof follows from Proposition 5.16.
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