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Abstract

In this paper we derive some sufficient conditions for a prime ideal of a distributive lattice to

become an O-ideal. A set of equivalent conditions are established for every O-ideal to become an

annihilator ideal. An equivalency is obtained between prime O-ideals and minimal prime ideals of

a distributive lattice. Finally, the concept of co-maximality is introduced and obtained that any two

distinct prime O-ideals of a distributive lattice are co-maximal.
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1 Introduction

The notion of annihilators was introduced in lattices by Mark Mandelker [6] and the properties of these

annihilators were extensively studied by many authors, particularly T.P. Speed in the papers [7] and [8].

Later the class of annulets played a vital role in characterizing many algebraic structures like normal

lattices [2], quasi-complemented lattices [3]. These quasi-complemented lattices are equivalent to? -

lattices of T.P. Speed [8]. As an extension of the study of W.H. Cornish in [3], he introduced the concept

of O-ideals in distributive lattices and studied their properties with the help of congruences in the paper

[4].

This paper is to study the primeness of O-ideals in distributive lattices. In this paper, we observe that

the class of O-ideals forms a distributive lattice on its own. We also derive some sufficient conditions

for a prime ideal of a distributive lattice to become an O-ideal. An equivalency between the class of all

prime O-ideals and class of all minimal prime ideals is obtained. A necessary and sufficient condition

for every O-ideal of a distributive lattice to become a prime ideal is also derived in our preset work. In a

? -lattice, a set of equivalent conditions are established for every O-ideal to become an annihilator ideal.

Later the concept of co-maximality of O-ideals is introduced and a sufficient condition for two an-

nulets to become co-maximal is obtained . Further, it is proved that any two distinct prime O-ideals of

a distributive lattice are co-maximal.

2 Preliminaries

In this section, we recall certain definitions and important results which are useful for our preset work.

Definition 2.1. [1] An algebra (L,∧,∨) of type (2, 2) is called a distributive lattice if for all x, y, z ∈ L,

it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5′)

(1). x ∧ x = x, x ∨ x = x

(2). x ∧ y = y ∧ x, x ∨ y = y ∨ x
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(3). (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z)
(4). (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x

(5). x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
(5′). x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

A non-empty subsetI of L is called an ideal(filter) ofL if a ∨ b ∈ A(a ∧ b ∈ A) anda ∧ x ∈
A(a ∨ x ∈ A) whenevera, b ∈ A andx ∈ L. A proper idealP of L is said to be prime if for any

x, y ∈ L, x ∧ y ∈ P ⇒ x ∈ P or y ∈ P . It is clear that a subsetP of L is a prime ideal if and only if

L−P is a prime filter. For any prime idealP of L, the setO(P ) = { x ∈ L | x∧y = 0 for somey /∈ P }
is an ideal [2] ofL such thatO(P ) ⊆ P . A prime idealP of L is called a minimal prime ideal[5] if

there exists no prime idealQ such thatQ ⊂ P .

Theorem 2.2.[1] If I is an ideal and F a filter of L with I ∩ F = ∅, then there exists a prime ideal P

such that I ⊆ P and P ∩ F = ∅.

Theorem 2.3.[5] A prime ideal P of L is a minimal prime ideal of L if and only if to each x ∈ P there

exists y /∈ P such that x ∧ y = 0.

For anyA ⊆ L, A∗ = { x ∈ L | a ∧ x = 0 for all a ∈ A } is an ideal [8] ofL. We write(a]∗ for

{a}∗. Then clearly(0]∗ = L andL∗ = (0].

Lemma 2.4.[8] For any two ideals I , J of L, we have the following:

1). If I ⊆ J , then J∗ ⊆ I∗

2). I ⊆ I∗∗

3). I∗∗∗ = I∗

4). I ∩ J = (0] ⇔ I ⊆ J∗

5). (I ∨ J)∗ = I∗ ∩ J∗

Definition 2.5. [3] An ideal I of L is called an annihilator ideal of L if I = I∗∗ or equivalently I = S∗

for some non-empty subset S of L.

An elementx ∈ L is called dense [8] if(x]∗ = (0]. The setD of all dense elements ofL forms a

filter, wheneverD is nonempty. An idealI of L is called dense ifI∗ = (0]. Two idealsI, J of L are

called co-maximal ifI ∨ J = L.

Definition 2.6. [8] A lattice L is called a ?-lattice, if to each x ∈ L, (x]∗∗ = (x′]∗ for some x′ ∈ L.

Theorem 2.7.[8] A lattice L is a ?-lattice if and only if to each x ∈ L, there exists y ∈ L such that

x ∧ y = 0 and x ∨ y is dense.

Definition 2.8. [4] An ideal I of L is called an O-ideal if I = O(F ) =
⋃

x∈F

(x]∗ for some filter F of L.
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3 Prime O-ideals

In this section, the properties of prime O-ideals are observed. Some characterization theorems are

proved with the help of prime O-ideals of a distributive lattice.

Lemma 3.1.For any distributive lattice L, we have the following:

(a) For any filter F of L, F ∩O(F ) 6= ∅ ⇒ F = O(F ) = L

(b) For any prime ideal P of L, O(P ) = O(L− P )

Proof. (a) SupposeF ∩ O(F ) 6= ∅. Choosex ∈ F ∩ O(F ). Thenx ∈ F andx ∧ f = 0 for some

f ∈ F . Hence0 = x ∧ f ∈ F . ThereforeF = O(F ) = L.

(b) LetP be a prime ideal ofL. Then we have

x ∈ O(P ) ⇔ x ∧ y = 0 for somey /∈ P

⇔ x ∧ y = 0 for somey ∈ L− P

⇔ x ∈ O(L− P )

ThereforeO(P ) = O(L− P ) for any prime idealP of L.

Theorem 3.2.For any distributive lattice L, we have the following conditions:

(a) Every minimal prime ideal is an O-ideal

(b) Every non-dense prime ideal is an O-ideal

(c) If L is a ?-lattice, then every prime ideal P with P ∩D = ∅ is an O-ideal

Proof. (a). LetP be a minimal prime ideal ofL. ThenL − P is a maximal filter ofL. SinceP is

minimal, we getP = O(P ) = O(L− P ). HenceP is an O-ideal.

(b). Let P be a non-dense prime ideal ofL. Then there exists0 6= x ∈ L, such thatx ∈ P ∗. Thus

P ⊆ P ∗∗ ⊆ (x]∗. On the other hand, leta ∈ (x]∗. Thena ∧ x = 0 ∈ P andx /∈ P , because ofx ∈ P ∗.

Hencea ∈ P . Thus(x]∗ ⊆ P . Hence we getP = (x]∗ = O([x)). ThereforeP is an O-ideal ofL.

(c). LetL be a?-lattice andP a prime ideal ofL such thatP∩D = ∅. We now show thatP = O(L−P ).
ClearlyO(L−P ) = O(P ) ⊆ P . Conversely, letx ∈ P . SinceL is a?-lattice, there existsy /∈ P such

thatx ∧ y = 0 andx ∨ y ∈ D. Hencex ∈ (y]∗ andx ∨ y /∈ P . Thusx ∈ (y]∗ andy /∈ P . Therefore

x ∈ O(L− P ). ThusP is an O-ideal.

In general, the converse of Theorem 3.2(a) is not true. That is, an O-ideal of a distributive lattice

need not be a minimal prime ideal. In fact, it needs not even be a prime ideal which is evident from the

following example.

Example 3.3.Let X = {1, 2, 3, 4} be a set and L the sublattice of the power set of X , which is

generated by the sets {1}, {2} and {3}. That is, L =
{
∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}, {1, 2, 3}

}
.

Take I =
{
∅, {1}

}
and F =

{
{2, 3}, {1, 2, 3}

}
. Clearly I is an ideal and F a filter of L. Now
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O(F ) = ({2, 3}]∗ ∪ ({1, 2, 3}]∗ =
{
∅, {1}

}
∪

{
∅
}

=
{
∅, {1}

}
= I . Hence I is an O-ideal of L. But

I is not prime, because of {2} /∈ I and {3} /∈ I but {2} ∩ {3} = ∅ ∈ I .

Theorem 3.4.Let I be a proper O-ideal of a distributive lattice L. Then I is prime if and only if I

contains a prime ideal.

Proof. The necessary part is obvious. To prove the sufficient part, assume thatI contains a prime ideal,

sayP . SinceI is an O-ideal ofL, we get thatI = O(F ) for some filterF of L. Choosea, b ∈ L such

thata /∈ I andb /∈ I. Thena /∈ P andb /∈ P . Hencea ∧ b /∈ P . Thus(a ∧ b]∗ ⊆ P ⊆ I = O(F ).
Supposea ∧ b ∈ I = O(F ). Thena ∧ b ∧ f = 0 for somef ∈ F . Hencef ∈ (a ∧ b]∗ ⊆ O(F ).
Thusf ∈ F ∩ O(F ). ThereforeF ∩ O(F ) 6= ∅. ThusI = O(F ) = F = L, which is a contradiction.

ThereforeI is prime.

Theorem 3.5.Every prime O-ideal of a distributive lattice L is a minimal prime ideal.

Proof. Let P be a prime O-ideal ofL. ThenP = O(F ) for some filterF of L. Let x ∈ P = O(F ).
Thenx ∧ y = 0 for somey ∈ F . Supposey ∈ P . Theny ∈ F ∩ O(F ). HenceF ∩ O(F ) 6= ∅. By

Lemma 3.1(a),P = O(F ) = F = L, which is a contradiction. Hencey /∈ P . ThereforeP is a minimal

prime ideal.

Lemma 3.6.The class of all O-ideals of L forms a distributive lattice on its own

Proof. For any two filtersF,G of L, define

O(F ) ∩O(G) = O(F ∩G) andO(F ) tO(G) = O(F ∨G)

O(F ∩ G) is the infimum of the O-idealsO(F ) andO(G) andO(F ∨ G) is an upper bound ofO(F )
andO(G). SupposeO(F ) ⊆ O(H) andO(G) ⊆ O(H) for some filterH of L. Let x ∈ O(F ∨ G).
Thenx∧ f ∧ g = 0 for somef ∈ F andg ∈ G. Hence,x∧ f ∈ O(G) ⊆ O(H). Thus,x∧ f ∧ h1 = 0
for someh1 ∈ H. Hencex ∧ h1 ∈ O(F ) ⊆ O(H). Thusx ∧ h1 ∧ h2 = 0 for someh2 ∈ H. Since

h1 ∧h2 ∈ H, we getx ∈ O(H). HenceO(F ∨G) is the supremum ofO(F ) andO(G). Now, it can be

easily observed that the class of all O-ideals forms a distributive lattice with respect to the operations∩
andt.

Theorem 3.7.Let L be a ?-lattice. Then the following conditions are equivalent.

(1) Every O-ideal is an annihilator ideal

(2) Every minimal prime ideal is an annihilator ideal

(3) Every prime O-ideal is of the form (x]∗∗ for some x ∈ L

(4) Every O-ideal is of the form (x]∗∗ for some x ∈ L

(5) Every minimal prime ideal is non-dense

Proof. (1) ⇒ (2) : Since every minimal prime ideal is an O-ideal, it is obvious.
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(2) ⇒ (3) : Assume the condition (2). LetP be a prime O-ideal ofL. Then by Theorem 3.5,P

is a minimal prime ideal. Hence by condition (2),P is an annihilator ideal. ThusP is non-dense.

ThereforeP = (x]∗ for some0 6= x ∈ P ∗. SinceL is a?-lattice, there exists somey ∈ L such that

P = (x]∗ = (y]∗∗.

(3) ⇒ (4) : Assume the condition (3). LetI be an O-ideal ofL. SupposeI cannot be expressed in the

form (x]∗∗ for somex ∈ L. Let us consider the set

= = { J | J is an O-ideal ofL which is not in the form of(x]∗∗ for somex ∈ L }. Then clearly= 6= ∅.
Let {Ji | i ∈ ∆} be a chain of O-ideals in=. Then clearly∪Ji is an O-ideal ofL. Suppose∪Ji = (x]∗∗

for somex ∈ L. We have alwaysJi ⊆ ∪Ji = (x]∗∗ for all i ∈ ∆. Conversely, we havex ∈ (x]∗∗ = ∪Ji.

Hencex ∈ Ji for somei ∈ ∆. Thus(x]∗∗ ⊆ Ji for somei ∈ ∆. ThereforeJi = (x]∗∗ for somei ∈ ∆
andx ∈ L, which is a contradiction. LetM be a maximal element of=. Choosea, b ∈ L such

that a /∈ M andb /∈ M . SinceL is a ?-lattice, there existsa′, b′ ∈ L such that(a]∗∗ = (a′]∗ and

(b]∗∗ = (b′]∗. ThenM ⊂ M ∨ (a] ⊆ M ∨ (a]∗∗ = M ∨ (a′]∗ ⊆ M t (a′]∗. Similarly we get

M ⊂ M t (b′]∗. By the maximality ofM , we can getM t (a′]∗ = (x]∗∗ andM t (b′]∗ = (y]∗∗ for

somex, y ∈ L. Now

M t (a ∧ b]∗∗ = M t {(a]∗∗ ∩ (b]∗∗}

= M t {(a′]∗ ∩ (b′]∗}

= {M t (a′]∗} ∩ {M t (b′]∗}

= (x]∗∗ ∩ (y]∗∗

= (x ∧ y]∗∗

If a∧b ∈ M , then(a∧b]∗∗ ⊆ M (sinceM is an O-ideal). HenceM = (x∧y]∗∗, which is a contradiction

to M ∈ =. ThereforeM is a prime O-ideal which cannot be expressed in the form of(x]∗∗ for some

x ∈ L, which is a contradiction. Thus every O-ideal is of the form(x]∗∗ for somex ∈ L.

(4) ⇒ (5) : Assume the condition (4). LetP be a minimal prime ideal ofL. Since every minimal prime

ideal is an O-ideal, we getP = (x]∗∗ for somex ∈ L. SupposeP ∗ = (0]. Thenx ∈ (x]∗∗ is a dense

element inP , which is a contradiction. ThereforeP is non-dense.

(5) ⇒ (1) : Assume that every minimal prime ideal is non-dense. LetI be an O-ideal ofL. Then

I = O(F ) for some filterF of L. We have alwaysI ⊆ I∗∗. Let c ∈ I∗∗. We first prove that

(I ∨ I∗) ∩ D 6= ∅. Suppose(I ∨ I∗) ∩ D = ∅. Then there exists a prime idealP (say) such that

(I ∨ I∗) ⊆ P andP ∩D = ∅. Let x ∈ P . SinceL is a?-lattice, there existsy ∈ L such thatx∧ y = 0
andx ∨ y ∈ D. Hencex ∨ y /∈ P . Thusy /∈ P . ThereforeP is a minimal prime ideal inL. By

condition (5),P is non-dense. ButP ∗ ⊆ (I ∨ I∗)∗ = I∗ ∩ I∗∗ = (0], which is a contradiction. Hence

(I ∨ I∗) ∩ D 6= ∅. Choosed ∈ (I ∨ I∗) ∩ D. Thend = a ∨ b for somea ∈ I andb ∈ I∗. Hence

(a]∗∩(b]∗ = (a∨b]∗ = (d]∗ = (0]. Thus(b]∗ ⊆ (a]∗∗. Sinceb ∈ I∗ andc ∈ I∗∗, we getb∧c = 0. Also

a ∈ I = O(F ) implies thata ∧ f = 0 for somef ∈ F . Now c ∈ (b]∗ ⊆ (a]∗∗ ⊆ (f ]∗ ⊆ O(F ) = I.

Hence we getI∗∗ ⊆ I. ThereforeI is an annihilator ideal ofL.
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4 Comaximality of prime O-ideals

Let us recall that two idealsI, J of a latticeL are comaximal ifI ∨ J = L. We now introduce

t-comaximality of O-ideals of a distributive lattice.

Definition 4.1. Two O-ideals I, J of a distributive lattice L are called t -comaximal if I t J = L.
Any two comaximal O-ideals aret -comaximal. But the converse is not true. This can be illustrated

in the following example.

Example 4.2.Consider the distributive lattice L = {0, a, b, c, 1}whose Hasse diagram is given in Figure

4.1.

�
��

@
@@

@
@@

�
��

c
c c

c
c

0

a b

c

1

Figure 4.1: Hasse diagram of the distributive latticeL = {0, a, b, c, 1}.

Consider the idealsI = {0, a} andJ = {0, b}. ClearlyF = {b, c, 1} andG = {a, c, 1} are filters in

L. It can be easily verified thatI = O(F ) andJ = O(G). ThusI andJ are two distinctO -ideals of

L. Now I t J = O(F ) t O(G) = O(F ∨ G) = O(L) = L. HenceI andJ aret -comaximal. But

I ∨ J = {0, a} ∨ {0, b} = {0, a, b, c} 6= L. ThereforeI andJ are not comaximal inL.

Lemma 4.3.Let L be a distributive lattice. Then, for any x, y ∈ L with x∧ y = 0, (x]∗ and (y]∗ are t -

comaximal in L.

Proof. Choosex, y ∈ L such thatx ∧ y = 0. Then we have

(x]∗ t (y]∗ = O([x)) tO([y))

= O([x) ∨ [y))

= O([x ∧ y))

= (x ∧ y]∗

= (0]∗

= L

Therefore,(x]∗ and(y]∗ aret -comaximal inL.

Theorem 4.4.Let L be a distributive lattice. Then any two distinct prime O-ideals of L are t -comaxi-

mal.

Proof. Let P andQ be two distinct prime O-ideals ofL. Then by Theorem 3.5,P andQ are minimal
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prime ideals. Choosea ∈ P − Q andb ∈ Q − P . SinceP,Q are minimal primes, there existsx /∈ P

andy /∈ Q such thata∧x = b∧y = 0. Sinceb∧x /∈ P andP is a prime ideal, we can get(b∧x]∗ ⊆ P .

Similarly, we get(a ∧ y]∗ ⊆ Q. Now

(b ∧ x) ∧ (a ∧ y) = b ∧ a ∧ x ∧ y

= a ∧ x ∧ b ∧ y

= 0 ∧ 0

= 0

By Lemma 4.3, we get(b ∧ x]∗ t (a ∧ y]∗ = L. HenceL = (b ∧ x]∗ t (a ∧ y]∗ ⊆ P tQ. ThereforeP

andQ aret -comaximal inL.

In the above theorem, the primeness of O-ideals of a distributive lattice is inevitable to derive thet
-comaximality which can be observed from the distributive lattice given in Example 3.3. For, consider

the two filtersF = {{2, 3}, {1, 2, 3}} andG = {{1, 2}, {1, 2, 3}}. Then clearlyO(F ) = {∅, {1}} and

O(G) = {∅, {3}} areO -ideals. It can also be noted that they are not prime ideals inL. Now, O(F ) t
O(G) = O(F ∨ G) = O

(
{{2}, {1, 2}, {2, 3}, {1, 2, 3}}

)
= {∅, {1}, {3}, {1, 3}} 6= L. Therefore

O(F ) andO(G) are nott -comaximal inL.

Definition 4.5. Let J be an ideal of a distributive lattice L. For any x ∈ L, define

(x]+ = { a ∈ J | a ∧ x = 0 }

Clearly(x]+ = J ∩ (x]∗ is an ideal inJ . Moreover(x]+ is an O-ideal wheneverJ is an O-ideal.

Theorem 4.6.Let J be an O-ideal of a distributive lattice L. Then for any x, y ∈ L with x ∧ y = 0,

(x]+ and (y]+ are t -comaximal in J .

Proof. Let x, y ∈ L such thatx ∧ y = 0. Then by Lemma 4.3, we get that(x]∗ t (y]∗ = L. Now

J = J ∩ L

= J ∩ {(x]∗ t (y]∗}

= {J ∩ (x]∗} t {J ∩ (y]∗}

= (x]+ t (y]+

Therefore(x]+ and(y]+ aret -comaximal inJ .
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