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Abstract

In this paper we derive some sufficient conditions for a prime ideal of a distributive lattice to
become an O-ideal. A set of equivalent conditions are established for every O-ideal to become an
annihilator ideal. An equivalency is obtained between prime O-ideals and minimal prime ideals of
a distributive lattice. Finally, the concept of co-maximality is introduced and obtained that any two
distinct prime O-ideals of a distributive lattice are co-maximal.
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1 Introduction

The notion of annihilators was introduced in lattices by Mark Mandelker [6] and the properties of these
annihilators were extensively studied by many authors, particularly T.P. Speed in the papers [7] and [8].
Later the class of annulets played a vital role in characterizing many algebraic structures like normal
lattices [2], quasi-complemented lattices [3]. These quasi-complemented lattices are equivalent to
lattices of T.P. Speed [8]. As an extension of the study of W.H. Cornish in [3], he introduced the concept
of O-ideals in distributive lattices and studied their properties with the help of congruences in the paper
[4].

This paper is to study the primeness of O-ideals in distributive lattices. In this paper, we observe that
the class of O-ideals forms a distributive lattice on its own. We also derive some sufficient conditions
for a prime ideal of a distributive lattice to become an O-ideal. An equivalency between the class of all
prime O-ideals and class of all minimal prime ideals is obtained. A necessary and sufficient condition
for every O-ideal of a distributive lattice to become a prime ideal is also derived in our preset work. In a
*-lattice, a set of equivalent conditions are established for every O-ideal to become an annihilator ideal.

Later the concept of co-maximality of O-ideals is introduced and a sufficient condition for two an-
nulets to become co-maximal is obtained . Further, it is proved that any two distinct prime O-ideals of
a distributive lattice are co-maximal.

2 Preliminaries

In this section, we recall certain definitions and important results which are useful for our preset work.

Definition 2.1. [1] An algebra (L, A\, V) of type (2, 2) is called a distributive lattice if for all x,y, z € L,
it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5')
(I).zANz=zx,2Vr =20

(2. zANy=yANz,zVy=yVa
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A non-empty subsef of L is called an ideal(filter) of. if a Vb € A(a Ab € A) anda A x €
A(a VvV x € A) whenevera,b € A andx € L. A proper idealP of L is said to be prime if for any
z,y € L,x Ny e P=x € Pory € P. ltis clear that a subsdt of L is a prime ideal if and only if
L—Pis aprime filter. For any prime ide&! of L, the seO(P) = {x € L |xAy = 0 forsomey ¢ P }
is an ideal [2] ofL such thatO(P) C P. A prime idealP of L is called a minimal prime ideal[5] if
there exists no prime ide§) such thaty C P.

Theorem 2.2.[1] If I is an ideal and F a filter of L with [ N F = (), then there exists a prime ideal P
suchthat] C Pand PN F = ().

Theorem 2.3.[5] A prime ideal P of L is a minimal prime ideal of L if and only if to each x € P there
existsy ¢ P such thatx Ay = 0.

ForanyA C L, A*={x € L|aAz=0foralla € A }is an ideal [8] ofL. We write (a|* for
{a}*. Then clearly(0]* = L andL* = (0].

Lemma 2.4.[8] For any two ideals I, J of L, we have the following:

1). IfI C J, then J* C I*
2).1C I

3). I = I
4.INJ=(0]<1CJ*
5. (IVJ)*=I"NJ*

Definition 2.5. [3] An ideal I of L is called an annihilator ideal of L if I = I** or equivalently I = S*

for some non-empty subset S of L.

An elementr € L is called dense [8] ifz]* = (0]. The setD of all dense elements df forms a
filter, wheneverD is nonempty. An ideal of L is called dense if* = (0]. Two ideals!, J of L are
called co-maximal if vV J = L.

Definition 2.6. [8] A lattice L is called a x-lattice, if to each x € L, (z]** = (2']* for some 2’ € L.

Theorem 2.7.[8] A lattice L is a x-lattice if and only if to each x € L, there exists y € L such that
x Ay =0andzxV y is dense.

Definition 2.8. [4] An ideal I of L is called an O-ideal if | = O(F') = |J (x|* for some filter F" of L.
zeF
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3 Prime O-ideals

In this section, the properties of prime O-ideals are observed. Some characterization theorems are
proved with the help of prime O-ideals of a distributive lattice.

Lemma 3.1.For any distributive lattice L, we have the following:

(a) For any filter F of L, FNO(F) #0 = F=0(F)=1L
(b) For any prime ideal P of L, O(P) = O(L — P)

Proof. (a) Suppose” N O(F) # (). Chooser € F N O(F). Thenxz € F andx A f = 0 for some
f € F.Hence) =z A f € F. ThereforeF' = O(F) = L.

(b) Let P be a prime ideal of.. Then we have

r€O(P) & zAy=0forsomey ¢ P
< xANy=0forsomey e L —P
< z€O(L—-P)

ThereforeO(P) = O(L — P) for any prime idealP of L. [ |

Theorem 3.2.For any distributive lattice L., we have the following conditions:

(a) Every minimal prime ideal is an O-ideal
(b) Every non-dense prime ideal is an O-ideal
(c) If L is a x-lattice, then every prime ideal P with P N D = () is an O-ideal

Proof. (a). LetP be a minimal prime ideal of.. ThenL — P is a maximal filter ofL.. SinceP is
minimal, we getP = O(P) = O(L — P). HenceP is an O-ideal.

(b). Let P be a non-dense prime ideal 6f Then there exist8 # x € L, such thatr € P*. Thus
P C P** C (z]*. On the other hand, let € (z]*. Thena Az = 0 € P andz ¢ P, because of € P*.
Hencea € P. Thus(z]* C P. Hence we geP = (z|* = O([z)). ThereforeP is an O-ideal ofL.

(c). LetL be ax-lattice andP a prime ideal ofL such thatPnD = (). We now show thaP = O(L—P).
ClearlyO(L — P) = O(P) C P. Conversely, let: € P. SinceL is ax-lattice, there existg ¢ P such
thatz Ay = 0andz Vy € D. Hencex € (y]* andz vV y ¢ P. Thusz € (y|* andy ¢ P. Therefore
x € O(L — P). ThusP is an O-ideal. [ |

In general, the converse of Theorem 3.2(a) is not true. That is, an O-ideal of a distributive lattice
need not be a minimal prime ideal. In fact, it needs not even be a prime ideal which is evident from the
following example.

Example 3.3.Let X = {1,2,3,4} be a set and L the sublattice of the power set of X, which is
generated by the sets {1}, {2} and {3}. Thatis, L = {0, {1}, {2}, {3}, {1,2},{2,3},{1,3},{1,2,3}}.
Take I = {0,{1}} and F = {{2,3},{1,2,3}}. Clearly I is an ideal and F a filter of L. Now
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O(F) = ({2,3}]* U ({1,2,3}]* = {0,{1}} u {0} = {0,{1}} = I. Hence I is an O-ideal of L. But
I is not prime, because of {2} ¢ I and {3} ¢ I but {2} N {3} =0 € I.

Theorem 3.4.Let I be a proper O-ideal of a distributive lattice L. Then I is prime if and only if [

contains a prime ideal.

Proof. The necessary part is obvious. To prove the sufficient part, assumiedbatains a prime ideal,
sayP. Sincel is an O-ideal ofZ, we get thatl = O(F') for some filter" of L. Choosez, b € L such
thata ¢ I andb ¢ I. Thena ¢ P andb ¢ P. Hencea Ab ¢ P. Thus(a Ab]* C P C I = O(F).
Supposer Ab € I = O(F). Thena AbA f = 0forsomef € F. Hencef € (a Ab]* C O(F).
Thusf € FNO(F). ThereforeF N O(F) # (. ThusI = O(F) = F = L, which is a contradiction.
Thereforel is prime. |

Theorem 3.5.Every prime O-ideal of a distributive lattice L is a minimal prime ideal.

Proof. Let P be a prime O-ideal oL.. ThenP = O(F') for some filterF" of L. Letx € P = O(F).
Thenz Ay = 0 for somey € F. Supposey € P. Theny € F N O(F). HenceF N O(F) # (. By
Lemma3.1(a)P = O(F) = F = L, which is a contradiction. Henee¢ P. ThereforeP is a minimal
prime ideal. |

Lemma 3.6.The class of all O-ideals of L forms a distributive lattice on its own

Proof. For any two filtersF, G of L, define
O(F)NO(G)=0(FNG)andO(F)UO(G) =0O(F VG)

O(F N G) is the infimum of the O-ideal® (F') andO(G) andO(F Vv G) is an upper bound aD(F)
andO(G). Suppos&)(F) C O(H) andO(G) € O(H) for some filterH of L. Letx € O(F V G).
Thenz A f Ag = 0forsomef € Frandg € G. Hencex A f € O(G) C O(H). Thus,e A fAhy =0

for someh; € H. Hencex A hy € O(F) C O(H). Thusz A hy A hg = 0 for somehy € H. Since
hiANhe € H,we getr € O(H). HenceO(F' V G) is the supremum aP(F') andO(G). Now, it can be
easily observed that the class of all O-ideals forms a distributive lattice with respect to the operations
andLl. |

Theorem 3.7.Let L be a %-lattice. Then the following conditions are equivalent.

(1) Every O-ideal is an annihilator ideal

(2) Every minimal prime ideal is an annihilator ideal

(3) Every prime O-ideal is of the form (x]** for some x € L
(4) Every O-ideal is of the form (z|** for some x € L

(5) Every minimal prime ideal is non-dense

Proof. (1) = (2) : Since every minimal prime ideal is an O-ideal, it is obvious.
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(2) = (3) : Assume the condition (2). LeP be a prime O-ideal of.. Then by Theorem 3.5P
is a minimal prime ideal. Hence by condition (2, is an annihilator ideal. Thu# is non-dense.
ThereforeP = (z]* for some0 # = € P*. SinceL is ax-lattice, there exists somg e L such that
P= (2] = (y]".

(3) = (4) : Assume the condition (3). Ldtbe an O-ideal of.. Supposd cannot be expressed in the
form (z]** for somex € L. Let us consider the set

& ={J|Jisan O-ideal ofL which is not in the form of z]** for somex € L }. Then clearlys # ().
Let{J; | i € A} be achain of O-ideals if¥. Then clearlyJ.J; is an O-ideal ofL. SupposeJJ; = (z]**
for somer € L. We have alwayd; C UJ; = (z|** foralli € A. Conversely, we have € (z|** = UJ;.
Hencex € J; for somei € A. Thus(z]** C J; for somei € A. ThereforeJ; = (z]** for somei € A
andz € L, which is a contradiction. Lel/ be a maximal element ¢&. Choosea,b € L such
thata ¢ M andb ¢ M. SincelL is ax-lattice, there exista/,b’ € L such that(a]** = (a’]* and
(B = (V']*. ThenM C MV (a] € MV (a]** = M Vv (d/]* € M U (a']*. Similarly we get
M c M U (V]*. By the maximality ofM, we can getV/ U (a/]* = (z]** and M U (V']* = (y]** for
somezx,y € L. Now

MU(aAb™ = MuU{(a** N (6"}
= Mu{(a] N T}
= {Mu(dyn{Mu @]}
= (" Ny

= (znyl™

If anb € M, then(aAb]** C M (sinceM is an O-ideal). Henc&/ = (zAy]**, which is a contradiction
to M € 3. ThereforeM is a prime O-ideal which cannot be expressed in the forrfepf for some
x € L, which is a contradiction. Thus every O-ideal is of the faeri™* for somez € L.

(4) = (5) : Assume the condition (4). Ld? be a minimal prime ideal of. Since every minimal prime
ideal is an O-ideal, we gdt = (z]** for somezx € L. Suppose’* = (0]. Thenz € (z]** is a dense
element inP, which is a contradiction. Therefor is non-dense.

(5) = (1) : Assume that every minimal prime ideal is non-dense. Lbe an O-ideal ofL. Then
I = O(F) for some filter " of L. We have alwayd C I**. Letc € I**. We first prove that
(IVI*)ND # (. Suppos€g! vV I*) N D = (). Then there exists a prime ide&(say) such that
(IvI*)C PandPND = (. Letx € P. SinceL is ax-lattice, there existg € L such thatt Ay =0
andz Vy € D. Hencex Vy ¢ P. Thusy ¢ P. ThereforeP is a minimal prime ideal in.. By
condition (5),P is non-dense. BuP* C (I v I*)* = I* N I** = (0], which is a contradiction. Hence
(IVI*)NnD # 0. Choosed € (IVI*)ND. Thend = aV bforsomea € I andb € I'*. Hence
(a]*N(b]* = (aVb]* = (d|* = (0]. Thus(b]* C (a]**. Sinceb € I* andc € I**, we gethAc = 0. Also
a € I = O(F) implies thata A f = 0 for somef € F. Nowc € (b]* C (a]** C (f]* C O(F) = 1.
Hence we gef** C I. Thereforel is an annihilator ideal of.. |
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4 Comaximality of prime O-ideals

Let us recall that two ideal$, J of a lattice L are comaximal iff v J = L. We now introduce
LI-comaximality of O-ideals of a distributive lattice.

Definition 4.1. Two O-ideals I, J of a distributive lattice L are called || -comaximal if 1 J = L.

Any two comaximal O-ideals are-comaximal. But the converse is not true. This can be illustrated
in the following example.
Example 4.2.Consider the distributive lattice L = {0, a, b, ¢, 1} whose Hasse diagram is given in Figure

4.1.
1

c

Figure 4.1: Hasse diagram of the distributive lattice- {0, a, b, ¢, 1}.

Consider the ideal$ = {0,a} andJ = {0,b}. Clearly F = {b,¢,1} andG = {a,c, 1} are filters in
L. It can be easily verified thdt= O(F') andJ = O(G). ThusI and.J are two distinciO-ideals of
L.NowIUJ =O(F)UO(G) = O(F Vv G) =0(L) = L. Hencel and.J areLI-comaximal. But
IvJ=A{0,a}Vv{0,b} ={0,a,b,c} # L. Thereforel and.J are not comaximal irL.

Lemma 4.3.Let L be a distributive lattice. Then, for any x,y € L withz Ay = 0, (z]* and (y|* are LI -

comaximal in L.

Proof. Chooser,y € L such thatc A y = 0. Then we have

@U@ = O(z)uo(y)

Therefore(x]* and(y]* arell-comaximal inL. |

Theorem 4.4.Let L be a distributive lattice. Then any two distinct prime O-ideals of L are LI -comaxi-

mal.

Proof. Let P and( be two distinct prime O-ideals df. Then by Theorem 3.5 and(@ are minimal
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prime ideals. Choose € P — (Q andb € Q — P. SinceP, (Q are minimal primes, there exisis¢ P
andy ¢ @ suchthat Az =bAy = 0. SincebAz ¢ P andP is a prime ideal, we can géiAx]* C P.
Similarly, we get(a A y]* C Q. Now

bAZ)AN(aANy) = bAaANz Ay
= aNTAbAy
= 0A0
= 0

By Lemma 4.3, we geb A x]* U (a Ay]* = L. HenceL = (b A z|* U (a A y]* € P LU Q. ThereforeP
and(Q arell-comaximal inL. |

In the above theorem, the primeness of O-ideals of a distributive lattice is inevitable to derive the
-comaximality which can be observed from the distributive lattice given in Example 3.3. For, consider
the two filtersF’ = {{2,3},{1,2,3}} andG = {{1,2},{1,2,3}}. Then clearlyO(F) = {0,{1}} and
O(G) = {0,{3}} areO-ideals. It can also be noted that they are not prime ideals iNow, O(F') L
O(G) = O(F v G) = O({{2},{1,2},{2,3},{1,2,3}}) = {0,{1},{3},{1,3}} # L. Therefore
O(F) andO(G) are notLI-comaximal inL.

Definition 4.5. Let J be an ideal of a distributive lattice L. For any x € L, define
(z]t={aeJ]larhz=0}
Clearly (z]™ = J N (x]* is an ideal inJ. Moreover(x]* is an O-ideal whenevef is an O-ideal.

Theorem 4.6.Let J be an O-ideal of a distributive lattice L. Then for any x,y € L withx Ay = 0,

(] and (y]* are U -comaximal in J.

Proof. Letxz,y € L such that: A y = 0. Then by Lemma 4.3, we get that]* U (y]* = L. Now

J = JNL
= Jn{(]" Uy}
= {Jn@Eru{Inl}
= (2" uy"
Therefore(z|™ and(y]™ areli-comaximal inJ. [
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