DOI: 10.19113/sdufbed.54977

Integrable G₂ Structures on 7-dimensional 3-Sasakian Manifolds

Nülifer ÖZDEMİR *1, Şirin AKTAY1

¹Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü, 26470, Eskişehir

(Alınış / Received: 14.10.2016, Kabul / Accepted: 30.01.2017, Online Yayınlanma / Published Online: 18.02.2017)

Keywords

 G_2 group, G_2 structure, 3-Sasakian structure **Abstract:** It is known that there exist canonical and nearly parallel G_2 structures on 7-dimensional 3-Sasakian manifolds. In this paper, we investigate the existence of G_2 structures which are neither canonical nor nearly parallel. We obtain eight new G_2 structures on 7-dimensional 3-Sasakian manifolds which are of general type according to the classification of G_2 structures by Fernandez and Gray. Then by deforming the metric determined by the G_2 structure, we give integrable G_2 structures. On a manifold with integrable G_2 structure, there exists a uniquely determined metric covariant derivative with anti-symetric torsion. We write torsion tensors corresponding to metric covariant derivatives with skew-symmetric torsion. In addition, we investigate some properties of torsion tensors.

7 Boyutlu 3-Sasaki Manifoldları Üzerinde İntegrallenebilir G2 Yapılar

Anahtar Kelimeler

 G_2 grubu, G_2 yapı, 3-Sasaki yapı Özet: 7-boyutlu 3-Sasaki manifoldlar üzerinde kanonik ve hemen-hemen paralel G_2 yapıların varlığı bilinmektedir. Bu çalışmada kanonik veya hemen-hemen paralel olmayan G_2 yapıların varlığı incelenmiştir. 7-boyutlu 3- Sasaki manifoldları üzerinde, Fernandez ve Gray'in G_2 yapı sınıflandırmasına göre en geniş sınıfta yer alan sekiz tane yeni G_2 yapı elde edilmiştir. Daha sonra ise, elde edilen G_2 yapıların ürettikleri metrikler deforme edilerek, integrallenebilir G_2 yapılar bulunmuştur. İntegrallenebilir G_2 yapısına sahip bir manifold üzerinde torsiyonu anti-simetrik olan tek türlü belirli bir metrik kovaryant türev vardır. Her bir integrallenebilir G_2 yapı için, bu kovaryant türevin torsiyonu yazılmış ve buna ek olarak, torsiyonun bazı özellikleri incelenmiştir.

1. Introduction

Let $\{e_1,...,e_7\}$ be the standard basis of the real vector space \mathbb{R}^7 with dual basis $\{e^1,...,e^7\}$. Consider the 3-form

$$\varphi_0 = e^{123} + e^{145} + e^{167} + e^{246} - e^{257} - e^{347} - e^{356}$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$. φ_0 is called the fundamental 3-form on \mathbb{R}^7 . The group G_2 is defined as

$$G_2 := \{ f \in GL(7, \mathbb{R}) \mid f^* \varphi_0 = \varphi_0 \}$$

and is a compact, simple and simply connected 14dimensional Lie subgroup of $GL(7,\mathbb{R})$ [1].

A 7-dimensional smooth manifold M is called a manifold with G_2 structure if there exists a 3-form φ on M which can be locally written as φ_0 . The 3-form φ determines a Riemannian metric g, a volume form d_{vol} and a 2-fold vector cross product P on M by

$$(x \,\lrcorner\, \varphi) \wedge (y \,\lrcorner\, \varphi) \wedge \varphi = 6g(x, y)d_{vol} \tag{1}$$

$$\varphi(x, y, z) = g(P(x, y), z) \tag{2}$$

for any x, y, $z \in \Gamma(TM)$ [1].

Let (M,g) be a manifold with G_2 structure φ . Fernández and Gray showed in [2] that for all $m \in M$, the Levi-Civita covariant derivative $\nabla \varphi$ is in the space

$$W = \{ \alpha \in T_m M^* \otimes \Lambda^3 (T_m M)^* \mid \alpha(u, x, y, P(x, y)) = 0, \\ \forall u, x, y, z \in T_m M \}.$$

This space is written as a direct sum of four G_2 -irreducible subspaces W_1 , W_2 , W_3 and W_4 with corresponding dimensions 1, 14, 27 and 7 as

$$W = W_1 \oplus W_2 \oplus W_3 \oplus W_4.$$

A manifold with G_2 structure is said to be of type \mathscr{P} , \mathscr{W}_i , $W_i \oplus W_j$, $W_i \oplus W_j \oplus W_k$ or W, if $\nabla \varphi$ is in $\{0\}$, W_i , $W_i \oplus W_j$, $W_i \oplus W_i \oplus W_k$ or W, respectively, for i, j, k = 1, 2, 3, 4. The defining relations of all 16 classes are given by Fernández and Gray [2] and an equivalent characterization is done by Cabrera using $d\varphi$ and $d*\varphi$ in [3]. This characterization is illustrated in the following table.

Let (M,g) be a Riemannian manifold with Levi-Civita covariant derivative ∇ of g. (M,g) is called Sasakian if there exists a Killing vector field ξ of unit length on M so

^{*} İlgili yazar: nozdemir@anadolu.edu.tr

\mathscr{P}	$d\varphi = 0$ and $d*\varphi = 0$
\mathscr{W}_1	$d\varphi = k * \varphi \text{ and } d * \varphi = 0$
\mathscr{W}_2	$d\boldsymbol{\varphi} = 0$
W_3	$d*\varphi=0$ and $d\varphi\wedge\varphi=0$
W_4	$d\varphi = \alpha \wedge \varphi$ and $d * \varphi = \beta \wedge * \varphi$
$\mathscr{W}_1 \oplus \mathscr{W}_2$	$d\varphi = k * \varphi \text{ and } *d * \varphi \wedge *\varphi = 0$
$W_1 \oplus W_3$	$d*\varphi=0$
$\mathscr{W}_2 \oplus \mathscr{W}_3$	$d\boldsymbol{\varphi} \wedge \boldsymbol{\varphi} = 0$ and $*d\boldsymbol{\varphi} \wedge \boldsymbol{\varphi} = 0$
$\mathscr{W}_1 \oplus \mathscr{W}_4$	$d\varphi = \alpha \wedge \varphi + f * \varphi \text{ and } d * \varphi = \beta \wedge * \varphi$
$\mathscr{W}_2 \oplus \mathscr{W}_4$	$d\varphi = \alpha \wedge \varphi$
$W_3 \oplus W_4$	$d\boldsymbol{\varphi} \wedge \boldsymbol{\varphi} = 0$ and $d * \boldsymbol{\varphi} = \boldsymbol{\beta} \wedge * \boldsymbol{\varphi}$
$W_1 \oplus W_2 \oplus W_3$	$*d\varphi \wedge \varphi = 0 \text{ or } *d*\varphi \wedge *\varphi = 0$
$W_1 \oplus W_2 \oplus W_4$	$d\boldsymbol{\varphi} = \boldsymbol{\alpha} \wedge \boldsymbol{\varphi} + f * \boldsymbol{\varphi}$
$W_1 \oplus W_3 \oplus W_4$	$d*\varphi=\beta\wedge*\varphi$
$\mathscr{W}_2 \oplus \mathscr{W}_3 \oplus \mathscr{W}_4$	$d\boldsymbol{\varphi} \wedge \boldsymbol{\varphi} = 0$
W	no relation

Table 1. Defining relations for classes of G_2 structures

that the tensor field Φ of type (1,1), defined by $\Phi(x) = \nabla_x \xi$, satisfies the condition

$$(\nabla_x \Phi)(y) = g(\xi, y)x - g(x, y)\xi$$

for all $x, y \in \Gamma(TM)$. The triple (ξ, η, Φ) , where η is the metric dual of ξ , is said to be a Sasakian structure on (M,g) [4].

(M,g) is called 3-Sasakian if there exist three Sasakian structures $(\xi_i, \eta_i, \Phi_i)_{i=1,2,3}$ on (M,g) with properties

$$g(\xi_i, \xi_j) = \delta_{ij}$$

for i, j = 1, 2, 3 and

$$[\xi_1, \xi_2] = 2\xi_3, \ [\xi_2, \xi_3] = 2\xi_1, \ [\xi_3, \xi_1] = 2\xi_2.$$

 $(\xi_i, \eta_i, \Phi_i)_{i=1,2,3}$ is called a 3-Sasakian structure on (M, g) [4].

It is known that the vertical subbundle $T^{\nu} \subset TM$ is spanned by $\{\xi_1, \xi_2, \xi_3\}$. The subbundle T^{ν} and its complement, the horizontal subbundle T^h , are both invariant under Φ_1 , Φ_2 , Φ_3 [5].

Let (M,g) be a 7-dimensional, compact, simply-connected 3-Sasakian manifold with Sasakian structure (ξ_i, η_i, Φ_i) for $i \in \{1,2,3\}$. Then there exists a local orthonormal frame $\{e_1, \dots, e_7\}$ such that $e_1 = \xi_1, e_2 = \xi_2, e_3 = \xi_3$ and Φ_i act on $T^h := span\{e_4, \dots, e_7\}$ by matrices given in [5]. Denote the corresponding co-frame by $\{\eta_1, \dots, \eta_7\}$. The differentials of 1-forms η_1, η_2 and η_3 are computed in [5] according to this frame.

A 7-dimensional 3-Sasakian manifold admits three nearly parallel (of type \mathcal{W}_1) G_2 structures φ_i , i = 1, 2, 3, given in [5, 6].

Consider also the 3-form φ defined globally on M by

$$\varphi := F_1 + F_2$$
,

where

$$F_1 := \eta_1 \wedge \eta_2 \wedge \eta_3$$

$$F_2 := \frac{1}{2}(\eta_1 \wedge d\eta_1 + \eta_2 \wedge d\eta_2 + \eta_3 \wedge d\eta_3) + 3\eta_1 \wedge \eta_2 \wedge \eta_3.$$

It is proved in [5] that φ gives a G_2 structure on M of type $\mathcal{W}_1 \oplus \mathcal{W}_3$ such that $d * \varphi = 0$ and $d \varphi = 12 * F_1 + 4 * F_2$. This

is called the canonical G_2 structure of the 7-dimensional 3-Sasakian manifold.

The canonical G_2 structure φ is deformed in [5, 6] to get a nearly parallel G_2 structure in the following way:

Let s > 0 and consider the Riemannian metric g^s defined by

$$g^{s}(x,y) := \begin{cases} g(x,y) & \text{if } x \text{ (or } y) \in T^{h} \\ s^{2}g(x,y) & \text{if } x \text{ and } y \in T^{v} \end{cases}$$

The set $\{\xi_1/s, \xi_2/s, \xi_3/s, e_4, e_5, e_6, e_7\}$ is a g^s -orthonormal frame and the corresponding co-frame is $\{s\eta_1, s\eta_2, s\eta_3, \eta_4, \eta_5, \eta_6, \eta_7\}$.

Define the 3-form

$$\varphi^s := F_1^s + F_2^s$$
,

where

$$F_1^s := s^3 F_1, \ F_2^s := s F_2.$$

It is shown in [5, 6] that the 3-form φ^s gives a G_2 structure on (M, g^s) and this structure is nearly parallel iff $s = 1/\sqrt{5}$.

2. Canonical and Nearly Parallel G2 Structures

Let (M,g) be a 7-dimensional 3-Sasakian manifold with the 3-Sasakian structure $(\xi_i, \eta_i, \Phi_i)_{i=1,2,3}$. Consider the 3-form

$$\omega = a\eta_1 \wedge d\eta_1 + b\eta_2 \wedge d\eta_2 + c\eta_3 \wedge d\eta_3 \qquad (3)$$
$$+ f\eta_1 \wedge \eta_2 \wedge \eta_3,$$

where a, b, c, f are arbitrary constants. This 3-form gives a G_2 structure on M iff the equation (1) holds. Choose the orthonormal frame given in [5]. Then following relations are obtained among coefficients of the 3-form (3):

$$a^{2}(-2(a+b+c)+f) = \frac{1}{4},$$

$$b^{2}(-2(a+b+c)+f) = \frac{1}{4},$$

$$c^{2}(-2(a+b+c)+f) = \frac{1}{4},$$

$$abc = \frac{1}{8}.$$

Solutions of the system above are

1.
$$a = 1/2, b = 1/2, c = 1/2, f = 4$$

2.
$$a = 1/2$$
, $b = -1/2$, $c = -1/2$, $f = 0$,

3.
$$a = -1/2$$
, $b = 1/2$, $c = -1/2$, $f = 0$,

4.
$$a = -1/2$$
, $b = -1/2$, $c = 1/2$, $f = 0$.

Hence we express the fundamental 3-forms on M corresponding to the same metric g:

$$\begin{split} \boldsymbol{\omega}_1 &= \frac{1}{2} \boldsymbol{\eta}_1 \wedge d \boldsymbol{\eta}_1 + \frac{1}{2} \boldsymbol{\eta}_2 \wedge d \boldsymbol{\eta}_2 + \frac{1}{2} \boldsymbol{\eta}_3 \wedge d \boldsymbol{\eta}_3 + 4 \boldsymbol{\eta}_1 \wedge \boldsymbol{\eta}_2 \wedge \boldsymbol{\eta}_3, \\ \boldsymbol{\omega}_2 &= \frac{1}{2} \boldsymbol{\eta}_1 \wedge d \boldsymbol{\eta}_1 - \frac{1}{2} \boldsymbol{\eta}_2 \wedge d \boldsymbol{\eta}_2 - \frac{1}{2} \boldsymbol{\eta}_3 \wedge d \boldsymbol{\eta}_3, \\ \boldsymbol{\omega}_3 &= -\frac{1}{2} \boldsymbol{\eta}_1 \wedge d \boldsymbol{\eta}_1 + \frac{1}{2} \boldsymbol{\eta}_2 \wedge d \boldsymbol{\eta}_2 - \frac{1}{2} \boldsymbol{\eta}_3 \wedge d \boldsymbol{\eta}_3, \end{split}$$

$$\omega_4 = -\frac{1}{2}\eta_1 \wedge d\eta_1 - \frac{1}{2}\eta_2 \wedge d\eta_2 + \frac{1}{2}\eta_3 \wedge d\eta_3.$$

The 3-form ω_1 is called the canonical G_2 structure on M and is cocalibrated [5] (i.e. of type $\mathcal{W}_1 \oplus \mathcal{W}_3$, [2]). Other 3-forms are nearly parallel (i.e. of type \mathcal{W}_1) and are constructed in [5]. To sum up, there is no G_2 structure on M of the form (3) except the ones constructed in [5].

3. New G_2 Structures

Consider a 7-dimensional 3-Sasakian manifold (M,g) whose 3-Sasakian structure is $(\xi_i, \eta_i, \Phi_i)_{i=1,2,3}$. Take the linear combination

$$\varphi = a d\eta_1 \wedge \eta_2 + b \eta_1 \wedge d\eta_2 + c d\eta_1 \wedge \eta_3$$

$$+ d \eta_1 \wedge d\eta_3 + e d\eta_2 \wedge \eta_3 + f \eta_2 \wedge d\eta_3 + h \eta_{123}$$
(4)

for $a, b, c, d, e, f, h \in \mathbb{R}$. To get a G_2 structure on M, equations below should be satisfied:

$$h(b^{2} + d^{2}) = \frac{1}{4},$$

$$h(a^{2} + f^{2}) = \frac{1}{4},$$

$$h(c^{2} + e^{2}) = \frac{1}{4},$$

$$dfh = 0,$$

$$beh = 0,$$

$$ach = 0,$$

$$ade + bcf = \frac{1}{8}.$$

Following G_2 structures are obtained:

1.
$$a = d = e = 0, h = 1$$

(a)
$$b = 1/2$$
, $c = 1/2$, $f = 1/2$, $\varphi_1 = \frac{1}{2} \eta_1 \wedge d\eta_2 + \frac{1}{2} d\eta_1 \wedge \eta_3 + \frac{1}{2} \eta_2 \wedge d\eta_3 + \eta_{123}$

(b)
$$b = -1/2$$
, $c = -1/2$, $f = 1/2$, $\varphi_2 = -\frac{1}{2} \eta_1 \wedge d\eta_2 - \frac{1}{2} d\eta_1 \wedge \eta_3 + \frac{1}{2} \eta_2 \wedge d\eta_3 + \eta_{123}$

(c)
$$b = -1/2$$
, $c = 1/2$, $f = -1/2$, $\varphi_3 = -\frac{1}{2} \eta_1 \wedge d\eta_2 + \frac{1}{2} d\eta_1 \wedge \eta_3 - \frac{1}{2} \eta_2 \wedge d\eta_3 + \eta_{123}$

(d)
$$b = 1/2, c = -1/2, f = -1/2,$$

 $\varphi_4 = \frac{1}{2} \eta_1 \wedge d\eta_2 - \frac{1}{2} d\eta_1 \wedge \eta_3 - \frac{1}{2} \eta_2 \wedge d\eta_3 + \eta_{123}$

2.
$$b = c = f = 0, h = 1$$

(a)
$$a = 1/2, d = 1/2, e = 1/2,$$

 $\varphi_5 = \frac{1}{2} d\eta_1 \wedge \eta_2 + \frac{1}{2} \eta_1 \wedge d\eta_3 + \frac{1}{2} d\eta_2 \wedge \eta_3 + \eta_{123}$

(b)
$$a = -1/2$$
, $d = -1/2$, $e = 1/2$, $\varphi_6 = -\frac{1}{2} d\eta_1 \wedge \eta_2 - \frac{1}{2} \eta_1 \wedge d\eta_3 + \frac{1}{2} d\eta_2 \wedge \eta_3 + \frac{1}{2} d\eta_3 + \frac{1}{2} d\eta_3 \wedge \eta_3 + \frac{1}{2} d\eta_3 +$

(c)
$$a = -1/2$$
, $d = 1/2$, $e = -1/2$, $\varphi_7 = -\frac{1}{2} d\eta_1 \wedge \eta_2 + \frac{1}{2} \eta_1 \wedge d\eta_3 - \frac{1}{2} d\eta_2 \wedge \eta_3 + \eta_{123}$

(d)
$$a = 1/2, d = -1/2, e = -1/2,$$

 $\varphi_8 = \frac{1}{2} d\eta_1 \wedge \eta_2 - \frac{1}{2} \eta_1 \wedge d\eta_3 - \frac{1}{2} d\eta_2 \wedge \eta_3 + \eta_{123}.$

Now we determine the class of G_2 structures φ_i , i = 1, ..., 8.

Theorem 3.1. The eight G_2 structures φ_i , obtained above, are of type \mathcal{W} .

Proof. We write the proof for φ_1 in details and computations for other G_2 structures are similar.

The exterior derivative $d\varphi_1$ of the 3-form

$$\varphi_1 = \frac{1}{2} \eta_1 \wedge d\eta_2 + \frac{1}{2} d\eta_1 \wedge \eta_3 + \frac{1}{2} \eta_2 \wedge d\eta_3 + \eta_{123}$$

is

$$d\varphi_{1} = \frac{1}{2}d\eta_{1} \wedge d\eta_{2} + \frac{1}{2}d\eta_{1} \wedge d\eta_{3} + \frac{1}{2}d\eta_{2} \wedge d\eta_{3} + d\eta_{1} \wedge \eta_{23} - \eta_{13} \wedge d\eta_{2} + \eta_{12} \wedge d\eta_{3}.$$

In local coordinates,

$$d\varphi_{1} = 2\{\eta_{1245} + \eta_{1246} - \eta_{1247} - \eta_{1256} - \eta_{1257} + \eta_{1267} - \eta_{1345} + \eta_{1346} - \eta_{1347} - \eta_{1356} - \eta_{1357} - \eta_{1367} - \eta_{2345} + \eta_{2346} + \eta_{2347} + \eta_{2356} - \eta_{2357} - \eta_{2367}\}.$$

Since $d\varphi_1 \neq 0$ locally, we have $d\varphi_1 \neq 0$ on M. Thus $\varphi_1 \notin \mathcal{W}_2$ and $\varphi_1 \notin \mathcal{P}$. φ_1 is locally written as

$$\varphi_1 = \eta_{123} - \eta_{146} + \eta_{157} - \eta_{247} - \eta_{256} - \eta_{345} - \eta_{367}.$$

The Hodge-star of φ_1 is

$$*\phi_1 = \frac{1}{2}\eta_{12} \wedge d\eta_1 - \frac{1}{2}\eta_{13} \wedge d\eta_3 + \frac{1}{2}\eta_{23} \wedge d\eta_2 + *\eta_{123}.$$

Comparing $d\varphi_1$ and $*\varphi_1$, we see that there is no constant k with the property that $d\varphi_1 = k * \varphi_1$. Then φ_1 can not be an element of \mathcal{W}_1 , $\mathcal{W}_1 \oplus \mathcal{W}_2$.

Let α be a 1-form on M such that $d\varphi_1 = \alpha \wedge \varphi_1$. Then α can locally be written as $\alpha = \sum \alpha_i \eta_i$, where α_i are smooth functions on M. The coefficient of η_{1245} in $d\varphi_1$ is 2, while that of $\alpha \wedge \varphi_1$ is 0. Thus there does not exist such a 1-form α on M. This implies $\varphi_1 \notin \mathcal{W}_4$ and $\varphi_1 \notin \mathcal{W}_2 \oplus \mathcal{W}_4$.

In addition, $d\varphi_1 \wedge \varphi_1 = -12\eta_{1234567} = -12d_{vol} \neq 0$. As a result φ_1 is not in \mathcal{W}_3 , $\mathcal{W}_2 \oplus \mathcal{W}_3$, $\mathcal{W}_3 \oplus \mathcal{W}_4$ or $\mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$.

$$2d * \varphi_1 = \eta_2 \wedge d\eta_1 \wedge d\eta_1 - \eta_1 \wedge d\eta_1 \wedge d\eta_2$$
$$-\eta_3 \wedge d\eta_1 \wedge d\eta_3 + \eta_1 \wedge d\eta_3 \wedge d\eta_3$$
$$+\eta_3 \wedge d\eta_2 \wedge d\eta_2 - \eta_2 \wedge d\eta_2 \wedge d\eta_3.$$

or in local coordinates,

$$d * \varphi_1 = 2 \{ -\eta_{12345} - \eta_{12346} - \eta_{12347} -\eta_{12356} + \eta_{12357} - \eta_{12367} \}$$
$$+ 4 \{ \eta_{14567} + \eta_{24567} + \eta_{34567} \}.$$

Thus $d * \varphi_1 \neq 0$ and $\varphi_1 \notin \mathcal{W}_1 \oplus \mathcal{W}_3$. Assume that there exists a 1-form β on M satisfying $d * \varphi_1 = \beta \wedge * \varphi_1$. Writing β locally as $\beta = \sum \beta_i \eta_i$ and comparing coefficients of η_{12357} and η_{14567} in $d * \varphi_1$ and $\beta \wedge * \varphi_1$ yield $\beta_1 = 2$ and $\beta_1 = 4$. Therefore such β does not exist. This yields that φ_1 is not in $\mathcal{W}_1 \oplus \mathcal{W}_4$ or $\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$.

Let α be a 1-form and f be a smooth function on M such that $d\varphi_1 = \alpha \wedge \varphi_1 + f * \varphi_1$. The coefficients of η_{1245} and η_{4567} in local expressions of $d\varphi_1$ and $\alpha \wedge \varphi_1 + f * \varphi_1$ imply that

$$f = -2$$
 and $f = 0$,

a contradiction. Hence $\varphi_1 \notin W_1 \oplus W_2 \oplus W_4$. We also have

$$*d\varphi_1 \wedge \varphi_1 = 8\{-\eta_{124567} + \eta_{134567} - \eta_{234567}\} \neq 0.$$

This gives that φ_1 can not be an element of $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3$. Since the 3-form φ_1 does not satisfy any of defining relations of G_2 structures, it is in the widest class \mathcal{W} .

4. Deformations of New G_2 Structures

In this section, we deform G_2 structures obtained in Section 3 and get new G_2 structures of type $\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$. Manifolds which are elements of the class $\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$ are called integrable G_2 manifolds or G_2 manifolds with anti-symmetric torsion [7, 8]. A manifold with G_2 structure has a uniquely determined metric covariant derivative preserving the G_2 structure and having anti-symmetric torsion if and only if it is an integrable manifold [7].

Let (M,g) be a 7-dimensional 3-Sasakian manifold with the 3-Sasakian structure $(\xi_i, \eta_i, \Phi_i)_{i=1,2,3}$. Consider the Riemannian metric g^s on M given by

$$g^{s}(x,y) := \begin{cases} g(x,y) & x \text{ (or } y) \in T^{h} \\ s^{2}g(x,y) & x \text{ and } y \in T^{v}, \end{cases}$$

where s > 0 and the G_2 structures

$$\varphi_i = a \eta_1 \wedge d\eta_2 + b d\eta_1 \wedge \eta_3 + c \eta_2 \wedge d\eta_3 + \eta_{123}$$

obtained in Section 3, where $a, b, c = \pm \frac{1}{2}$ and $i = 1, \dots, 8$. Let

 $F_1 = \eta_{123}$ and $F_2 = a \eta_1 \wedge d\eta_2 + b d\eta_1 \wedge \eta_3 + c \eta_2 \wedge d\eta_3$

and define the 3-forms φ_i^s by

$$\varphi_i^s := F_1^s + F_2^s$$
,

where

$$F_1^s := s^3 F_1, \ F_2^s := s F_2.$$

Theorem 4.1. The 3-forms φ_i^s are G_2 structures on $M^s := (M, g^s)$. These 3-forms are of type $\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$ iff $s = \frac{1}{\sqrt{2}}$ and are in the widest class \mathcal{W} iff $s \neq \frac{1}{\sqrt{2}}$.

Proof. Take the *g*-orthonormal frame $\{e_1, \dots, e_7\}$ given in [5] such that $e_1 = \xi_1$, $e_2 = \xi_2$ and $e_3 = \xi_3$. Then

$$\{\xi_1/s, \xi_2/s, \xi_3/s, e_4, e_5, e_6, e_7\}$$

is a g^s -orthonormal frame with the corresponding coframe

$$\{s\eta_1, s\eta_2, s\eta_3, \eta_4, \eta_5, \eta_6, \eta_7\}.$$

Denote $\{\xi_1/s, \xi_2/s, \xi_3/s, e_4, e_5, e_6, e_7\}$ and $\{s\eta_1, s\eta_2, s\eta_3, \eta_4, \eta_5, \eta_6, \eta_7\}$ both by $\{Z_1, \dots, Z_7\}$ with the notation in [6].

We give the proof for φ_1^s , other proofs are similar. To give a G_2 structure on (M, g^s) , the 3-form φ_1^s should satisfy

$$(x \sqcup \varphi_1^s) \wedge (y \sqcup \varphi_1^s) \wedge \varphi_1^s = 6g^s(x, y)d_{vol}^s \tag{5}$$

for $x, y \in \Gamma(TM)$. Choose the g^s -orthonormal frame $\{Z_1, \dots, Z_7\}$. Then since

$$\begin{array}{rcl} Z_1 \lrcorner \phi_1^s & = & s^2 \eta_{23} - \eta_{46} + \eta_{57}, \\ Z_2 \lrcorner \phi_1^s & = & -s^2 \eta_{13} - \eta_{47} - \eta_{56}, \\ Z_3 \lrcorner \phi_1^s & = & s^2 \eta_{12} - \eta_{45} - \eta_{67}, \\ Z_4 \lrcorner \phi_1^s & = & s \eta_{16} + s \eta_{27} + s \eta_{35}, \\ Z_5 \lrcorner \phi_1^s & = & -s \eta_{17} + s \eta_{26} - s \eta_{34}, \\ Z_6 \lrcorner \phi_1^s & = & -s \eta_{14} - s \eta_{25} + s \eta_{37}, \\ Z_7 \lrcorner \phi_1^s & = & s \eta_{15} - s \eta_{24} - s \eta_{36}, \end{array}$$

we have

$$(Z_i \cup \varphi_1^s) \wedge (Z_i \cup \varphi_1^s) \wedge \varphi_1^s = 6g^s(Z_i, Z_i)d_{vol}^s = 6s^3g(e_i, e_i)d_{vol}$$

and

$$(Z_i \lrcorner \varphi_1^s) \wedge (Z_i \lrcorner \varphi_1^s) \wedge \varphi_1^s = 0$$

for $i \neq j$ and thus φ_1^s gives a G_2 structure on M^s . The exterior derivative of the 3-form

$$\varphi_1^s = +s^3 \eta_{123} + \frac{s}{2} \eta_1 \wedge d\eta_2 + \frac{s}{2} d\eta_1 \wedge \eta_3 + \frac{s}{2} \eta_2 \wedge d\eta_3$$

is

$$\begin{array}{lcl} d\phi_1^s & = & s^3 d\eta_1 \wedge \eta_{23} - s^3 \eta_{13} \wedge d\eta_2 + s^3 \eta_{12} \wedge d\eta_3 \\ & & + \frac{s}{2} d\eta_1 \wedge d\eta_2 + \frac{s}{2} d\eta_1 \wedge d\eta_3 + \frac{s}{2} d\eta_2 \wedge d\eta_3. \end{array}$$

Since

$$d\varphi_{1}^{s} = 2s \left\{ \eta_{1245} + \eta_{1246} - s^{2} \eta_{1247} - s^{2} \eta_{1256} - \eta_{1257} \right. \\ \left. + \eta_{1267} - \eta_{1345} + s^{2} \eta_{1346} - \eta_{1347} - \eta_{1356} \right. \\ \left. - s^{2} \eta_{1357} - \eta_{1367} - s^{2} \eta_{2345} + \eta_{2346} + \eta_{2347} \right. \\ \left. + \eta_{2356} - \eta_{2357} - s^{2} \eta_{2367} \right\}$$

locally, $d\varphi_1^s \neq 0$ for all s > 0. Thus φ_1^s is never of type \mathscr{P} or \mathscr{W}_2 .

Assume that α is a 1-form on M such that $d\varphi_1^s = \alpha \wedge \varphi_1^s$. This 1-form may be written as

$$\alpha = \sum \alpha_i Z_i = s\alpha_1 \eta_1 + s\alpha_2 \eta_2 + s\alpha_3 \eta_3 + \alpha_4 \eta_4 + \alpha_5 \eta_5 + \alpha_6 \eta_6 + \alpha_7 \eta_7.$$

In addition, since

$$\varphi_1^s = s^3 \eta_{123} - s \eta_{146} + s \eta_{157} - s \eta_{247} - s \eta_{256} - s \eta_{345} - s \eta_{367}$$

we have

$$\alpha \wedge \varphi_1^s = -s^3 \alpha_4 \eta_{1234} - s^3 \alpha_5 \eta_{1235} - s^3 \alpha_6 \eta_{1236} \\ -s^3 \alpha_7 \eta_{1237} + s^2 \alpha_2 \eta_{1246} - s^2 \alpha_1 \eta_{1247} \\ -s^2 \alpha_1 \eta_{1256} - s^2 \alpha_2 \eta_{1257} - s^2 \alpha_1 \eta_{1345} \\ +s^2 \alpha_3 \eta_{1346} - s^2 \alpha_3 \eta_{1357} - s^2 \alpha_1 \eta_{1367} \\ -s \alpha_5 \eta_{1456} - s \alpha_4 \eta_{1457} + s \alpha_7 \eta_{1467} \\ +s \alpha_6 \eta_{1567} - s^2 \alpha_2 \eta_{2345} + s^2 \alpha_3 \eta_{2347} \\ +s^2 \alpha_3 \eta_{2356} - s^2 \alpha_2 \eta_{2367} + s \alpha_4 \eta_{2456} \\ -s \alpha_5 \eta_{2457} - s \alpha_6 \eta_{2467} + s \alpha_7 \eta_{2567} \\ +s \alpha_6 \eta_{3456} + s \alpha_7 \eta_{3457} + s \alpha_4 \eta_{3467} \\ +s \alpha_5 \eta_{3567}.$$

Comparing the coefficients of η_{1245} in $d\varphi_1^s$ and $\alpha \wedge \varphi_1^s$ implies 2s = 0. That is, there is not such 1-form and thus $M^s \notin \mathcal{W}_4$ and $M^s \notin \mathcal{W}_2 \oplus \mathcal{W}_4$.

Since $d\varphi_1^s \wedge \varphi_1^s = -12s^2\eta_{1234567}$, we get $d\varphi_1^s \wedge \varphi_1^s \neq 0$ for all positive s and classes \mathcal{W}_3 , $\mathcal{W}_2 \oplus \mathcal{W}_3$, $\mathcal{W}_3 \oplus \mathcal{W}_4$ and $\mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$ are eliminated.

The Hodge-star $*_s \varphi_1^s$ of the 3-form φ_1^s is

$$\begin{array}{rcl} *_{s} \varphi_{1}^{s} & = & -Z_{1245} - Z_{1267} + Z_{1347} + Z_{1356} \\ & & -Z_{2346} + Z_{2357} + Z_{4567} \\ & = & *\eta_{123} - s^{2} \eta_{1245} - s^{2} \eta_{1267} + s^{2} \eta_{1347} \\ & + s^{2} \eta_{1356} - s^{2} \eta_{2346} + s^{2} \eta_{2357}, \end{array}$$

which is globally

$$*_s \varphi_1^s = *F_1 + \frac{s^2}{2} \eta_{23} \wedge d\eta_2 - \frac{s^2}{2} \eta_{13} \wedge d\eta_3 + \frac{s^2}{2} \eta_{12} \wedge d\eta_1.$$

The coefficient of η_{4567} in $d\varphi_1^s$ is 0, while in $*_s\varphi_1^s$ it is 1, so there is no constant k with the property that $d\varphi_1^s = k *_s \varphi_1^s$. Therefore the G_2 structure can not belong to \mathcal{W}_1 and $\mathcal{W}_1 \oplus \mathcal{W}_2$.

$$d *_{s} \varphi_{1}^{s} = \frac{s^{2}}{2} \{ \eta_{2} \wedge d\eta_{1} \wedge d\eta_{1} - \eta_{1} \wedge d\eta_{1} \wedge d\eta_{2} - \eta_{3} \wedge d\eta_{1} \wedge d\eta_{3} + \eta_{1} \wedge d\eta_{3} \wedge d\eta_{3} + \eta_{3} \wedge d\eta_{2} \wedge d\eta_{2} - \eta_{2} \wedge d\eta_{2} \wedge d\eta_{3} \}$$

and

$$d *_{s} \varphi_{1}^{s} = 2s^{2} \{ -\eta_{12345} - \eta_{12346} - \eta_{12347}$$
$$-\eta_{12356} + \eta_{12357} - \eta_{12367} \}$$
$$+4s^{2} \{ \eta_{14567} + \eta_{24567} + \eta_{34567} \}$$

give $d *_s \varphi_1^s \neq 0$, and $M^s \notin \mathcal{W}_1 \oplus \mathcal{W}_3$.

Let α be a 1-form and f be a smooth function on M satisfying $d\varphi_1^s = \alpha \wedge \varphi_1^s + f *_s \varphi_1^s$. Comparing coefficients of η_{1245} and η_{4567} in $d\varphi_1^s$ and $\alpha \wedge \varphi_1^s + f *_s \varphi_1^s$ respectively, we conclude that

$$f = -2/s$$
 and $f = 0$.

Thus $\mathcal{W}_1 \oplus \mathcal{W}_4$ and $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_4$ are also eliminated.

In addition, in local coordinates,

$$*_{s}d\varphi_{1}^{s} = -2sZ_{145} + \frac{2}{s}Z_{146} + \frac{2}{s}Z_{147} + \frac{2}{s}Z_{156}$$

$$-\frac{2}{s}Z_{157} - 2sZ_{167} + \frac{2}{s}Z_{245} - 2sZ_{246}$$

$$+\frac{2}{s}Z_{247} + \frac{2}{s}Z_{256} + 2sZ_{257} + \frac{2}{s}Z_{267}$$

$$+\frac{2}{s}Z_{345} + \frac{2}{s}Z_{346} - 2sZ_{347} - 2sZ_{356}$$

$$-\frac{2}{s}Z_{357} + \frac{2}{s}Z_{367}$$

$$= -2s^{2}\eta_{145} + 2\eta_{146} + 2\eta_{147} + 2\eta_{156} - 2\eta_{157}$$

$$-2s^{2}\eta_{167} + 2\eta_{245} - 2s^{2}\eta_{246} + 2\eta_{247} + 2\eta_{256}$$

$$+2s^{2}\eta_{257} + 2\eta_{267} + 2\eta_{345} + 2\eta_{346} - 2s^{2}\eta_{347}$$

$$-2s^{2}\eta_{356} - 2\eta_{357} + 2\eta_{367}$$

and

$$(*_s d\varphi_1^s) \wedge \varphi^s = 4s(1+s^2) \{ \eta_{134567} - \eta_{124567} - \eta_{234567} \}.$$

Thus $(*_s d\varphi_1^s) \wedge \varphi_1^s$ is non-zero. The 3-form φ_1^s is not in $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3$.

Let β be a 1-form on M such that $d *_s \varphi_1^s = \beta \wedge *_s \varphi_1^s$. Then β can be locally written as

$$\beta = \sum \beta_i Z_i = s\beta_1 \eta_1 + s\beta_2 \eta_2 + s\beta_3 \eta_3 + \beta_4 \eta_4 + \beta_5 \eta_5 + \beta_6 \eta_6 + \beta_7 \eta_7$$

for $\beta_i \in C^{\infty}(M)$. Since

$$\beta \wedge *_{s} \varphi_{1}^{s} = -s^{3} \beta_{3} \eta_{12345} - s^{3} \beta_{1} \eta_{12346} - s^{3} \beta_{2} \eta_{12347} \\ -s^{3} \beta_{2} \eta_{12356} + s^{3} \beta_{1} \eta_{12357} - s^{3} \beta_{3} \eta_{12367} \\ -s^{2} \beta_{6} \eta_{12456} - s^{2} \beta_{7} \eta_{12457} - s^{2} \beta_{4} \eta_{12467} \\ -s^{2} \beta_{5} \eta_{12567} + s^{2} \beta_{4} \eta_{13456} - s^{2} \beta_{5} \eta_{13457} \\ -s^{2} \beta_{6} \eta_{13467} + s^{2} \beta_{7} \eta_{13567} + s \beta_{1} \eta_{14567} \\ +s^{2} \beta_{5} \eta_{23456} + s^{2} \beta_{4} \eta_{23457} - s^{2} \beta_{7} \eta_{23467} \\ -s^{2} \beta_{6} \eta_{23567} + s \beta_{2} \eta_{24567} + s \beta_{3} \eta_{34567},$$

 $d*_s \varphi_1^s = \beta \wedge *_s \varphi_1^s$ holds if and only if $\frac{2}{s} = 4s$, $\beta_1 = \beta_2 = \beta_3 = 4s$ and $\beta_4 = \beta_5 = \beta_6 = \beta_7 = 0$. The identity $\frac{2}{s} = 4s$ gives $s = \frac{1}{\sqrt{2}}$. For $s = \frac{1}{\sqrt{2}}$ and $\beta = 2(\eta_1 + \eta_2 + \eta_3)$, the equation $d*_s \varphi_1^s = \beta \wedge *_s \varphi_1^s$ holds globally. As a result, the G_2 structure φ_1^s is of type $\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$ iff $s = \frac{1}{\sqrt{2}}$. If $s \neq \frac{1}{\sqrt{2}}$, then φ_1^s is in the widest class \mathcal{W} .

For G_2 structures φ_i^s , where i = 2, ..., 8, we only write 1-forms β_i such that $d *_s \varphi_i^s = \beta_i \wedge *_s \varphi_i^s$. These 1-forms are

$$\begin{split} \beta_2 &= 2\eta_1 - 2\eta_2 - 2\eta_3, \ \beta_3 = -2\eta_1 + 2\eta_2 - 2\eta_3, \\ \beta_4 &= -2\eta_1 - 2\eta_2 + 2\eta_3, \ \beta_5 = -2\eta_1 - 2\eta_2 - 2\eta_3, \\ \beta_6 &= -2\eta_1 + 2\eta_2 + 2\eta_3, \ \beta_7 = 2\eta_1 - 2\eta_2 + 2\eta_3, \\ \beta_8 &= 2\eta_1 + 2\eta_2 - 2\eta_3. \end{split}$$

Let $s = \frac{1}{\sqrt{2}}$. Then G_2 structures φ_i^s are in the class $\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$. Thus there exists a uniquely determined metric covariant derivative ∇_i with anti-symmetric torsion tensor

 T_i on each (M, g^s, φ_i^s) preserving the G_2 structure and T_i are given in [7] by the formula

$$T_i = \frac{1}{6}g^s(d\varphi_i^s, *_s\varphi_i^s)\varphi_i^s - *_s d\varphi_i^s + *_s(\beta \wedge \varphi_i^s).$$

We directly compute T_i for each i and obtain the same anti-symmetric torsion tensor for each covariant derivative ∇_i :

For each $i \in \{1, ..., 8\}$, we have

$$T_i = \frac{1}{2}\eta_1 \wedge d\eta_1 + \frac{1}{2}\eta_2 \wedge d\eta_2 + \frac{1}{2}\eta_3 \wedge d\eta_3 + 2\eta_{123}.$$

Now we introduce some properties of T.

1. The torsion tensor T is not ∇ -parallel:

Choose the g^s -orthonormal frame $\{Z_1, \dots, Z_7\}$ on an open subset of M. By the Kozsul formula we write the Levi-Civita covariant derivative ∇^{g^s} in local coordinates. Since $\nabla = \nabla^{g^s} + T/2$ and

$$T = \frac{\frac{1}{2s^2}Z_1 \wedge dZ_1 + \frac{1}{2s^2}Z_2 \wedge dZ_2}{+\frac{1}{2s^2}Z_3 \wedge dZ_3 + \frac{2}{s^3}Z_{123}}$$

=
$$-\frac{\frac{1}{s^3}Z_{123} - \frac{1}{s}Z_{145} - \frac{1}{s}Z_{167} - \frac{1}{s}Z_{246}}{+\frac{1}{s}Z_{257} - \frac{1}{s}Z_{347} - \frac{1}{s}Z_{356}},$$

we compute ∇ locally and we obtain

$$\nabla_{Z_1} T(Z_2, Z_4, Z_7) = 4 \neq 0.$$

2. The torsion tensor is not closed:

$$dT = \sum (Z_i \bot T) \land (Z_i \bot T) = 12 *_s Z_{123} = 12 * \eta_{123}.$$

Note: Take a 7-dimensional 3-Sasakian manifold (M, g) with the 3-Sasakian structure $(\xi_i, \eta_i, \Phi_i)_{i=1,2,3}$. Consider the 3-form

$$\varphi = a \eta_1 \wedge d\eta_1 + b \eta_2 \wedge d\eta_2 + c \eta_3 \wedge d\eta_3 \qquad (6)
+ d \eta_1 \wedge \eta_2 \wedge \eta_3 + e \eta_1 \wedge d\eta_2 + f \eta_1 \wedge d\eta_3
+ g \eta_2 \wedge d\eta_1 + h \eta_2 \wedge d\eta_3 + k \eta_3 \wedge d\eta_1
+ l \eta_3 \wedge d\eta_2$$

for $a, b, c, d, e, f, g, h, k, l \in \mathbb{R}$. To get a G_2 structure on M determined by φ , following equations should be satisfied:

$$(a^{2} + e^{2} + f^{2})(-2(a+b+c)+d) = \frac{1}{4}, \quad (7)$$

$$(c^{2} + k^{2} + l^{2})(-2(a+b+c)+d) = \frac{1}{4}, \quad (8)$$

$$(b^{2} + h^{2} + g^{2})(-2(a+b+c)+d) = \frac{1}{4}, \quad (9)$$

$$(-2(a+b+c)+d)(eb+ag+hf) = 0, \quad (10)$$

$$(-2(a+b+c)+d)(cf+el+ak) = 0, (11)$$

$$(-2(a+b+c)+d)(hc+kg+bl) = 0, (12)$$

$$abc - ceg - bfk - ahl + fgl + hek = \frac{1}{8}.$$
 (13)

This system has infinitely many solutions. Now we will determine under which conditions G_2 structures obtained are closed or co-closed.

$$d\varphi = a \, d\eta_1 \wedge d\eta_1 + b \, d\eta_2 \wedge d\eta_2 + c \, d\eta_3 \wedge d\eta_3 + d \, (d\eta_1 \wedge \eta_{23} - d\eta_2 \wedge \eta_{13} + d\eta_3 \wedge \eta_{12}) + (e+g) \, d\eta_1 \wedge d\eta_2 + (f+k) \, d\eta_1 \wedge d\eta_3 + (h+l) \, d\eta_2 \wedge d\eta_3.$$

If ϕ is closed, then it is closed according to the local frame chosen. Thus

$$d\varphi = (8a-2d)\{\eta_{2345} + \eta_{2367}\} \\ + (8b-2d)\{\eta_{1357} - \eta_{1346}\} \\ + (8c-2d)\{\eta_{1247} + \eta_{1256}\} + 8(a+b+c)\eta_{4567} \\ + 4(e+g)\{\eta_{2346} - \eta_{2357} - \eta_{1345} - \eta_{1367}\} \\ + 4(f+k)\{\eta_{2347} + \eta_{2356} + \eta_{1245} + \eta_{1267}\} \\ + 4(h+l)\{-\eta_{1347} - \eta_{1356} + \eta_{1246} - \eta_{1257}\} \\ = 0$$

All coefficients should be zero. First we get

$$d = 4a = 4b = 4c$$
.

Since a = b = c and a + b + c = 0, this gives

$$a = b = c = d = 0.$$

In addition,

$$f = -k, e = -g, h = -l$$

imply

$$abc - ceg - bfk - ahl + fgl + hek = 0.$$

This can not hold, since for a G_2 structure we have (13). As a result, there is no closed G_2 structure φ on a 7-dimensional 3-Sasakian manifold of the form (6). Now we investigate the existence of co-closed G_2 structures. We have

$$d * \varphi = e \eta_3 \wedge d\eta_2 \wedge d\eta_2 - e \eta_2 \wedge d\eta_2 \wedge d\eta_3 + f \eta_3 \wedge d\eta_2 \wedge d\eta_3 - f \eta_2 \wedge d\eta_3 \wedge d\eta_3 - g \eta_3 \wedge d\eta_1 \wedge d\eta_1 + g \eta_1 \wedge d\eta_1 \wedge d\eta_3 - h \eta_3 \wedge d\eta_1 \wedge d\eta_3 + h \eta_1 \wedge d\eta_3 \wedge d\eta_3,$$

or, in local coordinates,

$$d*\varphi = -4h\eta_{12345} + 4f\eta_{12346} + 4(g-e)\eta_{12347} +4(g-e)\eta_{12356} - 4f\eta_{12357} + 4h\eta_{12367} +8h\eta_{14567} - 8f\eta_{24567} + 8(e-g)\eta_{34567}.$$

To get a co-closed G_2 structure, equations (7)-(13) together with

$$e = g, f = h = 0$$

should be satisfied. Only G_2 structures with these properties are the cocalibrated G_2 structure and three nearly parallel G_2 structures all given in [5].

References

[1] Bryant, R. L., Metrics with Exceptional Holonomy, Ann. of Math., 126 (1987), 525-586.

- [2] Fernández, M. and Gray, A., Riemannian Manifolds with Structure Group G_2 , Ann. Mat. Pura Appl. (4) 132 (1982) 19-25.
- [3] Cabrera, F. M., On Riemannian Manifolds with G_2 -Structure, Bolletino U.M.I (7) 10-A (1996) 99-112.
- [4] Boyer, C.P and Galicki, K., 3-Sasakian Manifolds, Surveys Diff. Geom., 7, (1999) 123-184, arXiv:hep-th/9810250.
- [5] Agricola, I. and Friedrich, T., 3-Sasakian Manifolds in Dimension Seven, Their Spinors and *G*₂ Structures, Journal of Geometry and Physics 60 (2010) 326-332.
- [6] Friedrich, T., Kath, I., Moroianu, A. and Semmelmann, U., On Nearly Parallel G_2 Structures, J. Geom. Phys., 23 (1997) 256-286.
- [7] Friedrich, T. and Ivanov, S., Parallel Spinors and Connections with Skew-Symmetric Torsion in String Theory, Asian Jour. Math., 6 (2002) 303-336.
- [8] Agricola, I., The Srni Lectures on Non-Integrable Geometries with Torsion, Math. Ann., 328 (2004) 711-748.