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Abstract: The wave properties in a dusty space plasma consisting of positively and neg-
atively charged dust as well as distributed nonisothermal electrons are investigated by
using the exact traveling wave solutions of the Schamel-KdVequation. The analytic
solutions are obtained by the different types(G′/G)-expansion methods and direct inte-
gration. The nonlinear dynamics of ion-acoustic waves for the various values of phase
speedVp, plasma parametersα, σ , andσd , and the source termµ are studied. We have
observed different types of waves from the different analytic solutions obtained from
the different methods. Consequently, we have found the discontinuity, shock or solitary
waves. It is also concluded that these parameters play an important role in the presence
of solitary waves inside the plasma. Depending on plasma parameters, the discontinu-
ity wave turns into solitary wave solution for the certain values of the phase speed and
plasma parameters. Additionally, exact solutions of the Schamel-KdV equation may also
be used to understand the wave types and properties in the different plasma systems.

Farklı Metodlar ile Schamel-KdV denkleminin Analitik Çözüm leri: Tozlu Uzay Plazmasına
Uygulanması

Anahtar Kelimeler
Schamel-KdV denklemi,
Tozlu uzay plazması,
Şok dalgası,
Soliton

Özet: İçerisinde negatif ve pozitif yüklü tozların yanında dağılmış izotermal olmayan
elektronlar barındıran tozlu uzay plazmasındaki dalganınözellikleri, Schamel-KdV den-
klemlerinin tam ilerleyen dalga çözümleri kullanılarak incelenmiştir. Analitik çözümler,
(G′/G)-genişleme methodunun farklı tipleri ve direk integrasyon kullanılarak bulunmuş-
tur. İon-akustik dalgasının lineer olmayan dinamiği, faz hızınınVp, plazma parametreleri
α, σ , ve σd , ve kaynak terimiµ ’nun farklı dĕgerleri için çalışılmıştır. Bunun sonu-
cunda, farklı methodlardan elde edilen farklı analitik çözümler ile farklı türden dalgalar
gözlemledik ve süreksiz, şok veya soliton dalgası bulduk.Aynı zamanda, yukarıda ver-
ilen parametrelerin plazma içerisinde soliton tipi dalgaların oluşmasında önemli bir rol
oynadı̆gı sonucuna ulaşılmıştır. Bu parametrelere bağlı olarak süreksiz dalga plazma
parametrelerinin ve faz hızının belli değerleri için soliton tipi bir dalgaya donüşür. Bun-
lara ek olarak, Schamel-KdV denkleminin tam analitik çözümleri, verilen bir plazmanın
özelliklerinin ve dalga tiplerinin anlaşılması için farklı plazma sistemlerine de uygulan-
abilir.

1. Introduction

Ion-acoustic wave consisting of nonlinear phenomena and
appearing in the different plasma systems [1] and fluid
mechanics [2] is one of the fundamental problems. A
system which consists of the negatively and positively
charged dusts and nonisothermally distributed electrons
has a highly nonlinear behavior and it is represented with
the Schamel-KdV equation which can be written in the
following form [3–6]

Φt +aΦ
1
2 Φx +bΦΦx + pΦxxx = 0, (1)

* Corresponding author: orhan.donmez@aum.edu.kw

wherea,b, andp are arbitrary coefficients. Note that we
reach to the Schamel equation whenb = 0 [7, 8] and the
KdV equation whena = 0 [9, 10]. Due to the various ap-
plications of Eqs.1 in the literature, many exact solutions
of the Schamel-KdV equation have been obtained [3, 7–
9, 11–17].

In this paper, we use three different types of(G′/G)-
expansion methods and direct integration to obtain the
exact solutions of the Schamel-KdV equation. The
first method is so-called the original(G′/G)-expansion
method described by [18]. Some applications of this
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method can be seen in [18–20]. Ref.[21] used different
form of the(G′/G)-expansion method. Some application
of this method to the different nonlinear differential equa-
tions can be found in [19, 21]. The third type of the
expansion method is called the(G′/G,1/G)-expansion
method which considers the generalization of the origi-
nal (G′/G)-expansion method. As a pioneer work, two-
variable (G′/G,1/G)-expansion method was explained
and applied to Zakharov equation in [22]. There are sev-
eral studies related to this generalized method to obtain
the traveling wave solutions of the some nonlinear dif-
ferential equations [10, 20, 23–26]. Hence it would be
interesting to obtain the different forms of the traveling
wave solutions of the Schamel-KdV equation. These ex-
act solutions may be used to explain the properties of the
ion-acoustic waves arised in laboratory and astrophysical
plasmas.
Higher order nonlinear solution of four-component dusty
plasma with nonisothermal electron had been studied in
[27]. The authors of [27] used the reductive perturbation
method to derive the Schamel-KdV equation and inves-
tigated the effects of plasma parameters, ratio of ion to
electron temperatures, mass and charge ratio, and the ra-
tio of dust to ion temperatures, on solitary wave. They
had found the compressive and rarefactive solitons. The
effect of electron trapping on the traveling wave solution
was examined in [28] solving the Schamel-KdV equation
with time-dependent coefficients and they found the trav-
eling wave soliton solutions. The nonlinear behavior of
ion-acoustic wave contains lots of detail about the soli-
tary wave solutions in an unmagnetized plasma that is
the plasma consisting nonrelativistic drifting ions and rel-
ativistic drifting electrons. The Schamel-KdV equation
was also derived for this kind of plasma by reductive per-
turbation method [29]. Analytic solutions of the equation
were obtained by using a linearized principle and the slow
ion-acoustic monotonic double layers were suggested in
[29].
The body of our paper is structured in the following order:
Methods and their detailed structures are given in Section
2. In Section3, we apply the different methods, intro-
duced in Section2, to the Schamel-KdV equation to find
the exact solutions. Different forms of the exact solutions
are derived from these methods. The analytic solutions
obtained here are used in dusty space plasma in Section4.
The parameter dependencies of the discontinuity, shock
waves, and solitons are explained in detail. Finally, we
conclude our results in Section5.

2. Methods

Let

P(u,ut ,ux,utt ,uxt ,uxx, ...) = 0, (2)

be a partial differential equation (PDE) whereu = u(x, t)
is an unknown function. By using the transformation
u(x, t) = u(η) whereη = x−Vpt in Eq.2, we obtain an or-
dinary differential equation (ODE) in the following form:

P(u,−Vpu′,u′,V 2
p u′′,−Vpu′′,u′′, ...) = 0, (3)

whereu′ = du
dη . In order to obtain the exact solutions of the

Schamel-KdV equation given by Eq.1, we will use four
different methods which are(G/′G)-expansion method
[18], different form of the(G′/G)-expansion method [21],
(G′/G,1/G)-expansion method [22], and direct integra-
tion. The general forms of the solutions will be obtained
from these methods directly without making any approx-
imation and we will apply them to dusty space plasma to
understand the properties of shock waves and solitons.

3. Exact Solutions of the Schamel-KdV Equation

The Schamel-KdV equation Eq.1 can be converted into
following ordinary differential equation by using the trans-
formationη = x−Vpt, Φ = Φ(η),

pΦ′′′−VpΦ′+aΦ
1
2 Φ′+bΦΦ′ = 0, (4)

whereΦ′ = dΦ
dη . Integrating Eq.4 once gives

pΦ′′−VpΦ+

(

2a
3

)

Φ
3
2 +

(

b
2

)

Φ2+ c = 0, (5)

wherec is an arbitrary integration constant. If we change
the variable using the definitionΨ = Φ

1
2 in Eq.5, we get

ΨΨ′′+Ψ′2−
(

Vp

2p

)

Ψ2+

(

a
3p

)

Ψ3+

(

b
4p

)

Ψ4+
c

2p
= 0. (6)

Now we will present some exact solutions of the Schamel-
KdV equation.

3.1. Exact solutions of the Schamel-KdV Equation by
using (G′/G)-expansion method

Eq.1 can be solved by using the(G′/G)-expansion
method with different transformations [17]. To have a
self consistent paper, we also give the solution of Eq.1
by using(G′/G)-expansion method with a transformation
η = x−Vpt. Balancing the termsΨΨ′′ andΨ4 in Eq.6,
we get the positive balancing parameterm = 1. Thus, we
get the following form of the solution:

Ψ(η) = α1

(

G′

G

)

+α0. (7)

Substituting Eq.7 and its derivatives into Eq.6, we get a set
of algebraic equations. From these algebraic equations,
we findα1, α0, λ , µ , b, andc as

α1 =±
15
√

pVp

2a

α0 =
15
8a

(

Vp ±2λ
√

pVp
)

, (8)

λ 2−4µ =
Vp

4p
, b =−

16a2

75Vp
, c = 0.

Substituting these expressions in Eq.7 and the corre-
sponding solution of ODE, then using the transformation
Ψ2 = Φ, we will have the following types of solutions of
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the Schamel-KdV equation:

Case I:Whenλ 2−4µ > 0

Φ(η) =

[

±
15
√

pVp

2a

(

G′

G

)

+
15
8a

(

Vp ±2λ
√

pVp
)

]2

, (9)

where

(

G′

G

)

=

√
λ 2−4µ

2

(

c1 sinh1
2

√
λ 2−4µη+c2 cosh1

2

√
λ 2−4µη

c1 cosh1
2

√
λ 2−4µη+c2 sinh1

2

√
λ 2−4µη

)

− λ
2 .

Case II: Whenλ 2−4µ < 0

Φ(η) =

[

±
15
√

pVp

2a

(

G′

G

)

+
15
8a

(

Vp ±2λ
√

pVp
)

]2

, (10)

where

(

G′

G

)

=

(

−c1 sin 1
2

√
4µ−λ 2η+c2 cos1

2

√
4µ−λ 2η

c1 cos1
2

√
4µ−λ 2η+c2 sin 1

2

√
4µ−λ 2η

)

− λ
2 .

3.2. Exact solutions of the Schamel-KdV Equation
by using different form of the (G′/G)-expansion
method

In order to have an analytic solution of ODE, first of all,
we balance the terms and get the following form of the
solution

Ψ(η) = α1

(

G′

G

)

+α0+α−1

(

G′

G

)−1

. (11)

Substituting Eq.11 and its derivatives into Eq.6, we find a
set of of algebraic equations. The parametersα1, α0, α−1,
µ , b, andc can be found from the algebraic equations:

Group I:

α1 =±
15
√

pVp

2a
, α0 =

15Vp

8a
,

α−1 = 0, (12)

µ =−
Vp

16p
, b =−

16a2

75Vp
, c = 0.

Group II:

α1 =±
15
√

pVp

2a
, α0 =

15Vp

8a
,

α−1 =±
15Vp

√

pVp

64ap
, (13)

µ =
Vp

32p
, b =−

16a2

75Vp
, c =

225V 3
p

512a2 .

Substituting these results into Eq.11 and the corre-
sponding solution of ODE, then using theΨ2 = Φ,
the following types of solutions for the Schamel-KdV
Equation will be found:

Case I:When−µ > 0
In this case

(

G′

G

)

=
√
−µ
(

c1sinh
√
−µη + c2cosh

√
−µη

c1cosh
√
−µη + c2sinh

√
−µη

)

Group I:

Φ(η) =

[

±
15
√

pVp

2a

(

G′

G

)

+
15Vp

8a

]2

. (14)

Group II:

Φ(η) = (15)
[

±
15
√

pVp

2a

(

G′

G

)

±
15Vp

√

pVp

64ap

(

G′

G

)−1

+
15Vp

8a

]2

.

Case II: When−µ < 0
In this case

(

G′

G

)

=
√

µ
(

−c1sin
√µη + c2cos

√µη
c1cos

√µη + c2sin
√µη

)

Group I:

Φ(η) =

[

±
15
√

pVp

2a

(

G′

G

)

+
15Vp

8a

]2

. (16)

Group II:

Φ(η) = (17)
[

±
15
√

pVp

2a

(

G′

G

)

±
15Vp

√

pVp

64ap
.

(

G′

G

)−1

+
15Vp

8a

]2

.

3.3. Exact solutions of the Schamel-KdV Equation by
using (G′/G,1/G)-expansion method

The following form of the solution is reached using the
balancing result

Ψ(η) = a1φ +a0+b1ψ. (18)

Substituting Eq.18 and its derivatives into Eq.6, we have
a set of algebraic equations. By solving the algebraic
equations, we geta1, a0, b1, λ , b, andc.

Case I: λ < 0

a1 =±
15
√

pVp

4a
, a0 =

15Vp

8a
,

b1 =±
15
√

16µ2p2+νV 2
p

8a
, (19)

λ =−
Vp

4p
, b =−

16a2

75Vp
, c = 0.

Substituting Eq.19into Eq.18we have the solution of Eq.6
and then by using the transformationΨ = Φ

1
2 , we get the

solution of Eq.1

Φ(η) = (20)


±
15
√

pVp

4a
φ +

15Vp

8a
±

15
√

16µ2p2+νV 2
p

8a
ψ





2

,

3
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whereφ andψ are defined and given in [22].

Similarly, substituting Eq.18 and its derivatives into Eq.6,
it yields a set of algebraic equations. By solving the
algebraic equations we finda1, a0, b1, λ , b, andc.

Case II: λ > 0

a1 =±
15
√

pVp

4a
, a0 =

15Vp

8a
,

b1 =±
15
√

16µ2p2−νV 2
p

8a
, (21)

λ =−
Vp

4p
, b =−

16a2

75Vp
, c = 0.

Substituting Eq.21into Eq.18we have the solution of Eq.6
and then by using the transformationΨ = Φ

1
2 , we obtain

the solution of Eq.1 as

Φ(η) = (22)


±
15
√

pVp

4a
φ +

15Vp

8a
±

15
√

16µ2p2−νV 2
p

8a
ψ





2

,

whereφ andψ are defined in [22].

At last, substituting Eq.18 and its derivatives into Eq.5,
we get the algebraic equations and by solving them we
find a1, a0, b1, λ , a, Vp andc.

Case III: λ = 0

a1 =±
√

−3p
b

, a0 = 0,

b1 =±

√

6c2µ p−3c2
1p

b
, (23)

λ = 0, a = 0, Vp = 0, c = 0.

Substituting Eq.23into Eq.18we have the solution of Eq.6
and then by using the transformationΨ=Φ

1
2 , the solution

of Eq.1 is given as

Φ(η) =



±
√

−3p
b

φ ±

√

6c2µ p−3c2
1p

b
ψ





2

, (24)

whereφ andψ are defined in [22].

3.4. Exact solutions of the Schamel-KdV Equation by
using direct integration

There are many different methods defined in literature to
solve the nonlinear differential equation, analytically.We
can use these methods to solve the analytic solution of the
differential equation but there is also possibility to have
the analytic solution of the nonlinear differential equation
with direct integration. Here we will use the direct inte-
gration to obtain the exact solution of the Schamel-KdV

equation [10]. Starting from Eq.5 and recallingc asc1,
we get

pΦ′′−VpΦ+

(

2a
3

)

Φ
3
2 +

(

b
2

)

Φ2+ c1 = 0, (25)

wherec1 is an arbitrary integration constant. Let us multi-
ply Eq.25 by Φ′ and then integrate it once with respect to
η . We find [10].

(

Φ′)2
=−

(

b
3p

)

Φ3−
(

8a
15p

)

Φ
5
2 +

(

Vp

p

)

Φ2−
(

2c1

p

)

Φ−
(

2c2

p

)

, (26)

wherec2 is an integration constant. Using the new defini-
tion of potentialΨ = Φ

1
2 , Eq.26becomes

Ψ′ =± (27)
√

−(
b

12p
)Ψ4− (

2a
15p

)Ψ3+(
Vp

4p
)Ψ2− (

c1

2p
)− (

c2

2p
)Ψ−2.

Eq.27 is now an integrable equation if we set all the inte-
gration constants to be zero. After the integration of the
equation, we have reached the following exact solution of
the Schamel-KdV equation [10]

Φ(η) =





2A

Ae∓
√

Vp
4p η

+Be±
√

Vp
4p η

+C





2

, (28)

where A = 225V 2
p ,B = 16a2 + 75bVp,C = 120aVp and

η = x−Vpt [10].

After doing some straightforward calculations, Eq.28 can
be written in terms of the hyperbolic and trigonometric
functions in case ofVp

4p > 0 andVp
4p < 0, respectively

Φ1(η) = (29)




2A

(A+B)cosh
√

Vp
4p η ± (B−A)sinh

√

Vp
4p η +C





2

,

and

Φ2(η) = (30)




2A

(A+B)cos
√

Vp
4p η ± i(B−A)sin

√

Vp
4p η +C





2

.

4. Numerical Investigation of the Wave Type and Ex-
posing the Effect of Plasma Parameters on the
Wave Type in the Four-Component Dusty Plasma

Investigating the physical properties and dynamical struc-
ture of the dust acoustic wave and dust-ion acoustic wave
observed in the physical and astrophysical plasma can be
handled by considering the higher order nonlinear terms
in plasma equations. The presence of nonisothermally dis-
tributed electrons, the positively charge warm dust, and

4
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negatively charged cold dust introduce the Schamel-KdV
equation in a four-component dusty plasma [27]. The
Schamel-KdV equation is derived by using the reductive
perturbation technique [27] and it is generalized by adding
higher order terms, given by Eq.1. The coefficients of this
equation can be given as

a =
3
2

X1

b = X2X3 (31)

p = X2,

whereX1, X2, andX3 are expressed in terms of the plasma
parameters and some constants. They are given as [27]

X1 = 2yµeσ
3
2 X2

X2 =
σ2

αV 3
p

2(σ2
α +µ2α)

(32)

X3 = µi −µeσ2−
3

V 4
p

(

1−
α2µ2

σ2
α

(

1+
4ασd

V 2
p σα

))

,

whereσd , σ , Vp, α, and y are the ratio of dust to ion
temperature, the ratio of ion to electron temperature, the
phase velocity, mass and charge ratio, and constant re-
spectively. σα = 1− 3ασd

V 2
p

, µi =
ni0

Z1n10
, µe =

ne0
Z1n10

, and

µ2 = 1+µe −µi [27]. Z1 is the number of electrons stay-
ing on negative dust andn10 is the negative dust number
in an equilibrium condition.
In this section, we use the analytic solutions of the
Schamel-KdV equation, found in Section3, to have a deep
understanding of the properties of shock waves and soli-
tons produced in the plasmas. The effects of mass and
charge ratio, ratio of dust to ion temperature, phase ve-
locity, ratio of ion to electron temperatures, and constants
in the analytic solutions are studied. Examination of the
nonlinear properties of the wave in a dusty plasma is an
important contribution to the literature for understanding
of the propagation of wave inside the plasma and wave
type observed in plasma. In order to find out the effect of
the phase velocity of the wave on the wave properties, we
plot the potentialΦ vs. the variableη for various values
of the phase speeds seen in Fig.1.

4.1. Numerical analysis of the wave in the plasma us-
ing the analytic solution obtained by the(G′/G)-
expansion method

The shock wave is observed from the analytic solution of
the Schamel-KdV equation obtained by using the(G′

G )-
expansion method in a four-component dusty plasma. The
phase speed gives the rate of wave which is propagating
in plasma. As it is seen in Fig.1, the strength of shock in-
creases with decreasing in the phase speed. The decrease
in the phase speed causes the abundance of the electron
density in the plasma. Therefore the electron Deby radius
gets smaller and the weaker electric field due to the space
electron is observed in a dusty space plasma [30].
In Fig.2, we study the strength of shock wave in the dusty
space plasma taking into account the effects of different
plasma parameters such asα, σ , σd , andy. The upper

-10 0 10 20
η

0

1e+05

2e+05
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4e+05

Φ
(η

)

V
p
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V
p
=0.26

V
p
=0.32

V
p
=0.38

V
p
=0.44

Figure 1. The variation of potentialΦ is plotted as a
function ofη for the different values of phase speed. The
other parameters areµi = 0.8, µe = 0.2, σ = 0.5, σd =
0.001,α = 1, y = 2.1, integration constantsc1 = 1, c2 =
0, and sourceµ = 1.

left part of Fig.2 shows that the strength of shock wave in-
creases with increasingα but it decreases with increasing
σ seen in the upper right part of the same plot. We also
analyze the shock properties using the appropriate values
of the ratio of dust to ion temperatureσd and constanty.
It is seen in the lower panels of Fig.2 that the strength of
shock increases with increasingσd but it decreases with
increasing constanty.
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Figure 2. Same as Fig.1 but it is for different values of
plasma parameters such as mass and charge ratioα, the
ratio of ion to electron temperatureσ , the ratio of dust to
ion temperatureσd , and constanty.

4.2. Numerical analysis of the wave in the plasma
using the analytic solution obtained by the
(G′/G,1/G)-expansion method

In this subsection, we investigate the physical properties
and parameter dependencies of the dusty space plasma by
using the analytic solution obtained by the(G′/G,1/G)-
expansion method in Section3.3. Here we only focus
on the solution Eq.20 which may define solitons in space
plasma.
To examine the type of soliton and effect of the phase
velocity on it, we plot the potential as a function ofη
for the various values of phase speedsVp, seen in Fig.3.
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The phase speed varies from 0.1 to 0.46. It is found that
we do not observe any soliton or shock wave but we find
strong discontinuity wave. The discontinuity locations
move toward to lower values ofη with increasing phase
speed. On the other hand, the location for discontinuity
moves to the right (toward to the bigger value ofη)
when the source termµ gets bigger. It is also noted that
all plasma parameters and integration constants have a
strong influence on the location of discontinuity but the
type of analytic solution has never changed.
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Figure 3. The variation of solution with the phase speed
is given for the parametersµi = 0.8, µe = 0.2, σ = 0.5,
σd = 0.001,α = 1, y = 2.1, integration constantsc1 = 1,
c2 = 0, c = 0, and sourceµ = 1.
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Figure 4. Same as Fig.3 but it is for different values of
source terms which appear in the analytic solution of
the Schamel-KdV equation with the fixed phase speed
Vp = 0.46.

4.3. Numerical analysis of the wave in the plasma us-
ing the analytic solution obtained by the direct in-
tegration

Considering the negatively charged cold dust and warmed
adiabatic positively charged dust in the space plasma
gives more nonlinear behavior of system. Here the
nonlinear variation of the dusty space plasma is analyzed
to have a deep understanding of the dust-acoustic solitary
wave by using the analytic solution of the Schamel-KdV
equation obtained from the direct integration. The solitary

type solutions are obtained from the analytic solution and
they are given in Fig.5 for the various values of phase
speeds with the fixed parametersµi = 0.8, µe = 0.2,
σ = 0.5, σd = 0.001, α = 1, andy = 2.1. We illustrate
the effect of the phase speed on the soliton amplitude
and width and it is found that increasing the phase speed
cause to decrease in the amplitude of soliton and it also
affects the location of maximum amplitude of the soliton.
It slightly shifts to the left with the increasing phase speed.
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Figure 5. The ion-acoustic solitary potentialΦ versus
η is plotted for the various values of the phase speeds
(Vp ≥ 2) with the fixed plasma parametersµi = 0.8, µe =
0.2, σ = 0.5, σd = 0.001,α = 1, andy = 2.1.

Based upon the solitons represented by the analytic solu-
tion of the Schamel-KdV equation obtained by using the
direct integration, we investigate the effects of the phase
speed (whenVp < 2) and plasma parameters which are the
ratio of dust to ion temperatureσd , the mass and charge ra-
tio α, and the ratio of ion to electron temperatureσ . Fig.6
depicts the variation of electrostatic potential as a func-
tion of η for cold, adiabatic, and isothermal dusty space
plasma. It is clear from the figure that the plasma with su-
personic phase speed(Vp ≥ 1.235) has solitary wave solu-
tion but it creates some discontinuities whenVp < 1.235.

-10 0 10
η

1

10000

1e+08

Φ
(η

)

V
p
=1.22

V
p
=1.229 V

p
=1.232

V
p
=1.235

V
p
=1.238

V
p
=1.247

Figure 6. The variation of electrostatic potentialΦ with
phase velocities is given for the fixed values of plasma
parameters and integration constant. Hereµi = 0.8, µe =
0.2, σ = 0.5, σd = 0.001,α = 1, y = 2.1, andc = 1.

Following the different plasma parameters, we seek a soli-
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tary wave in dusty space plasma. The different values
of the ratio of dust to ion temperatureσd , the mass and
charge ratioα, and the ratio of ion to electron temperature
σ play an important role to introduce soliton in plasma,
seen in Figs.7 and 8. It is important to notice that we
have the critical values for these plasma parameters to ob-
serve the soliton in dusty plasma. These critical values are
σd > 0.51,α > 1.2, andσ > 2.0. Under these parameters
it seems plausible that one can produce the soliton in the
space plasma using the analytic solution of the Schamel-
KdV equation obtained from the direct integration.
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Figure 7. The same as Fig.6 but it is for the different
values ofσd andVp = 1.1.
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Figure 8. The same as Fig.6 but the left panel is for the
different values ofα with σ = 0.5 and the right panel is
for the different values ofσ with α = 1. The phase speed
in both cases isVp = 1.1.

5. Conclusion

In this paper, first of all, we have obtained the an-
alytic solutions of the Schamel-KdV equation using
four different methods,(G′/G)-expansion method, dif-
ferent form of (G′/G)-expansion method,(G′/G,1/G)-
expansion method, and direct integration. And then, we
have investigated the types of the solitary waves and the
effect of plasma parameters and integration constants on
the solitary waves in the four-component dusty space
plasma using three different methods(G′/G)-expansion
method,(G′/G,1/G)-expansion method, and direct inte-
gration. We have numerically examined the types of soli-

tons and their dynamical responds to the different plasma
parameters and integration constants. It is found that the
solitary wave is only observed from the analytic solu-
tion obtained by the direct integration. While the shock
waves (rarefactive solitons) are detected from the ana-
lytic solutions obtained by the(G′/G)-expansion method
and different form of(G′/G)-expansion method, we have
also found some discontinuity waves from the analytic
solution of the Schamel-KdV obtained by(G′/G,1/G)-
expansion method.(G′/G,1/G)-expansion method does
not give any solitary wave solution for the Schamel-KdV
equation.
In addition to the above findings, we have also studied the
properties of shock waves, solitary waves, and discontinu-
ity waves in the presence of variation of plasma parame-
ters and integration constants. It is seen that the plasma
parametersα, σ , σd , andy, and integration constantsc1,
c2, c, andµ not only modify the strength of shock wave
(rarefactive soliton) and discontinuity but they also havea
huge impact on the amplitudes of solitons observed in the
dusty space plasma.
Finally, it is interesting to point out that the solitary wave
solutions can only be found from the analytic solution ob-
tained by the direct integration. These solitons arise un-
der some critical conditions of the plasma parameters and
phase speed. The effects of plasma parameters and phase
speed are shown to significantly change the type of solu-
tion. The discontinuity wave turns into the solitary wave
solution when the phase speed isVp ≥ 1.235, the ratio of
dust to ion temperature isσd > 0.51, the mass and charge
ratio isα > 1.2, and the ratio of ion to electron tempera-
ture isσ > 2.0 with the fixed values of the other plasma
parameters and integration constants.
In conclusion, it is important to know the different types
of analytic solutions of the Schamel-KdV equation, which
includes higher order nonlinear terms. The analytic solu-
tions can be applied to discover the properties of the shock
and solitary waves observed in laboratory and astrophysi-
cal dusty plasmas.
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