
JSOPT: A Framework for Optimization of JavaScript on
Web Browsers

MUHAMMAD WAQAS*, AND MINHAJ AHMAD KHAN*

RECEIVED ON 31.10.2016 ACCEPTED ON 21.02.2017

ABSTRACT

In the current era where multi-core technologies are very common in use, the existing web browsers are

unable to fully utilize the capability of multi-core processors.The web browsers execute the JavaScript

code locally in order to produce an efficient response of web pages. This responsiveness is however

limited by the fact that the JavaScript code is uni-threaded, and consequently, the efficiency of the code

degrades if it involves a large number of computations.

In this paper, we propose a framework called JSOPT (JavaScript Optimizer) which generates an efficient

JavaScript code to effectively utilize multi-core architectures. The framework uses a template containing

constructs for communication & synchronization, and subsequently generates optimized code to be

executed on the multi-core architectures. Multiple instances of templates are then generated with different

implementations of the code and the best instance is selected to be incorporated in the library. With the

optimized code generated using JSOPT, our results show a significant improvement in the performance

of several benchmarks involving intensive computations based matrix operations on the Mozilla Firefox

web browser.

Key Words: JavaScript, Threads, Performance, Web Browsers, Code Generation.

Corresponding Author (E-Mail: vickycs50@gmail.com)

* Department of Computer Science, BahauddinZakariya University, Multan.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
9 5

1. INTRODUCTION

JavaScript is the most popular scripting language

and is supported by almost all of the modern web

browsers. It is used to leverage the websites by

allowing dead web pages to interact with users, thereby

improving the response time and interactivity. In contrast

to Java, the JavaScript code is embedded inside HTML

(Hyper Text Markup Language) [1]. The web browsers

are required to run the HTML applications, thereby

constraining the execution of the JavaScript code inside

a single thread created for their execution [2].

In recent years, the hardware technology has evolved as

well from a single processing unit to multiple processing

units within a system. The shared memory systems, in

this regard, contain tightly coupled processing units so

that the memory can be shared among these units. Despite

these advancements, the JavaScript code is far away from

exploiting the parallelism and gaining performance

improvement with multiple processing units [3]. This

limitation arises from the fact that the execution of the

JavaScript code is totally browser dependent which often

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
9 6

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

becomes unresponsive. Most of the web browsers get

into an such a state because of two basic reasons:

• Heavy Computations: The web browser

becomes unresponsive if the code contains very

heavy computations in its loop iterations or it

contains iterations where the termination

condition is not easily met.

• Intensive DOM Activities: The code may

perform heavy manipulation of objects in the

DOM (Document Object Model), and

consequently, the performance degrades to such

a state in which the browser becomes

unresponsive.

The entire workload is transferred to a single processing

unit whereas the rest of the processing units remain idle.

Consequently, the performance efficiency of the code

deteriorates. Unfortunately, most of the web browsers

and the applications executing on them are not set to

exploit the multi-core architectures despite the usage of

heavy JavaScript code.

Although the functions such as setTimeout and

setInterval [4] may be used in JavaScript in an

asynchronous manner to simulate a parallel execution,

the execution of JavaScript still remains inside a single

thread. Multi-threaded execution of JavaScript, in contrast,

means dividing the script into small segments and treating

each segment as an independent thread. Each thread has

its own resources as well apart from the UI (User Interface)

thread. This requirement led to the development of Web

Worker API [5-6] which is newly introduced in HTML5

[7]. The Web Worker API (Application Program Interface)

is used to boost the power of JavaScript. It helps the

programmers to write their JavaScript code in small

segments and execute every segment as an independent

thread simultaneously. Moreover, it also makes the script

utilize all the available resources without putting any extra

load on the UI thread

In this paper, we aim at performance improvement of the

JavaScript code being executed on a shared memory

system. We propose a framework called JSOPT that takes

architectural specification as input and generates an

optimized code that is able to exploit the parallelism due

to the existence of multiple processing units. While

generating optimized code, the framework makes use of a

template containing basic constructs of communication

and synchronization. The framework instantiates the

template with different code versions, searches for the

best instance of the code and generates an optimized

version of the code in the form of a JavaScript library.As

benchmarks, we use problems with complex mathematical

computations such as finding the matrix of minors and

cofactors, matrix power, matrix multiplication and matrix

inverse [8], which inherently execute extremely slow in

JavaScript. Our results show that the code produced by

the proposed framework significantly improves the

performance of these benchmarks.

For generating optimized library similar to the one

produced by JSOPT, some high performance libraries such

as FFTW (Fastest Fourier Transform in the West) [9] and

SPIRAL[10] also make use of an iterative approach. These

libraries however target the C++ based implementations

where the threaded support is provided natively or

through other libraries such as OpenMP and MPI. In

contrast to these approaches, the JSOPT framework

optimizes code for JavaScript which requires the use of

special Web Worker API. There have been efforts for

improving the performance of JavaScript code [11-13] or

estimating the quality of JavaScript Code as described in

[14], however, to the best of our knowledge, this is the

first attempt to improvethe performance of the JavaScript

code on multi-core architectures in an automated way.

The rest of the paper is organized as follows. In Section 2,

we discuss the multithreaded execution context of JavaScript

and the related work. Section 3 describes the architecture of

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
9 7

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

the proposed JSOPT framework. The main features of the

JSOPT framework are succinctly discussed in Section 4.

The experimental setup and performance results are

presented in Section 5. The conclusion and future work are

discussed in Section 6.

2. CONTEXT AND RELATED WORK

Over the past few years, the use of multi-cores in a single

system has increased remarkably. Similarly, a huge growth

has been seen in the use of internet applications. To

ensure an efficient execution of the JavaScript code, the

programmers expect the web browsers to perform

necessary activities required for an efficient execution of

code.

JavaScript has a syntax almost similar to Java, however, it

makes use of a model based architecture which is

implemented by almost all the modern browsers. The

cross-browser portability of JavaScript code is degraded

due to non-availability of an appropriate JavaScript

Framework. To cope with this issue, a prototype model to

measure existing JavaScript frameworks is proposed by

Graziotin et.al. [15]. The model makes use of empirical

feedback from practitioners regarding metrics for a

JavaScript framework. This research work however results

in better selection of a framework instead of generating

automated code as provided by the JSOPT framework.

Another model aimed at improving the JavaScript code

uses the metrics based on size, complexity and

maintainability [16]. Their research work targets the

evaluation of different existing JavaScript frameworks

which may be utilized by programmers to write JavaScript

code in their applications. The metrics used in this study

however do not target the execution speed as targeted

by the JSOPT framework proposed in this paper.

A thread-level speculation based mechanism implemented

in the JavaScript Engine is shown to improve performance

of web applications [17]. The proposed strategy allocates

each iteration of a loop to a separate thread similar to the

conventional threading mechanism. In case of violation

of dependencies, the execution is rolledback to a previous

point. The smaller granularity of parallelism results in a

small improvement in performance of the code in

comparison with the our suggested approach.

The research study in [18] discusses top free JavaScript

frameworks in terms of their main characteristics (e.g.

reactiveness, scalability and models and features. Most

of the frameworks discussed in the study provide

specialized features while aiming at the ease of

development of the JavaScript code. These frameworks

do not target the optimization of code for multi-core

architectures, in contrast to the our suggested approach.

A programming model for a distributed environment is

presented by Welc et.al. [19]. The suggested model permits

an application to be executed on multiple clients, while

exploiting the resources in a proper way. The proposed

model incorporates two major modules, for local and

remote execution, respectively. The Netscape Plugin API

is used to provide native support for the local module,

whereas, the remote component deploys the Web Worker

API [5-6] running on top of the Google’s V8 JavaScript

execution engine [20].

Richards et. al. [21] analyzed the usage of various elements

for better performance of the programs written in

JavaScript. The programs in the JavaScript language use

features which are different from those of the static typed

languages whose code may be optimized in different ways.

Any programs not exploiting the dynamic features of the

JavaScript code may be optimized using the conventional

approaches after static analysis. Similarly, the research

work by Ratanaworabhan et. al. [22] analyzes the behavior

of various benchmark suites (such as SunSpider) and

commercial websites. The analysis reveals that the

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
9 8

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

benchmarks are not proper representatives of the

commercial websites, thereby emphasizing on different

parameters of performance than those used in the

benchmark suites. Similarly, execution behavior of the

social networks like facebook is analyzed by Martinsen

et.al. [23] through a deterministic execution of use cases.

The research work in these strategies mainly aims at

analysis of the performance factors or characteristics in a

single-threaded environment. Our approach, in contrast,

targets performance improvement in a multi-threaded

environment while using responsiveness as the main

parameter.

3. JSOPT FRAMEWORK ARCHITECTURE

The proposed framework JSOPT is implemented as a

prototype and can be used to generate optimized

JavaScript code for mathematical problems in the form of

a library. Currently, the mathematical problems involving

the widely used matrix operations have been optimized.

Using optimized code, efficient results are produced

without blocking the web browser’s UI thread.

The main architecture of the JSOPT framework is depicted

in Fig. 1. It makes use of a template comprising three sub-

templates (Main, onMessage, CollectData),

corresponding to a routine for which the optimized

JavaScript code is to be generated. As shown in Fig. 1,

the architecture specification is initially determined and

used as input by the code generator. The template

contains slots that are filled with n different versions of

(a library routine/function) code C
1,2,...,n

. A version of code

is placed in the template to generate the function code

which is then executed and profiled to generate timing

reports. The code version with the minimum execution

time is then added to the optimized library code.

An example format of the Main sub-template code used

by the code generator is given in Algorithm-1. Let X
0
be

the number of cores, and P be the size of input. The value

X representing the slice of input which will be passed to

a unique thread, is computed at step 3. Let GResult be

the resultant matrix and T
c
 be the number of threads having

completed execution. The GResult and T
c
 are the global

variables and will be used by the CollectData function to

be described later. The loop at step 6 is executed for all

the cores. The code in Code
init

 is invoked to perform

initialization activities, such as computing the starting

and ending indices of the input data. Let the set A represent

input arguments to be passed to the postMessage

function which in turn invokes the onMessage function.

Let S and E represent respectively the sets for starting

and ending indices corresponding to the input arguments.

The data is sent to each thread by invoking the

postMessage function and passing it as arguments the

sets A, S and E at step 11. After having performed

computations, the final result is required to be accumulated

in a global array GResult by using the function

CollectData for each thread. Its call is set to be queued at

step 12 for later execution.

FIG. 1. JSOPT WORKING MECHANISM

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
9 9

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

Algorithm-2 shows the steps taken by the function

onMessage for executing the code whenever a message

containing input data and starting/ending indices is

received by a thread. Initially, a 2-dim array R is declared

to store output result corresponding to an individual

thread. Let u
1
and v

1
 be the start indices and u

2
 and v

2
be

the ending indices for the output matrix R in which the

result is stored. Subsequently, The Code
uni

 is invoked at

step 4 to execute the uni-threaded code to store result in

corresponding indices. It exists as an inline macro call

and is able to use the globally declared variables. The

matrix R with indices u
1
, v

1
, u

2
, and v

2
is then passed to the

UI thread for results accumulation via a call to

postMessage function at step 5.

The code written in the onMessage sub-template is

implemented in a separate .js file and is executed in parallel

for each thread. The message sent by each thread in the

postMessage function call then results in invocation of

the CollectData function.

Algorithm-3 describes pseudo-code for the CollectData

sub-template, whose call was set to be queued in

Algorithm 1. This function receives results (the array R

and the indices u
1
, v

1
, u

2
, v

2
) from each thread and stores it

in corresponding indices of the global array GResult in

steps 3 to 7. It also increments the thread count variable

T
c
, and invokes the Code

finalize
 function for finalization

activities, when all the threads have completed execution.

Using this function, the results of independent

computations are accumulated in the resultant array

GResult.

4. FEATURES OF THE LIBRARY
GENERATED BY THE JSOPT
FRAMEWORK

All the execution of code is required to be performed on

the web browser. On a multi-core system, the JSOPT

framework adopts a mechanism in which the Web Worker

API support [3,5] is exploited.

4.1 Portability

Using JSOPT framework, if the Web Worker API support

exists on a web browser, the optimized library functions

1. Begin
2. // Let u

1
&v

1
, be the start indices and u

2
&v

2

// be the ending indices for the result GResult
3. For I = u

1
To v

1

4. For J = u
2
To v

2

5. SetGResult [I,J] = R [I,J]
6. End For
7. End For
8. SetT

c
 = T

c
 + 1

9. IfT
c
 = X Then

10. // Finalization Code
11. CallCode

finalize

12. Endif
13. End

1. Begin
2. // Let R be the resultant matrix
3. // Let u

1
&v

1
 be the start indices and u

2 &
v

2

// be the ending indices for the result R
4. CallCode

uni
 (X, S, E, R, u

1
, v

1
, u

2
, v

2
)

5. CallpostMessage (R,u
1
, v

1
, u

2
, v

2
)

6. End

1. Begin
2. // Let P be the input size and X

0
 be the

number of cores
3. Set X = P/X

0

4. // Let GResult and T
c
 be the global resultant

matrix and thread variable, respectively
5. SetT

c
 = 0

6. For J = 1 To X
0

7. // Initial code, compute indices
8. CallCode

init

9. //Let A, S, and E represent the sets of
arrays, starting indices and ending indices,
respectively

10. // Send Data To Threads
11. CallpostMessage (A, S, E)
12. SetonMessage = CollectData
13. End For
14. End

ALGORITHM-1. MAIN SUB-TEMPLATE CODE

ALGORITHM-2. ONMESSAGE SUB-TEMPLATE CODE ALGORITHM-3. COLLECTDATA SUB-TEMPLATE CODE

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
100

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

generate multiple threads, otherwise all the work is done

inside a single thread. This characteristic is referred to as

feature detection and is used to provide portability for

different browsers. Although there are a few feature

detection libraries [24-25] but none of them targets

performance improvement in order to provide portability

of executing code on different browsers in an efficient

manner.

4.2 Time Efficiency

The optimized library is generated by iteratively searching

for the best version of code in terms of the time efficiency.

The improvement in performance is obtained by executing

individual function code on the cores actually existing in

the system.

4.3 Scalability

As the number of cores grows on the client machine,

more efficient results are produced by executing the

optimized code generated by the JSOPT framework.

5. EXPERIMENTATION SETUP AND
RESULTS

Web workers don’t share memory so all the messages

are copied to be passed between threads, because of

this nature we use Transferable Objects [26-27] where

the ownership of filled buffer is passed to worker

thread. We use Mozilla Firefox for our experimentation

which is considered to be the most widely used open

source web browser, supported by most of the platforms

ranging from modern smartphones to the high-end

servers.

We made use of several benchmarks including the

computation of matrix of minors and cofactors, matrix

power, matrix multiplication and matrix inverse. The

experimentation is performed on a machine having Intel

Core i5 processor with 2 physical cores, 4 logical cores

and 4 GB of RAM (Random-Access Memory) while

running Windows-8 operating system. For every

benchmark, the performance is computed in terms of

execution time in seconds. To represent performance

improvement, we use the metric of speedup which is the

ratio of the time taken by the original sequential code to

the time taken by the optimized code.

5.1 Matrix of Minors and Cofactors

The performance results obtained for calculating the

matrix of minors and cofactors are shown in Fig. 2. The X-

axis contains the order of the input square matrix for which

the computation is performed.

FIG. 2. TIME ANALYSIS GRAPH FOR MATRIX OF MINORS AND COFACTORS

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
101

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

The parallel code for 2 threads as produced by the JSOPT

framework performs better than the sequential code. It

attains an average speedup of 1.11, with the highest

speedup of 1.89. Similarly, using 4 threads as well, the

parallel optimized code generated by the JSOPT

framework performs better than the sequential code. It

attains an average speedup of 2.56, with the highest

speedup of 3.53. It is also evident from the results that

the performance of the optimized code for calculating the

matrix of minors and cofactors increases with the increase

in the number of cores.

5.2 Matrix Power

The results to calculate the square of an input matrix using

matrix power code are shown in Fig. 3. The order of the

input matrix is given on X-axis.

The parallel code for 2 threads as produced by the JSOPT

framework performs better than the sequential code. It

attains an average speedup of 1.08, with the highest

speedup of 1.40. Similarly, using 4 threads as well, the

parallel optimized code generated by the JSOPT

framework performs better than the sequential code. It

attains an average speedup of 1.49, with the highest

speedup of 2.80. The results also show that the

performance of the optimized code for calculating the

matrix power increases with the increase in the number of

cores.

5.3 Matrix Multiplication

The performance results obtained for calculating the

matrix multiplication of two square matrices are shown in

Fig. 4. The X-axis contains the order of the input square

matrices for which the matrix multiplication is performed.

FIG. 3. TIME ANALYSIS GRAPH FOR MATRIX POWER

FIG. 4. TIME ANALYSIS GRAPH FOR MATRIX MULTIPLICATION

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
102

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

Similar to the matrix power results, the parallel code for 2

threads as produced by the JSOPT framework for matrix

multiplication also performs better than the sequential

code. It attains an average speedup of 1.69, with the

highest speedup of 2.30. Similarly, using 4 threads as well,

the parallel optimized code generated by the JSOPT

framework performs better than the sequential code. It

attains an average speedup of 1.70, with the highest

speedup of 2.14.

5.4 Matrix Inverse

The performance results obtained for computing the

matrix inverse are shown in Fig. 5. The X-axis contains

the order of the input square matrix for which the inverse

is computed.

Using 2 threads, the optimized code attains an average

speedup of 0.85 which implies that the optimized code

does not perform better than the sequential code for a

small number of threads. Using 4 threads, however, the

parallel optimized code generated by the JSOPT

framework performs better than the sequential code. It

attains an average speedup of 2.66, with the highest

speedup of 3.36.

6. CONCLUSION

In the last few years, a huge increase has been seen in the

use of internet applications. For better performance of

these applications, it is required to offload complex

applications into small segments and distribute workload

into multiple threads to take full advantage of available

resources such as multiple cores.

In this paper, we have proposed a framework called JSOPT

that is able to produce optimized JavaScript code for a

system with multiple cores. The framework uses the

architectural specification and generates optimized

JavaScript code while invoking the Web Worker API for

parallel execution. A template containing constructs for

communication & synchronization is instantiated with

multiple versions of a function code. The code is then

profiled to find the best version to be incorporated in the

optimized library. The optimized code generated using

JSOPT is able to achieve average speedups of 1.11, 1.08,

and 1.69 using 2 cores for computation of the matrix of

minors and cofactors, matrix power, and matrix

multiplication, respectively. Similarly, using 4 cores, the

optimized code is able to produce average speedups of

2.56, 1.49, 1.70 and 2.66 for computation of matrix of minors

and cofactors, matrix power, matrix multiplication and

matrix inverse, respectively.

FIG. 5. TIME ANALYSIS GRAPH FOR MATRIX INVERSE METHOD

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
103

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

The Web Worker API deployed in our suggested approach

is limited to support only the message passing mechanism

and also lacks any suitable synchronization constructs.

As future work, we intend to enhance the Web Worker

API by developing a hierarchical thread spawning

mechanism with the hierarchy starting from a parent thread

different from the UI thread together with implementation

of other matrix operations such as matrix determinant and

transpose.

ACKNOWLEDGEMENT

The authors are thankful to the Department of Computer

Science, Bahauddin Zakariya University, Multan,

Pakistan, for providing facilities required to carry out this

research work as part of the M.Sc. Thesis.

REFERENCES

[1] Quigley, E., “JavaScript by Example”, 2nd Edition”,

Prentice Hall, New Jersey, 2010.

[2] Rousset, D., “Introduction to HTML5 Web Workers:

The JavaScript Multi-threading Approach”, Microsoft

Development Network, Available at:http://

msdn.microsoft.com/en-us/hh549259.aspx.

[3] Bidelman, E., “The Basics of Web Workers”, HTML5

Rocks, Available at:http://www.html5rocks.com/en/

tutorials/workers/basics.

[4] Mozila, “JavaScript timers”, Mozilla Developer

Network, 2015. [Online]. Available: https://

developer.mozilla.org/en-US/Add-ons/Code_snippets/

Timers.

[5] Hickson, I., “Web Workers W3C Working Draft”,

Available at: https://www.w3.org/TR/workers/.

[6] Green, I., “Web Workers And Big Data–A Real World

Example”, Available at: http://greenido.wordpress.com/

2012/05/20/Web-workers-and-big-data-a-real-world-

example.

[7] Clark, R., Studholme, O., Murphy, C., and Manian, D.,

“Beginning HTML5 and CSS3”, Apress Publishers,

New York, 2012.

[8] Bronson, R., ”Schaum’sOutline of Matrix Operations”,

Schaum Outline Series, New York, 2011.

[9] Frigo, M., and Johnson, S., “The Design and

Implementation of FFTW3”, IEEE Proceedings, Volume

93, No. 2, pp. 216-231, 2005.

[10] Puschel, M., Moura, J., Singer, B., Xiong, J., Johnson,

J., Padua, D., Veloso, M., and Johnson, R., “SPIRAL: A

Generator for Platform-Adapted Libraries of Signal

Processing Algorithms”, International Journal of High

Performance Computing Applications, Volume 18,

No. 1, pp. 21-45, 2004.

[11] Souders, S., “Even Faster Websites—Performance Best

Practices for Web Developers”, O’Reilly Media, USA,

2009.

[12] Osmani, A., “Writing Fast, Memory-Efficient

JavaScript”, Smashing Magazine, Available at: http://

www.smashingmagazine.com/2012/11/05/writing-fast-

memory-efficient-javascript/.

[13] Souders, S., “High Performance Websites-Essential

Knowledge for Front-End Engineers”, O’Reilly Media,

USA, 2007.

[14] Misra, S., and Cafer, F., “Estimating Quality of

JavaScript”, International Arab Journal of Information

Technology, Volume 9, No. 6, 2012.

[15] Graziotin, D., and Abrahamsson, P., “Making Sense Out

of a Jungle of JavaScript Frameworks - Towards a

Practitioner Friendly Comparative Analysis”,

Proceedings of 14th International Conference on

Product-Focused Software Development and Process

Improvement, Lecture Notes in Computer Science,

pp. 334-337, Springer-Verlag, 2013.

[16] Gizas, A., Christodoulou, S., and Papatheodorou,

T.,”Comparative Evaluation of JavascriptFrameworks”,

Proceedings of 21st International Conference

Companion on World Wide Web Companion, 2012.

[17] Martinsen, J., Grahn, H., and Isberg, A., “Using

Speculation to Enhance JavascriptPerformance in Web

Applications”, IEEE Internet Computing, Volume 17,

No. 2, pp. 10-19, March, 2013.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
104

JSOPT: A Framework for Optimization of JavaScript on Web Browsers

[18] Alex, I., “Top 23 Best Free JavaScript Frameworks for

Web Developers 2016”, Tools, Colorlib, 2016. [Online].

Available: https://colorlib.com/wp/javascript-

frameworks/.

[19] Welc, A., Hudson, R., Shpeisman, T., and Adl-Tabatabai,

A., “Generic Workers”, Programming Support

Innovations for Emerging Distributed Applications on

PSI EtA, 2010.

[20] Google, “Chrome V8 | Google Developers”, Google

Developers. [Online]. Available: https://

developers.google.com/v8/.

[21] Richards, G., Lebresne, S., Burg, B., and Vitek, J., “An

Analysis of the Dynamic behavior of JavaScript

Programs”, ACM SIGPLAN Notices, Volume 45, No. 6,

pp. 1, May, 2010.

[22] Ratanaworabhan,P., Livshits, B., and Zorn, B., “JSMeter:

Comparing the behavior of JavaScript Benchmarks with

Real Web Applications”, Proceedings of USENIX

Conference on Web Application Development, Berkeley,

USA, 2010.

[23] Martinsen, J., and Grahn, H., “A Methodology for

Evaluating JavaScript Execution behavior in Interactive

Web Applications”, 9th IEEE/ACS International

Conference on Computer Systems and Applications,

2011.

[24] Watson, A., “Learning ModernizrCreate Forward-

Compatible Websites using Feature Detection Features

of Modernizr”, Birmingham, Packt Publishing, 2012.

[25] Corti, S., “HTML5 Browser and Feature Detection”,

MSDN Magazine, Microsoft Inc., Available at: http://

msdn.microsoft.com/en-us/magazine/hh475813.aspx.

[26] Bidelman, E., “Transferable Objects: Lightning Fast!”,

HTML5 Rocks, Available at: http://

updates.html5rocks.com/2011/12/Transferable-Objects-

Lightning-Fast.

[27] Mozilla, “ArrayBuffer”, Mozilla Developer Network.

[Online]. Available: https://developer.mozilla.org/en/

docs/Web/JavaScript/Reference/Global_Objects/

ArrayBuffer.

