
C in CS1: Snags and Viable Solution
SHUMAIL NAVEED*, MUHAMMAD SARIM*, AND ADNAN NADEEM*

RECEIVED ON 04.12.2015 ACCEPTED ON 16.02.2016

ABSTRACT

Programming is one of the career rewarding skills; however, learning programming skill is extremely

hard and arduous as supported by several studies. The first programming language has an everlasting

impact on the programmer’s program’s development abilities. In most of the universities the imperative

paradigm is used for introductory programming courses and generally C language is used as a base

language of a first programming course. The C language is a leading programming language and

extensively utilized for commercial applications. The majority of the programming languages are highly

motivated from the C language, yet its intrinsic complexities and non-pedagogic origin evidently makes

it hard and a complex choice for a first programming course. This paper proposed a rational and realizable

solution that can make a C language a suitable choice for a first the course of programming.

Key Words: Introductory Programming Courses, Doodles, Pre-Programming, Teaching Methodology,

Pair Programming.

Corresponding Author (E-Mail: shumail.naveed@fuuast.edu.pk)
* Department of Computer Science, Federal Urdu University of Arts, Science & Technology, Karachi.

dexterity of programming experts. Their knowledge is not

general but context specific [6]. Beginning students are

restricted to the surface knowledge, deficient in

comprehensive mental models, unsuccessful to employ

pertinent knowledge, and visualize the programming line-

by-line rather than utilizing consequential program

components or formations.

The introductory programming course is a “gate-

keeper” to triumph and success in computer science/

computing education [7]. The significance of an

appropriately defined first course in programming

(usually called CS1) can not be overstated. The first

programming course leaves the beginning students with

good programming practices [8]. A poor experience may

have a worse impact on student attitude, and may result

in a change in majors.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
1

1. INTRODUCTION

Programming skill is an essential element of

computer science courses and one of many skills

that students of computer science programs are

presumed to master [1]. One of the most difficult aspects

of computer science curriculums involves facilitating

students in comprehending the concepts of computer

programming. Almost in all computer science academic

programs, it is required to take an introductory

programming course. Programming is an important skill

and a rewarding career. It is usually recognized that it

takes around ten years of experience to be an professional

programmer [2]. However, learning to program is a difficult

task for beginners [3,4]. Hagan and Markham claim that

for all computing courses the programming is the least

interesting and most difficult subject by most first year

students [5]. Programming is inherently complex and

beginning students naturally lack the knowledge and

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
2

C in CS1: Snags and Viable Solution

The first programming language of student has a strong

effect on program development capabilities as significant

as the impact of our native language on our thought [9]; in

fact the first programming language will set the tone for all

subsequent classes [10].

Selection of an appropriate programming language for the

first course on programming is an important issue [11,12].

There have been very substantial studies and discussion

on selection of programming language for introductory

courses of programming [13-16]. However, the introductory

programming courses are widely recognized to pose

challenges and problems for both students and instructors

and high dropout rates of 20-60% are reported in different

academic institutions [17-20]. Despite of an extensive study

in introductory programming, the pass rates were not

observed to have considerably differed over time [21].

The appropriate paradigm and language chosen for the

introductory programming course may overcome the

intrinsic complexity of introductory programming. There

are around 2000 to 3000 famous programming languages

documented on the Web [22], consequently it is intricate

to select any programming language for the first

programming course. Over the years there has been a

substantial debate and study about which language is

appropriate for the introductory programming course;

hitherto there is no final consensus on any programming

language. Such as in [23], it is argued that Java is better

than C++, and C++ is not a good choice for introductory

programming. Similarly, Wallace and Martin considered

that Java is better that other programming language [24].

However, Biddle and Tempero [25] categorized the Java a

reasonable, but not an efficacious choice for introductory

programming courses. In [26], Python is selected for the

introductory programming course.

Raina et. al. conducted a landmark study of the 44

introductory programming courses in 28 universities in

Australia and compared the results with previously

conducted censuses during 2001 and 2003 [27]. According

to that study, 54.5% of instructors are using procedural

paradigm, 25.0% are using the object-oriented paradigm,

18.2% are following the mix of paradigm and 2.3% are using

a functional paradigm. The study also revealed that Java,

Python, C, C# and Visual Basic are the widely used

programming languages.

In 2013, the same pattern of study is conducted and

surveyed the 38 introductory programming courses in New

Zealand and Australian universities [28]. According to

that study the imperative (procedural) paradigm is the

preferred paradigm used for teaching as shown in Fig. 1.

The study also reported that Python, Java, JavaScript, C,

C++ and C# are the popular languages. The programming

paradigm and languages followed in the teaching

institutions of Pakistan are somewhat different from other

countries. At the time of writing, there are around 164

universities/degree awarding institutions in Pakistan [29],

and according to the available information, the majority of

the universities/institutions are formally running the pure

undergraduate computer science programs and nearly all

are using the imperative paradigm for the first programming

course (usually called CS1). It is worth noting that around

90% of these universities in Pakistan are using the C

language in CS1.

C is the general purpose programming language and

extremely useful for different types of applications [30]. It

is the core language of the UNIX operating system. C is

equipped with powerful data-structures, useful

FIG. 1. TRENDS IN PARADIGM TAUGHT [28]

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
3

C in CS1: Snags and Viable Solution

expressions, control structures and a large variety of data

types. Its tiny size and generalization make it suitable for

several domains.

The TIOBE Programming Community index [31],

acknowledges the C language as a popular programming

language. Table 1 shows the rating of the top 10 languages

of March 2015.

As a part of a study of the motivation, delineation and

anatomy of precursor and pedagogical programming

languages, we have made the discussion and interview

with 154 experienced teachers/academic instructors in the

teaching institutions of Pakistan. Instructors were asked

to indicate the appropriate programming paradigm for CS1.

Among all the instructors, 106 recommended the imperative

paradigm, 24 endorsed the mix of paradigms and 18

recommended the object-oriented paradigm, it is surprising

that some instructors, 4 from 154 recommended the logic

paradigm, and 2 recommended the functional paradigm.

Fig. 2 shows the overall recommendation in numeric

proportions:

The response about the recommended paradigms clearly

indicates that imperative paradigm is one of a most

advocated method in Pakistan. The instructors were also

asked to recommend the appropriate programming

language for the first imperative programming course.

Fig. 3 shows the response of recommended programming

languages.

ytiralupoP egaugnaLgnimmargorP)%(sgnitaR

1 C 246.61

2 avaJ 085.51

3 C-evitcejbO 886.6

4 ++C 636.6

5 #C 329.4

6 PHP 799.3

7 tpircSavaJ 926.3

8 nohtyP 416.2

9 teN.cisaBlausiV 623.2

01 cisaBlausiV 949.1

TABLE 1. TIOBE INDEX FOR MARCH 2015

FIG. 2. RECOMMENDED PARADIGMS

FIG. 3. RECOMMENDED PROGRAMMING LANGUAGES

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
4

C in CS1: Snags and Viable Solution

The response of recommended programming languages

indicates that for majority of instructors in Pakistan, the C

language is still a favorite choice for the first programming

course.

The C is widely recognized language, yet there have been

a wide debate about its educational appropriateness and

usefulness.

The pedagogical application of a C language is explicitly

opposed in that been designed especially for educational

purposes [32]. This paper introduced a plain technique

that can make C language a suitable option for the CS1 in

controlling its inherent complexity and intricacies.

The rest of the paper is structured as follows. The major

intricacies and difficulties association with the application

of the C language in introductory courses of programming

are described in the second section, while the prior work

is briefly illustrated in a third section. The proposed

solution is introduced in a fourth section. The initial results

obtained after the primary assessment of the proposed

techniques are described in the fifth section and the last

section includes the conclusion.

2. CRITICISM AND PEDAGOGICAL
ISSUES

The C language has wide applications in commercial and

scientific areas. However, it is explicitly criticized and

opposed to education in the introductory courses of

programming. Following is the brief element of main

appraisal and educational concerns of the C language.

(1) The C is not outsized, yet too complex for novice

students [33], and it is unfeasible to introduce

entire C language in the CS1.

(2) It is openly described that C language was

designed by Dennis Ritchie, who was not non-

educationist but a mathematician and physicist.

So rarely considered the educational aspects

during the development of a C language, and

ultimately it is unenviable to exercise C language

for introductory courses of programming.

(3) C is not a natural language and its syntax and

facets like program organization, arrays and

control structures are difficult for novice

students [34]. In [35], Petrov claims that

unexpected and unfamiliar syntax of C language

creates the confusion and raise the psychological

tension.

(4) The unsigned data types in C are virtually

useless, in that it is safe and simple to use the

signed data. Similarly the formatting symbol “%”

is difficult to rationalize.

(5) The loops and other control structures are quite

difficult to identify. C programming language has

weak typing. For instance, the ASCII characters

can be used as an integer, and this type of

provisions may lead to confusion.

(6) Most of the operators are confusing, orthogonal

and contradictory with the logical and

mathematical notations. For instance, multiple

ways are available for arithmetic assignment:

a += 1;

a = a + 1;

The abbreviation of several arithmetic operations seems

useless and overwhelming.

(7) The equality statement is extremely difficult and

mostly muddled with assignment statement and

consequently causes strenuous errors.

(8) The grammar of C language controverts to the

human language and grammar [35], and C itself

does not follow the conventional mathematical

notation.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
5

C in CS1: Snags and Viable Solution

(9) The subscripting of arrays in C language starts

from zero, and it also does not support bound

checking, for that reasons novice students face

severe problems in the learning and implementing

arrays based programs.

(10) The majority of the statements of C language is

permitted to be defined on a single line, while

numerous statements entails a unique line. For

novice students of CS1, it is mostly very complex

to comprehend and implement these

dissimilarities. The case sensitivity of a C

language is another major issue that makes the

language more difficult for beginners.

(11) The Boolean-data type is not available in C

language and educationally it is a main problem

[36], and the corresponding code for the

realization of Boolean-data type is usually very

odd and complex in the framework of learning

and generally an error prone.

(12) Programmer-defined functions, arguments and

the classes of arguments are generally difficult

for novice students.

(13) The pointer is an essential constituent of a C

program, but it is extremely complex for beginners,

especially the arithmetic of C language is

exceptionally complex to comprehend. Egan and

McDonald claim that pointers and manual

memory management can be difficult to

comprehend [37]. The pointers are not only

difficult for beginners, but also hard for

experienced programmers [35].

(14) The I/O operations are always very interrelated,

and their equivalent constructs should be very

symmetrical, however the ‘printf’ and ‘scanf’ are

highly nonsymmetrical. The ampersand sign “&”

is mandatory for ‘scanf’, but not for ‘printf’. The

conventional input function ‘scanf’ in the C

language, is naturally difficult to use because it

involves a pointer to the variable for storing the

input value [38].

(15) The union is one of a useful feature of the C

language; though, it is abnormally strenuous to

understand and implement.

(16) The shift-wise operators and bit-manipulation

operators are very difficult to learn and implement.

(17) The very strange notion of logical operators is

used in C language. The exclamation mark “!” is

used as an operator in the C language, whereas it

is customarily used for different purpose, and

these differences make it confusing for beginners.

(18) Conditional compilation is an imperative element

of the C language, but typically very difficult for

novice students. Most of the available compilers

of the C language are not equipped with powerful

debuggers, and due to this fact, it is very

strenuous to debug the C programs.

(19) In [39], it is described that the C language is an

industry standard and for that reason it should

not utilized as an introductory language because

the beginners will become biased for future

programming languages. It is also described that

C is a magnificent programming language for

terrorists as it is excellent for negative

programming.

3. SIGNIFICANT SOLUTIONS

Several solutions have been developed to define the C

language viable for introductory courses in programming.

In [34], the notion of using HTML, EXCEL and MATLAB

before introducing the C language is proposed. These

applications help the novice beginners in learning the

difficult features of a C language. For instance, the HTML

can be helpful in comprehending the layout of the program;

EXCEL may be fruitful in learning the input/output and

arrays. Likewise, MATLAB can be productive in

introducing the condition and repetition control structures.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
6

C in CS1: Snags and Viable Solution

Egan and McDonald [37] introduced the notion of natural

language description of program behavior and program

visualization to help the beginners in increasing their

knowledge, understanding and aid in program debugging.

A system based on that proposed method is formalized

and used for C. Similarly, in [40], the use of Robotic

Invention System 2.0 for introducing the C language is

introduced.

In [36], it is argued that there are some troubles in

employing the C language at the initial level; nonetheless

it is possible to lessen the difficulties by utilizing the

benefits of conventional software engineering

techniques.

4. METHOD AND DISCUSSION

The C is a very prevailing language, but it is difficult to

conventionally teach C language to novice students than

it is to introduce the pure educational programming

language, but the indelible paybacks are more important

and necessary than momentary outlays. Practically, it is

possible to diminish the complexities associated with using

the C language in introductory courses of programming

by utilizing the proposed method. The proposed technique

is based on 4 pillars.

4.1 Prior Knowledge

The lack of prior knowledge of programming is a major

cause for the intricacy of C language. The novices without

prior experience of programming suffer severe problems

in learning process [41,42]. However, the beginners with

prior acquaintance of programming work better, particularly

in the CS1 [43,44]. It is widely believed that the C language

is extremely logical and this perception demotivated the

novice students.

The first principle of the proposed technqiue is to

introduce a foundation course before introducing the

actual C language. This foundation course can provide

the basic knowledge of algorithmic thinking, problem

solving and essential of elementary programming.

Fortunately, several preprogramming tools are available.

GRAIL is preprogramming language designed to offer

before the first course of programming and helps the

beginners to understand the programming concepts [45].

GRAIL is a small programming language designed to

support the imperative programming concepts. On the

whole the statements of GRAIL are almost similar to the

equivalent statements of contemporary high level

programming languages. Each construct in GRAIL has a

single syntax and it’s a viable choice to introduce before

the C language.

In [46] a CS0 course has introduced to help the beginners

who have no previous knowledge of programming. It

covers the fundamental topics like sequences, operators,

selection statements, repetitive statements, functions and

arrays. The course first uses GameMaker [46] to cover the

fundamental topics of elementary programming. The same

pattern course can be useful before starting the C language.

In [48], Dyne and Braun described and the CS0 course

called Computational Thinking to develop and improve

the analytical problem solving of those students who are

not prepared for introductory programming. The results

of using CS0 indicate a positive impact on improving the

analytical problem solving skills of students.

A preliminary course has designed by using Alice [48] to

prepare the students for comprehending the concepts of

programming and preparing them for a first programming

course [50,51]. The results indicate the aptness of Alice in

improving the performance of students and similarly the

same leverage can be obtained by introducing Alice before

the C language.

In [52], CS 0.5 course is introduced to before the first

programming course. The intention of CS 0.5 is to give

beginners a programming maturity before diving into CS1.

The gentle revised version of Guzdial’s media computation

[53] is used in CS 0.5.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
7

C in CS1: Snags and Viable Solution

Sometimes it is undesirable to initiate a foundation

language before starting the C language; in that situation,

it is possible to introduce the educational dialects of C

language (like Educational C [33]), and the dedicated

programming environment (like Thetis [54]) before starting

the C language.

Apart from the other tools there are myriad many tools like

RAPTOR and FLOWGORITHM that can be used to

introduce the fundamental of elementary programming

before the C language.

4.2 Use of Doodles

Several elements of the C language like input/output,

arrays, pointers, functions and types of arguments are

obviously difficult for novice students, and the key

reasons from their intricacy are the complexity of topics

and the unusual syntax of the C language. The novice

students are generally forced to learn these notions and

the strange syntax of the language at the same time. The

unknown and mysterious taxonomies and complex syntax

of C makes the control structures, arrays, pointers and

functions more difficult for beginners; however the

reasonable exercise of doodles can conquer these

problems.

Utmost employment of doodles in introducing and learning

the C language is the second principle of the proposed

technique. Doodle is any kind of an illustration or diagram

drawn to comprehend the purpose of the programs [55].

Doodle is exceptionally helpful in the preliminary stages

of programming [56]. With the different types of doodles

[55], it is significantly straightforward to comprehend the

hard concepts without considering the complicated syntax

of the C language. Through pictorial illustrations and

doodles it is quite simple to learn these fundamental

concepts.

4.3 Less is More

Nearly all the contemporary programming languages,

including the C is radically very large, and sensibly it is

unreasonable and unfair to teach entire C language in the

CS1, but only the necessary topics are advantageous in

the CS1, where complex topics like union, bitwise-

operators, shift-wise operators and conditional compilation

can be offered in the later programming courses or may be

introduced in the later stages of the CS1 and this is the

fundamental idea of the third principle of the proposed

technique.

4.4 Pair Programming

The C language is completely diverse from programming

languages and therefore requires a radically special

approach. Similarly, the time, efforts, adroitness and

deliberation need to learn the C language is appreciably

more than the other programming languages.

It is widely accepted that the pair programming can

overcome the several pedagogical problems. Pair

programming is a pivotal practice of Extreme Programming

and a way in which two developers work together at one

system on the same problem [57]. The programmer writing

the program is called the driver and the other teammate is

called navigator. Pair programming has been largely applied

in education because of the leverage it brings to students.

The pair programming has been fruitful in introductory

programming courses.

In order to strengthen our thesis the instructors were asked

to indicate whether the pair programming can surmount

the several problems associated with the use of the C

language in a first programming course. Fig. 4 indicates

the response of instructors.

Most of the instructors recognized that the effective

teaching methodology can be a useful panacea for the

several pedagogical issues of C languages. At last, it is

worth here to state that in the teaching of C language

programming, design, some problems exists on both sides,

students and instructors [58]. So the instructors should

revolutionize their teaching philosophy and students

should instinctively learn and ameliorate their learning

motivation.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
8

C in CS1: Snags and Viable Solution

5. PRELIMINARY TEST AND RESULTS

In order to ascertain whether the proposed method is really

effective in making the C language a viable choice for the

CS1, a small study is conducted. As a part of the study, 82

students of the undergraduate computer science program

are selected and randomly divided in two groups (called

control group and treatment group). The C based first

programming course is offered by the same instructor to

the both groups, and the conventional teaching approach

is followed for the control group, whereas the proposed

method is followed for the treatment group. For the

realization of a first principle of the proposed method, we

have used the RAPTOR environment to introduce the

algorithmic and preprogramming knowledge to the

treatment group. The flowchart-based notation has been

extensively used in the context of introducing novices to

programming [59]. RAPTOR is a programming

environment, developed exclusively to aid novice students

in comprehending the programming and the algorithms.

RAPTOR is successfully used to introduce programming

to novice students with flowcharts [60-62]. Fig. 5 shows

the environment of RAPTOR.

The preprogramming environment/language is virtually

introduced to increase the motivation level by providing

the prior knowledge before starting the actual massive

course.

Throughout the duration of course, the students of

treatment group are softly encouraged and motivated to

doodle the programs. The instructor itself doodles the

major programs and concepts introduced during the

course. With the extensive use of doodles it is clearly

realized that several logical concepts of the C language

are extremely easy to comprehend and implement. Fig. 6

shows the sample doodle for the arrays.

Several concepts of C language like functions, types of

arguments and pointers are intrinsically hard to teach

and comprehend, whereas the feedback received from

the instructor illustrate that the use of doodle

surprisingly reduced their complexities. As an

illustration, consider the Fig. 7 for the sample doodle of

user defined function.

FIG. 4. IMPACT OF PAIR PROGRAMMING

FIG. 5. RAPTOR ENVIRONMENT

FIG. 6. DOODLE OF ARRAYS

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
9

C in CS1: Snags and Viable Solution

The curriculum of the C based first programming course

for the both groups was same and included the elementary

topics, but also included some complex topics like the

bitwise operators, union and conditional compilation. As

the realization of the third principle of the proposed

method, these complex topics are introduced in the later

lectures, and introduce with the extensive use of doodles.

For treatment group the instructor principally follows the

imperative-first approach, but also consider the concept-

first approach.

After the completion of course, both groups are evaluated

with pen and paper exam. Fig. 8 shows the results.

Fig. 9 shows the box plot of the marks obtained by the

students of the control group.

The box plot of the marks obtained by the students of the

treatment group is shown in Fig. 10.

The results obtained from the initial assessment of the

proposed method reveals that the proposed method is

quite helpful in diminishing the complexity of using the C

language in a first programming course. In the control

group the pass rate was 53.56 where 75.61 in the treatment

group. The mean marks for the control group was 49.80

(standard deviation = 20.85) whereas the mean marks for

the treatment group was 57.83 (standard deviation = 19.51).

Independent sample t-test with a t-value = 2.38 and p-

value < 0.01 signified that students of treatment group did

significantly better in C based first programming course

than the students of the control group in the same C based

first programming course.

FIG. 7. DOODLE FOR THE USER DEFINED FUNCTION

FIG. 8. RESULTS OF EVALUATION

FIG. 9. BOX PLOTS OF THE MARKS OF STUDENTS IN
CONTROL GROUP

FIG. 10. BOX PLOTS OF THE MARKS OF STUDENTS IN
TREATMENT GROUP

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
10

C in CS1: Snags and Viable Solution

The grade wise distribution of marks of students of both

groups is shown in Fig. 11.

From current results and analysis, it can be inferred that

the proposed method can also improve the motivation

level and may be useful in improving retention rate and

controlling the dropout rates. In order to obtain, the

significance of the proposed method in increasing the

retention rate, students from both groups were interviewed

and asked “whether they are willing to study another

programming course in the next semester”. The feedback

received from the students is shown in Fig. 12.

The feedback received from the students indicated that

students in the treatment group are highly motivated and

their retention rate is much higher the students of the

control group.

At last is important to realize that the pedagogical success

of any programming language and improvement of

retention pivot on several factors, albeit the feedback

received from the both groups clearly indicates that the

proposed method may be fruitful in reducing the inherent

complexities of C language.

6. CONCLUSION

The C language is of a widely used programming language;

however, its non-educational source makes it disputed

and problematic for the CS1. In this paper a simple method

is proposed that can make the C language a realizable

choice for the CS1 by reducing it intrinsic complexities.

The proposed method is based on four main principles

which are simple, feasible and applicable. We have applied

the proposed method on a small group of students and

statistical results and knowledge of using the proposed

technique suggest that it can be useful in controlling the

intrinsic intricacies of C language and can ultimately make

the C language a viable choice for the CS1.

FI. 11. GRADE-WISE RESULT

FIG. 12. STUDENTS WILLINGNESS IN NEXT PROGRAMMING
COURSE

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
11

C in CS1: Snags and Viable Solution

ACKNOWLEDGEMENTS

The support provided by the Department of Computer

Science, Federal Urdu University of Arts, Science &

Technology, Karachi, Pakistan, is appreciatively

acknowledged. Authors would also like to express thanks

Kashif Raffat, for his precious suggestions and criticisms.

In addition, authors would like to thank all of the students

who participated in evaluating the proposed method.

REFERENCES

[1] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,

Hagan, D., Kolikant, Y.B., Laxer, C., Thomas, L., Utting,

I., and Wilusz, T., “A Multi-National, Multi-Institutional

Study of Assessment of Programming Skills of First-

Year CS Students”, Working Group Reports from

Innovation and Technology in Computer Science

Education, pp.125-180, USA, 2001.

[2] Winslow, L.E., “Programming Pedagogy - A

Psychological Overview”, ACM SIGCSE Bulletin,

Volume 28, No. 3, pp.17-22, USA, 1996.

[3] Anna, E., Laakso, M., Lopez, M., and Sarkar, A.,

“Relationship between Text and Action Conceptions of

Programming: A Phenomenographic and Quantitative

Perspective”, Proceedings of 16th Annual Joint

Conference on Innovation and Technology in Computer

Science Education, pp. 33-37, Germany, 2011.

[4] Sabitzer, B., and Pasterk, S., “Brain-Based Programming

Continued: Effective Teaching in Programming Courses”,

IEEE Frontiers in Education Conference, pp. 1-6, Spain,

2014.

[5] Hagan, D., and Markham, S., “Does it Help to Have

Some Programming Experience Before Beginning a

Computing Degree Program?”, ACM SIGCSE Bulletin,

Volume 32, No. 3, pp. 25-28, USA, 2000.

[6] Byrne, P., and Lyons, G., “The Effect of Student Attributes

on Success in Programming”, Proceedings of 6th Annual

Conference on Innovation and Technology in Computer

Science Education, pp. 49-52, USA, 2001.

[7] Selby, L., Ryba, K., and Young, A., “Women in

Computing: What does the Data Show?”, ACM SIGCSE

Bulletin, Volume 30, No. 4, pp. 62-67, USA, 1998.

[8] Pendergast, M.O., “Teaching Introductory Programming

to IS Students: Java Problems and Pitfalls”, Journal of

Information Technology Education, Volume 5, USA,

2006.

[9] Wexelblat, R.L., “The Consequences of One’s First

Programming Language”, Proceedings of 3rd ACM

SIGSMALL Symposium and the First SIGPC Symposium

on Small Systems, pp. 52-55, USA, 1980.

[10] Howell, K., “First Computer Languages”, Journal of

Computing Sciences in Colleges, Volume 18, No. 4,

pp. 317-331, USA, 2003.

[11] Laakso, M., Kaila, E., Rajala, T., and Salakoski, T.,

“Define and Visualize Your First Programming Language”,

8th IEEE International Conference on Advanced Learning

Technologies, pp. 324-326, Spain, 2008.

[12] Minor, J.T., and Gewali, L.P., “Pedagogical Issues in

Programming Languages”, International Conference on

Information Technology: Coding and Computing,

Volume 1, pp. 562-565, 2004.

[13] Ali, A., and Smith, D., “Teaching an Introductory

Programming Language in a General Education Course”,

Journal of Information Technology Education:

Innovations in Practice, Volume 13, 2014.

[14] Ivanovic, M., Budimac, Z., and Paunic, D., “Educational

Influences of Choice of First Programming Language”,

Proceedings of International Conference on

Numerical Analysis and Applied Mathematics,

pp. 310010-1–310010-4, Greece, 2014.

[15] Goosen, L., “A Brief History of Choosing First

Programming Languages”, History of Computing and

Education, Volume 3, pp. 167-170, USA, 2008.

[16] Parker, K.R., Chao, J.T., Ottaway, T.A., and Chang, J.,

“A Formal Language Selection Process for Introductory

Programming Courses”, Journal of Information

Technology Education: Research, Volume 5, No. 1,

pp. 133-151, USA, 2006.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
12

C in CS1: Snags and Viable Solution

[17] Herrmann, N., Popyack J.L., Char, B., Zoski, P., Cera

C.D., Lass, R.N., and Nanjappa, A., “Redesigning

Introductory Computer Programming Using Multi-Level

Online Modules for a Mixed Audience”, ACM SIGCSE

Bulletin, Volume 35, No. 1, pp. 196-200, USA, 2003.

[18] Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang,

K., Miller, C., and Balik, S., “Improving the CS1

Experience with Pair Programming”, ACM SIGCSE

Bulletin, Volume 35, No. 1, pp. 359-362, USA, 2003.

[19] Rich, L., Perry, H., and Guzdial, M., “A CS1 Course

Designed to Address Interests of Women”, ACM SIGCSE

Bulletin, Volume 36, No. 1, pp. 190-194, USA, 2004.

[20] Sloan, R.H., and Troy, P., “CS 0.5: A Better Approach to

Introductory Computer Science for Majors”, ACM

SIGCSE Bulletin, Volume 40, No. 1, pp. 271-275, USA,

2008.

[21] Watson, C., and Li, F.W.B., “Failure Rates in Introductory

Programming Revisited”, Proceedings of Conference on

Innovation & Technology in Computer Science

Education, pp. 39-44, USA, 2014.

[22] Kaplan, R.M., “Choosing a First Programming

Language”, Proceedings of ACM Conference on

Information Technology Education, pp. 63-164, USA,

2010.

[23] Jab³onowski, J., “A Case Study in Introductory

Programming”, International Conference on Computer

Systems and Technologies, Volume 82, pp. 1-7, Bulgaria

2007.

[24] Wallace, C., and Martin, P., “Not Whether Java but

How Java”, Proceedings of International Computer

Science Conference on Asia-Pacific Software

Engineering, pp. 517-518, Hong Kong, 1997.

[25] Biddle, R., and Tempero, E., “Java Pitfalls for Beginners”,

ACM SIGCSE Bulletin, Volume 30, No. 2, pp. 48-52,

USA, 1998.

[26] Grandell, L., Peltomki, M., Back, R., and Salakoski, T.,

“Why Complicate Things?: Introducing Programming

in High School Using Python”, Proceedings of 8th

Australasian Conference on Computing Education,

Volume 52, pp. 71-80, Australia, 2006.

[27] Mason, R., Cooper, G., and deRaadt, M., “Trends in

Introductory Programming Courses in Australian

Universities: Languages, Environments and Pedagogy”,

Proceedings of 14th Australasian Conference on

Computing Education, Volume 123, pp. 33-42, 2012.

[28] Mason, R., and Cooper, G., “Introductory Programming

Courses in Australia and New Zealand in 2013 - Trends

and Reasons”, Proceedings of the 16th Australasian

Conference on Computing Education, Volume 148,

pp. 139-147, New Zealand, 2014.

[29] http://www.hec.gov.pk/Ourinstitutes/pages/Default.aspx

(Last Accessed: 2nd April, 2015).

[30] Ritchie, D.M., Johnson, S.C., Lesk, M.E., and Kernighan,

B.W., “UNIX Time-Sharing System: The C Programming

Language”, Bell System Technical Journal, Volume 57,

No. 6, pp. 1991-2019, USA, 1978.

[31] http://www.tiobe.com/index.php/content/paperinfo/tpci/

index.html. (Last Accessed: 6th April, 2015).

[32] Pears, A., Seidman, S., and Malmi, L., Mannila, L., Adams,

E., Bennedsen, J., Devlin, M., and Paterson, J., “A Survey

of Literature on the Teaching of Introductory

Programming”, ACM SIGCSE Bulletin, Volume 39,

No. 4, pp. 204-223, USA, 2007.

[33] Ruckert, M., and Halpern, R., “Educational C”, ACM

SIGCSE Bulletin, Volume 25, No. 1, pp. 6-9, USA, 1993.

[34] Budny, D., Lund, L., Vipperman, J., and Patzer, J. L.II,

“Four Steps to Teaching C Programming”, 32nd Annual

Frontiers in Education, Volume 2, pp. 18-22, 2002.

[35] Petrov, P.T., “New Evaluation of the Language C for

Educational”, International Scientific Conference on

Engineering and Scientific Purposes, pp. 353-361, 2010.

[36] Roberts, E.S., “Using C in CS1: Evaluating the Stanford

Experience”, ACM SIGCSE Bulletin, Volume 25, No. 1,

pp. 117-121, 1993.

[37] Egan, M.H., and McDonald, C., “Program Visualization

and Explanation for Novice C Programmers”,

Proceedings of 16th Australasian Conference on

Computing Education, Volume 148, pp. 51-57,

New Zealand, 2014.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
13

C in CS1: Snags and Viable Solution

[38] Rosenberg, J., and Kölling, M., “I/O Considered Harmful

(At Least for the First Few Weeks)”, Proceedings of 2nd

Australasian Conference on Computer Science

Education, pp. 216-223, Australia, 1997.

[39] Johnson, L.F., “C in the First Course Considered Harmful”,

Communications of the ACM, Volume 38, No. 5,

pp. 99-101, USA, 1995.

[40] Kim, S.H., and Jeon, J.W., “Educating C Language Using

LEGO Mindstorms Robotic Invention System 2.0”,

Proceedings of IEEE International Conference on

Robotics and Automation, pp. 715-720, USA, 2006.

[41] Davy, J.R., Audin, K., Barkham, M., and Joyner, C.,

“Student Well-Being in a Computing Department”, ACM

SIGCSE Bulletin, Volume 32, No. 3, pp. 136-139, USA,

2000.

[42] Morrison, M., and Newman, T.S., “A Study of the Impact

of Student Background and Preparedness on Outcomes

in CS I”, ACM SIGCSE Bulletin, Volume 33, No. 1,

pp. 179-183, USA, 2001.

[43] Holden, E., and Weeden, E., “The Impact of Prior

Experience in an Information Technology Programming

Course Sequence”, Proceedings of 4th Conference on

Information Technology Curriculum, pp.41-46, USA,

2003.

[44] Tafliovich, A., Campbell, J., and Petersen, A., “A Student

Perspective on Prior Experience in CS1”, Proceedings

of 44th ACM Technical Symposium on Computer Science

Education, pp. 239-244, USA, 2013.

[45] McIver, L., and Conway, D., “GRAIL: A Zeroth

Programming Language”, Proceedings of 7th International

Conference on Computing in Education, pp. 43-50, 1999.

[46] Panitz, M., Sung, K., and Rosenberg, R., “Game

Programming in CS0: A Scaffolded Approach”, Journal

of Computing Sciences in Colleges, Volume 26, No. 1,

pp. 126-132, USA, 2010.

[47] Hernandez, C.C., Silva, L., Segura, R. A., Schimiguel, J.,

Ledón, M.F.P., Bezerra, L.N.M., and Silveira, I.F.,

“Teaching Programming Principles through a Game

Engine”, CLEI Electronic Journal, Volume 13, No. 2,

pp. 1-8, 2010.

[48] Dyne, M.V., and Braun, J., “Effectiveness of a

Computational Thinking (CS0) Course on Student

Analytical Skills”, Proceedings of 45th ACM Technical

Symposium on Computer Science Education,

pp. 133-138, USA, 2014.

[49] Cooper, S., “The Design of Alice”, ACM Transactions

on Computing Education, Volume 10, No. 4, pp. 1-16,

USA, 2010.

[50] Moskal, B., Lurie, D., and Cooper, S., “Evaluating the

Effectiveness of a New Instructional Approach”, ACM

SIGCSE Bulletin, Volume 36, No. 1, pp. 75-79, USA,

2004.

[51] Cooper, S., Dann, W., and Pausch, R., “Alice: A 3D Tool

for Introductory Programming Concepts”, Journal of

Computing Sciences in Colleges, Volume 15, No. 5,

pp. 107-116, USA, 2000.

[52] Sloan, R.H., and Troy, P., “CS 0.5: A Better Approach to

Introductory Computer Science for Majors”, ACM

SIGCSE Bulletin, Volume 40, No. 1, pp. 271-275, USA,

2008.

[53] Guzdial, M., “A Media Computation Course for Non-

majors”, ACM SIGCSE Bulletin- Proceedings of 8th

Annual Conference on Innovation and Technology in

Computer Science Education, Volume 35, No. 3, pp.

104-108, USA, 2003.

[54] Freund, S.N., and Roberts, E.S., “Thetis: An ANSI C

Programming Environment Designed for Introductory

Use”, ACM SIGCSE Bulletin, Volume 96, pp. 300-304,

USA, 1996.

[55] Lister, R., Adams, Elizabeth S., Fitzgerald, S., Fone, W.,

Hamer, J., Lindholm, M., McCartney, R., Mostrom,

J.E., Sanders, K., and Seppala, O., Simon, B., and Thomas,

L., “A Multi-National Study of Reading and Tracing

Skills in Novice Programmers”, ACM SIGCSE Bulletin,

Volume 36, No. 4, pp. 119-150, USA, 2004.

[56] DeLeon, M., Espejo-Lahoz, M.B., and Rodrigo, M.M.T.,

“An Analysis of Novice Programmer Doodles and

Student Achievement in an Introductory Programming

Class”, Philippine Information Technology Journal,

Volume 1, No. 2, pp. 17-21, Philippine, 2008.

Mehran University Research Journal of Engineering & Technology, Volume 37, No. 1, January, 2018 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
14

C in CS1: Snags and Viable Solution

[57] Hulkko, H., and Abrahamsson, P., “A Multiple Case Study

on the Impact of Pair Programming on Product Quality”,

Proceedings of 27th International Conference on

Software Engineering, pp. 495-504, USA, 2005.

[58] Gao, H., Qiu, Z., Wu, D., and Gao, L., “Research and

Reflection on Teaching of C Programming Language

Design”, Intelligent Computation in Big Data Era,

Communications in Computer and Information Science,

Volume 503, pp. 370-377, USA, 2015.

[59] Xinogalos, S., “Using Flowchart-Based Programming

Environments for Simplifying Programming and

Software Engineering Processes”, IEEE Conference on

Global Engineering Education, pp. 1313-1322, Germany,

2013.

[60] Carlisle, M.C., Wilson, T.A., Humphries, J.W., and

Hadfield, S.M, “RAPTOR: A Visual Programming

Environment for Teaching Algorithmic Problem

Solving”, Proceedings of 36th SIGCSE Technical

Symposium on Computer Science Education,

pp. 176-180, USA, 2005.

[61] Carlisle, M.C., Wilson, T.A., Humphries, J.W., and

Hadfield, S.M., “RAPTOR: Introducing Programming

to Non-Majors with Flowcharts”, Journal of Computing

Sciences in Colleges, Volume 19, No. 4, pp. 52-60, USA,

2004.

[62] Carlisle, M.C., “Raptor: A Visual Programming

Environment for Teaching Object-Oriented

Programming”, Journal of Computing Sciences in

Colleges”, Volume 24, No. 4, pp. 275-281, USA, 2009.

