
Utility of CK Metrics in Predicting Size of Board-Based
Software Games

NOSHEEN SABAHAT*, ALI AFZAL MALIK**, AND FAROOQUE AZAM*

RECEIVED ON 05.02.2017 ACCEPTED ON 21.02.2017

ABSTRACT

Software size is one of the most important inputs of many software cost and effort estimation models.

Early estimation of software plays an important role at the time of project inception. An accurate

estimate of software size is, therefore, crucial for planning, managing, and controlling software

development projects dealing with the development of software games. However, software size is

unavailable during early phase of software development. This research determines the utility of CK

(Chidamber and Kemerer) metrics, a well-known suite of object-oriented metrics, in estimating the

size of software applications using the information from its UML (Unified Modeling Language) class

diagram. This work focuses on a small subset dealing with board-based software games. Almost sixty

games written using an object-oriented programming language are downloaded from open source

repositories, analyzed and used to calibrate a regression-based size estimation model. Forward stepwise

MLR (Multiple Linear Regression) is used for model fitting. The model thus obtained is assessed using

a variety of accuracy measures such as MMRE (Mean Magnitude of Relative Error), Prediction of

x(PRED(x)), MdMRE (Median of Relative Error) and validated using K-fold cross validation. The

accuracy of this model is also compared with an existing model tailored for size estimation of board

games. Based on a small subset of desktop games developed in various object-oriented languages, we

obtained a model using CK metrics and forward stepwise multiple linear regression with reasonable

estimation accuracy as indicated by the value of the coefficient of determination (R2 = 0.756).Comparison

results indicate that the existing size estimation model outperforms the model derived using CK

metrics in terms of accuracy of prediction.

Key Words: Accuracy Measures, Chidamber and Kemerer Metrics, Game Sizing, Multiple Linear

Regression, Open Source, Project Management, Project Planning, Simple Linear

Regression, Software Size Estimation, K-fold Cross Validation

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
975

1. INTRODUCTION

A number of attributes can be used to describe

and judge various aspects of software. Some

of these attributes (e.g. quality) are external

while others (e.g. complexity) are internal. Software size

is classified as an internal attribute [1]. Once the software

has been developed, its size can be easily measured by

using any of a number of different applications called

code counters [2]. The real challenge however, is

Corresponding Author (E-Mail: nosheen.sabahat@ceme.nust.edu.pk)
* Department of Computer Engineering, National University of Sciences & Technology, Islamabad.
** Department of Computer Science, National University of Computer & Emerging Sciences, Lahore.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
976

Utility of CK Metrics in Predicting Size of Board-Based Software Games

estimating the size of software before its development.

Unfortunately, software size is unavailable during early

phases of software development. So we need to develop

a size estimation model that accurately predicts the size

of desktop-based software games.

Estimation of software size is challenging but the rewards

for accurate prediction of size are extremely high. This is

primarily because software size is one of the key inputs

of many effort and cost estimation models [3]. Some of

these models, such as the widely used COCOMO-II

(Constructive Cost Model) [4], use both direct size

measures e.g. SLOC (Source Lines of Code) [5]) as well as

indirect functional size measures such as function points

[6]. An accurate estimate of either SLOC or the

programming-language independent function points is,

therefore, crucial in planning and managing software

development projects.

Software development projects using the object-oriented

paradigm [7] use class diagrams [8] for modeling purposes.

Analysis class diagrams are used to model the problem

space while design class diagrams model the solution

space [9]. Apart from being used as a tool for improving

understanding of the problem and solution spaces, these

class diagrams can also be used as a tool for estimating

the size of the final software application [10].

Application design information, whether obtained from

the class diagrams or extracted by reverse engineering

[11] code written in an object-oriented programming

language, is a good candidate for being used as an input

to a size estimation model. This is primarily because design

is the last phase before implementation. Therefore, a wealth

of information is available at the end of the design phase.

This research attempts to take advantage of this fact.

In this work, we describe the derivation and validation of

a regression-based model developed to predict the size

of board-based software games. This model uses the

design information provided by CK metrics [12]. It is a

suit of most validated and most reliable metrics. It is used

to evaluate object-oriented design [13] as input and

generates an estimate of software size as output. A dataset

comprising around 60 open source board-based software

games is used to calibrate this model. Once calibrated,

this model is assessed using different accuracy measures

and is validated using K-fold cross validation [14]. The

accuracy of this model is also compared to that of an

existing size estimation model.

The next section discusses relevant past work in this

area. Section-III presents an overview of the CK metrics

and section-IV illustrates their calculation via a small case

study. Our research methodology is described in detail in

section-V which also summarizes the results of model

assessment and validation and presents a comparison

withan existing size estimation model. Threats to validity

of this research are discussed in section-VI. Section-VII

highlights our major contributions and finally section-

VIII proposes some directions for further work in this

area.

2. LITERATURE REVIEW

Researchers have explored different ways of estimating

software size using information contained in the class

diagrams of object-oriented systems. One of the earliest

works in this area was done by Mišic and Tešic [15].

They used the number of classes and the number of

methods of classes in the class diagram to predict the

size of a software system via OLS (Ordinary Least

Squares) regression. Since, we do not use number of

methods and number of classes for size estimation, we

only adapted OLS regression technique.

More recently, Harizi [16] also proposed a software size

estimation model that relied on various parameters of a

class diagram. However, along with such parameters, we

support a more comprehensive set of well-known suite of

Utility of CK Metrics in Predicting Size of Board-Based Software Games

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
977

object-oriented CK metrics, in estimating the size of

software applications using the information from its UML

class diagram. Zhou et. al. [10] looked at the accuracy of

code size estimation approaches empirically using the

information contained in UML class diagrams to predict

the size of object-oriented systems. Different modeling

techniques were used to check the accuracy of models

and it was finally concluded that object-oriented metrics

can be used to estimate the size of software. However,

their findings are based on Java systems only. Whereas

our work validates the findings using systems developed

in various object-oriented programming languages such

as C#, C++, Python and Java etc.

A slightly different approach was adopted by Costagliola

et. al. [17]. This approach used class points - a functional

size measure similar to function points but specifically

designed to estimate the size of object-oriented

applications. First unadjusted and then adjusted class

points were calculated. The size of the software was

predicted on the basis of these class points. Since

calculation of class points do not add any significance to

this work, we did not use them.

Another attempt in this area was made by Tan et. al.

[18]. They proposed a size estimation method for

information systems. Multiple linear regression was

used to obtain a size estimation model that relied on

information present in the class diagrams (such as

relationships/associations between classes, attributes

of classes) to feed the independent variables (i.e.

inputs). It was concluded that using class diagram

metrics provides better results in predicting the size of

the data intensive systems. However, this approach

attempts to estimate the size of information systems

only which the authors refer to as database application

that supports business processes. Moreover, it relies

only on the information of association and attributes

of classes from UML class diagram.

Various other metrics have also been used to estimate the

size of an object-oriented system such as class diagram

related metrics [19], object-oriented function points [20],

fast&&serious class points [21] etc. All above mentioned

approaches use various class diagram related metrics only

to estimate the size of software. The assessment of model

accuracy and validation of most size estimation

approaches have not been carried out. Secondly the data

set is limited to few systems hence statistical conclusions

were hard to determine.

This study focuses on the size estimation of object-

oriented board-based software games using the design

information provided by CK metrics. These well-known

metrics are used to build a regression-based model which

is assessed for accuracy, validated using K-fold cross

validation, and compared to an existing size estimation

model.

3. OVERVIEW OF CK METRICS
SUITE

Chidamber et. al. [22] proposed a set of metrics in 1991

specifically for object-oriented software programs. It was

improved in 1994 [12] and is now used widely. This suite

consists of 6 metrics viz. WMC (Weighted Methods/

Class), DIT (Depth of Inheritance Tree), NOC (Number of

Children), CBO (Coupling Between Objects), RFC

(Response For a Class) and LCOM (Lack of Cohesion in

Methods). The values of these metrics are determined for

each class in anobject-oriented software. Brief

descriptions of these metrics [12] are given below:

Weighted Methods Per Class: In its simplest form, WMC

is a count of all methods in a class. It provides an indication

of the complexity of a class.

Depth of Inheritance Tree: DIT refers to the “depth of

inheritance of the class”. In case of multiple inheritance,

DIT is “the maximum length from the node to the root of

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
978

Utility of CK Metrics in Predicting Size of Board-Based Software Games

the tree”. As a class gets deeper in the hierarchy, it inherits

more methods and variables.

Number of Children: NOC refers to the “number of

immediate subclasses subordinated to a class in a class

hierarchy” [18]. Unlike DIT, it measures the breadth of

the class hierarchy.

Coupling between Object Classes: CBO for a class is

defined as “a count of the number of other classes to

which it is coupled”. Two classes are said to be coupled

“when methods declared in one class use methods or

instance variables defined by the other class”.

Response for a Class: RFC refers to “a set of methods

that can potentially be executed in response to a message

received by an object of that class”.

Lack of Cohesion in Methods: LCOM”provides a measure

of the relative disparate nature of methodsin the class”. It

indicates how closely local methods are related to local

instance variables in a class. In other words, it is a number

of disjoint set of local methods [23].

4. CASE STUDY

Consider a board game called “X and O”. The objective

of this two-player game is to win by getting three X’s or

O’s in a row. This game is played on a three by three game

board. The players take turns in placing X’s and O’s on

the board till one of them wins or the board gets filled.

The rules of the game are listed below:

 Game Start:

• Any player can start the game.

 Moves:

• The players choose their signs as

X or O and then move accordingly.

• A player can place X or O at any

empty place of the grid on his turn.

 Draw:

• The game is said to be drawn if none

of the player succeeds in getting

three in a row and the board gets

filled.

 Win:

• The game is won by the player who

gets three in a row first.

A software version of this game was developed using

Java (row 57 of Table 2) and made available on an open

source repository. Fig. 1 shows the design class diagram

of the software version of this game. This diagram was

reverse engineered from the source code of this game

using the Understand tool [24]. The same tool was also

used to extract the values of the CK metrics for the design

of this game. Table 1 depicts the values of CK metrics for

each of the design classes shown in Fig. 1. The last row

of this table sums up the values of each CK metric for all

individual classes. These sums are then used as inputs

for our size estimation model.

5. RESEARCH METHODOLOGY

This research extends our earlier work on the size

estimation of board-based software games [25,26]. In our

earlier work, we defined eight potential predictors to

estimate the size of desktop-based board games viz. NRUL

(Number of Rules), NPLY (Number of Players), ANIM

(Animation), 3DVI (3D Visualization), COPP (Computer

Opponent), MSKI (Multi Skills), NTVA (Number of Type

of Variants) and MGOP (Miscellaneous Game Options)

as input of our model. In this work, we present the

derivation, assessment, and validation of a new size

estimation model based on CK metrics. The accuracy of

this new design-based model is compared with the

accuracy of an early size estimation model proposed in

one of our earlier works [25]. Fig. 2 illustrates our research

methodology. It depicts the major steps carried out in

this research.

Utility of CK Metrics in Predicting Size of Board-Based Software Games

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
979

sessalC MOCL TID OBC CON CFR CMW

lenaP.enignE 57 2 0 0 5 5

sessorCdnasthguoN.enignE 28 2 3 0 61 61

ediSemaGsessorCdnasthguoN.enignE 001 1 1 0 2 2

sgnitteS.enignE 98 1 0 0 81 81

tooB.tnioPyrtnE 0 1 0 0 1 1

)1_nonA(.niam.tooB.tnioPyrtnE 0 1 2 0 1 1

.)5_pool_rof(.stnenopmoCtini.sessorCdnAsthguoN.enignE
)1_nonA(.)6_pool_rof(

0 1 1 0 1 1

)2_nonA(stnenopmoCtini.sessorCdnAsthguoN.enignE 0 1 1 0 1 1

latoT 643 01 8 0 54 54

TABLE 1. CK METRICS FOR THE GAME “X AND O”

FIG. 1. DESIGN CLASS DIAGRAM OF THE GAME “X AND O” USING ‘UNDERSTAND’TOOL [24]

FIG. 2. BASIC STRUCTURE OF METHODOLOGY

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
980

Utility of CK Metrics in Predicting Size of Board-Based Software Games

5.1 Extraction of CK Metrics

The same dataset (comprising 67 board-based games)

that was used for calibrating our previous model [25] was

used as a starting point. However, games that were not

developed using an object-oriented programming

language were pruned from the original dataset. As shown

in Table 2, this pruning resulted in a slightly smaller subset

comprising 59 games all of which were developed using

an object-oriented programming language.

The values of the six CK metrics (i.e. LCOM, DIT, CBO,

NOC, RFC, and WMC) for each of these games were

extracted using a commercial static analysis tool called

Understand [24]. This tool provides the values of the six

CK metrics for each class. The values for the entire game

are obtained by summing up the values of each class

used in the game. SLOC (Source Lines of Code) for each

game were counted by using USC-CSSE Unified Code

Count tool [27]. From Table 2 we can see that most of the

games have single SLOC whereas few games have multiple

SLOC. This is because those games are developed in

more than one language and hence all those languages

contribute to the FP (Function Points).

QSM’s language-specific GF (Gearing Factors) [28] are

used for converting the SLOC to the programming-

language independent FP. The average values of the

language-specific GFs provided in the QSM FP

Languages Table 2 [29] are used for this conversion.

Similarly we have mentioned GF for multiple languages

in the table. Using multiple GF we converted multiple

SLOC into FP.

5.2 Analysis of CK Metrics

First, SLR [30] was used to determine the predictive

strength of each CK metric individually. Later, forward

stepwise MLR [31] was used to obtain our size estimation

model which uses FP as the response variable and the six

CK metrics as the six predictor variables. Regression

analyses were done using the IBM SPSS tool [32].

Table 3 shows the results of SLR. It lists the predictors

in descending order of predictive strength. As is

evident from these results, WMC is the strongest

individual predictor of software size (FP) with R2 value

of 0.709 whereas DIT is the weakest. The size

estimation model obtained using MLR is presented in

the next subsection.

5.3 Model Fitting by MLR

Before building the size estimation model, outliers had to

be eliminated. Cook’s distance [33] was used for this

purpose. Four games were identified as outliers and hence

eliminated from the dataset since their Cook’s distance

was greater than ((4/n)*3) where n represents the total

number of games.

The data set consisting of 55 games now (after eliminating

the four outliers) was used to build the final size estimation

model. Forward stepwise MLR was used for model fitting.

This technique is helpful in discovering the set of

significant predictor variables which best explains the

relationship between the response variable (FP) and the

independent/predictor variables (LCOM, NOC, DIT, RFC,

CBO, and WMC).

In this technique, the model is gradually built by adding

one independent variable at a time. At each step, the

value of coefficient of determination (R2) is assessed

to check if the recently added variable increased the

value of R2 or not. Besides this, only those

combinations of predictors are selected in which all

predictors are statistically significant at ±-value of 0.05.

Moreover, the presence of multicollinearity among the

predictors is also checked using the value of VIF

(Variance Inflation Factor) [34]. In our case, all of the

predictors in the MLR models obtained had VIF values

close to 1. The presence of multicollinearity was,

therefore, ruled out.

Utility of CK Metrics in Predicting Size of Board-Based Software Games

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
981

.oN semaG egaugnaL COLS FG PF MOCL TID OBC CON CFR CMW

.1 eoTcaTciTD3 #C 1582 45 697.25 0132 51 574 2 287 083

.2 eoTcaTciT#C #C 135 45 338.9 19 1 02 0 05 23

.3 niBssehC #C 2132 45 518.24 146 4 431 0 572 941

.4 ulC #C 8838 45 333.551 4551 6 714 0 1001 956

.5 ba4tcennoC #C 125 45 846.9 861 1 71 0 34 52

.6 ssehCtoD #C 5513 45 624.85 0261 72 305 21 9601 363

.7 retsaMsthguarD #C 6911 45 841.22 138 51 251 3 004 471

.8 teNtoDsthguarD PSA/SJ/#C 37/4713/35321 15/74/45 327.792 5538 982 5661 311 9155 7761

.9 woRaniruoF #C 956 45 402.21 304 2 35 0 561 57

.01 dirG #C 4003 45 36.55 682 1 201 31 302 011

.11 4tcennoCnraeL #C 9273 45 650.96 199 01 551 7 476 123

.21 PDoduL #C 3012 45 449.83 775 2 58 3 402 501

.31 ten.oduL #C 55311 45 650.55 23001 571 0391 64 5194 5602

.41 isrveRitluM #C 3481 45 31.43 29 1 62 0 14 23

.51 isreveRollehtO #C 2032 45 36.24 9451 71 342 01 466 092

.61 D3oxiuQ #C 7223 45 957.95 2771 65 594 91 5901 344

.71 TTTEAR #C 528 45 872.51 942 9 97 2 002 67

.81 isreveR #C 4642 45 36.54 216 6 131 0 002 011

.91 8002isreveR #C 4341 45 655.62 3601 9 061 2 713 841

.02 fpwrofelbbarcS #C 0713 45 407.85 8853 93 846 62 5941 256

.12 sthgiNelbbarcS #C 6792 45 111.55 4061 21 853 2 345 882

.22 srekcehCprahS #C 8851 45 704.92 1101 3 952 7 764 422

.32 emagdraobekanS #C 2441 45 407.62 971 3 06 0 29 65

.42 FPWrofssehCrS #C 8138 45 730.451 5262 03 677 9 8831 617

.52 ssehCdipootS #C 6972 45 877.15 6201 5 902 1 633 291

.62 krowteNTTT #C 4441 45 147.62 752 2 66 0 88 25

.72 mekcolB ++C 1188 05 22.671 5071 21 451 4 815 944

.82 ssehClaturB ++C 7895 05 47.911 9481 81 321 51 376 834

.92 ssehClaerehtE ++C 17741 05 24.592 3461 0 95 0 618 618

.03)ssehC(tibemaG ++C 3646 05 62.921 3712 53 713 22 287 855

.13 letoH #C/++C 3237/2545 45/05 156.442 3192 13 645 31 9291 9001

.23 tixaM ++C 476 05 84.31 783 3 21 0 55 45

.33 ollehtOoreN ++C 1883 05 26.77 038 61 22 5 964 823

.43 ibotneP nohtyP/++C 613/12771 42/05 785.763 2665 68 165 45 8712 6251

.53 krovksiP lacsaP/++C 421/0766 19/05 367.431 03 0 0 0 5 5

.63 ssehCteuoP nohtyP/++C 253/27241 42/05 782.003 4393 65 404 34 2063 3931

.73 sreddaL&sekanS ++C 126 05 924.21 703 6 8 0 221 101

.83 suineGehT ++C 3743 05 64.96 836 8 12 0 651 041

.93 orusT ++C 2008 05 40.061 7614 011 854 57 7814 6801

.04 ssehCniW ++C 4109 05 82.081 009 0 75 0 25 25

.14 ssehCapaC avaJ 8945 35 637.301 2711 13 451 7 981 571

.24 odeulC avaJ 88111 35 490.112 9605 491 655 82 0511 189

.34 noitanimoD avaJ 3236 35 203.911 5212 46 241 7 887 495

.44 sexoBdnastoD avaJ 978 35 585.61 036 02 62 0 69 69

.54 srekcehCFBE avaJ 1735 35 43.101 5052 021 191 51 408 475

.64 ruoFteG avaJ 515 35 717.9 403 52 83 0 07 07

.74)worni5(gnaBoG avaJ 3681 35 151.53 026 93 76 1 481 061

.84 srekcehCavaJ avaJ 596 35 311.31 143 11 41 0 88 88

.94 ssehCelttirFavaJ avaJ 0711 35 570.22 1421 74 97 4 852 002

.05 eoTcaTciTavaJ avaJ 764 35 118.8 29 12 91 0 94 94

.15 ssehCOJ avaJ 6883 35 123.37 8582 38 891 6 753 792

.25 elbbarcsJ avaJ 5984 35 853.29 5173 161 533 02 496 795

.35 BlopogdulK avaJ 16441 35 948.272 7045 062 407 34 0271 8311

.45 draYdnaltocS avaJ 1711 35 490.22 356 91 63 2 511 501

.55 ssehCreyalPowT avaJ 5251 35 477.82 3821 73 49 6 603 402

.65)ssehc(sunnaryT avaJ 3103 35 948.65 1851 85 921 0 892 892

.75 OdnaX avaJ 762 35 830.5 643 01 8 0 54 54

.85 D3elbbarcS lacsaP 62341 19 924.751 9863 401 911 0 758 956

.95)oduL(sihcraPlG nohtyP/++C 7472/7664 42/05 874.802 5731 82 04 11 686 184

TABLE 2. DATA SET

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
982

Utility of CK Metrics in Predicting Size of Board-Based Software Games

Table 4 summarizes the results of applying forward

stepwise MLR on the data set. Each row in this table

represents an MLR model. A check mark () represents

inclusion while a dash (-) indicates exclusion of the

corresponding predictor variable. Using different

combinations of predictors, a total of six models were

obtained in which all predictors were statistically

significant at α-value of 0.05. It is important to note that

all of these six models had only two predictor variables.

This is because none of the MLR models obtained using

more than two predictors had all statistically significant

predictors (at α-value of 0.05). The best model

(highlighted in bold in Table 4) has an R2 value of 0.756.

The two predictors it uses are CBO and WMC. The

following Equation (1), in which EST_FP (Estimated

Function Points) denotes the estimated value of the

response variable (FP), formalizes this model:

5.4 Model Assessment and Validation

The accuracy of an estimation modelmust be formally

assessed using different accuracy measures. In this

research, we have used the two de-facto standards i.e.

MMRE [35] and PRED(x) [35-36]. MMRE is defined as the

average of all MREs calculated as a result of regression.

On the other hand, PRED(x) is defined as, “the percentage

of relative error deviation that lies within x”. The most

commonly used values of x in literature are 25 and 30 with

little difference in results [37]. We use PRED(25) in our

work (i.e. x = 25) which is a more stringent metric than

PRED(30). According to Conte et. al. [37] for a model to

have reasonably good estimation accuracy, MMRE < 0.25

and PRED(25) > 0.75.

Despite the fact that MMRE and PRED(x) are the de-

facto standards of estimation accuracy, they have been

criticized due to their limitations [38]. Therefore, to

overcome these limitations, we have used additional

accuracy metrics as well i.e. MdMRE, MMER (Mean

Magnitude of Error Relative) to estimate, MBRE (Mean

of Balanced Relative Error), and MIBRE (Mean of Inverted

Balanced Relative Error).

.oN srotciderP 2R

.1 CMW 907.0

.2 CFR 805.0

.3 MOCL 064.0

.4 CON 233.0

.5 OBC 012.0

.6 TID 691.0

.oN MOCL TID OBC CON CFR CMW R2 FIV

.1 - - - - 657.0 190.2=OBC

190.2=CMW

.2 - - - - 105.0
490.3=MOCL

490.3=TID

.3 - - - - 055.0
924.2=MOCL

924.2=CFR

.4 - - - 237.0
517.4=MOCL

517.4=CMW

.5 - - - - 072.0
633.1=TID

633.1=OBC

.6 - - - - 337.0
724.6=CFR

724.6=CM

TABLE 3. SLR RESULTS USING CK METRICS

TABLE 4. MLR RESULTS USING CK METRICS

Utility of CK Metrics in Predicting Size of Board-Based Software Games

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
983

Table 5 summarizes the values of these different accuracy

metrics for our CK metrics-based size estimation model.

The formulas for calculating these accuracy metricsare

also given in Table 5. The values of these accuracy metrics

clearly indicate that this size estimation model does not

have a reasonably good estimation accuracy. MMRE and

other error-related means are more than 0.25.Similarly,

PRED(25) is much less than 0.75.

.oN cirteM nOdesaB alumroF eulaV

.1 ERMM 96.0

.2 ERMdM]iERM[)N,1=i(NAIDEM=ERMdM 23.0

.3 REMM 65.0

.4 ERBM 43.0

.5 ERBIM 19.0

.6)52(DERP 63.0

Yi

ŶY
MRE

ii
i

−
=

Yi

ŶY
MRE

ii
i

−
=

i

ii
i

Ŷ

ŶY
MRE

−
=

0YŶ,
Ŷ

YŶ
BRE i

i

ii
i i <−

−
=

0YŶ,
Y

YŶ
BRE i

i

ii
i i ≥−

−
=

=
=

N

1i iMRE
N

1
 MMRE

=
=

N

1i iMER
N

1
MMER

=
=

N

1i iBRE
N

1
MBRE

=
=

N

1i iIBRE
N

1
MIBRE

0YiŶ,
Y

YŶ
IBRE i

i

ii
i <−

−
=

0yŷ,
Ŷ

YŶ
IBRE i

i

ii
i i ≥−

−
=

Yi

ŶY
MRE

ii
i

−
=

≥
=

=

N

1i Otherwise 0

xiMRE if 1

N

1
PRED(x)

K stnioPataD ledoMnoitamitsEeziS 2R ERMM ERMdM REMM ERBM ERBIM
DERP
)52.0(

.1 11-10
)CMW*6762.0(+1356.71

)OBC*1521.0-(+
37.0 81.0 21.0 91.0 81.0 51.0 36.0

.2 22-21
)CMW*2852.0(+2573.52

)OBC*4621.0-(+
37.0 43.1 03.1 25.0 43.1 25.0 90.0

.3 33-32
)CMW*8052.0(+7274.62

)OBC*0731.0-(+
47.0 48.1 23.1 94.0 48.1 94.0 72.0

.4 44-43
)CMW*8492.0(+7383.41

)OBC*6180.0-(+
87.0 35.0 63.0 74.0 35.0 43.0 81.0

.5 55-54
)CMW*6762.0(+8117.8

)OBC*8051.0-(+
87.0 53.0 91.0 62.2 53.0 23.0 45.0

egarevA 48.0 56.0 87.0 48.0 63.0 43.0

TABLE 5. VALUES OF ACCURACY METRICS

TABLE 6. K-FOLD CROSS VALIDATION RESULTS

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
984

Utility of CK Metrics in Predicting Size of Board-Based Software Games

The terms Y and iŶ in Table 5, denote the actual and the

predicted values respectively obtained after regression.

K-fold cross validation [14] was used to validate this

model. The data set comprising 55 games was divided

into 5 random subsets (i.e. K = 5), each subset comprising

11 games placed randomly. In each iteration, 4 folds were

used to train the model and the remaining 5th fold was

used to validate the model. Table 6 summarizes the results

of this K-fold cross validation exercise. The last row of

Table 6 shows the average vales of accuracy metrics. As

indicated by these average values, the performance of

the model is not up to the mark.

5.5 Comparison of Results

In this subsection, the accuracy of the design-based size

estimation model obtained using CK metrics is compared

with that of an early size estimation model proposed in

one of our earlier works [25]. The early size estimation

model uses four inputs (i.e. number of game rules, number

of players, animation, and miscellaneous game options)

and produces an estimate of FP as output. Table 7 shows

a comparison of the accuracy of these two models by

depicting values of different accuracy metrics. This

comparison clearly indicates that the model built using

.oN cirteM ledoMscirteMKC]52[ledoMnoitamitsEeziSylraE

.1 2R 57.0 19.0

.2 ERMM 96.0 42.0

.3 ERMdM 23.0 81.0

.4 REMM 65.0 22.0

.5 ERBM 43.0 23.0

.6 ERBIM 19.0 12.0

.7)52(DERP 63.0 57.0

.oN cirteM ledoMscirteMKC]52[ledoMnoitamitsEeziSylraE

.1 ERMM 48.0 32.0

.2 ERMdM 56.0 81.0

.3 REMM 87.0 52.0

.4 ERBM 48.0 43.0

.5 ERBIM 63.0 12.0

.6)52(DERP 43.0 17.0

TABLE 7. COMPARISON OF ACCURACY METRICS

TABLE 8. COMPARISON OF K-FOLD CROSS VALIDATION RESULTS

CK metrics has much lower accuracy than the early size

estimation model proposed earlier. The early size

estimation model has higher values of R2 and PRED(25)

and lower values for MMRE and other error-related

means.

A comparison of the results of K-fold cross validation

shown in Table 8 also corroborates the same conclusion.

The early size estimation model clearly outperforms the

design-based size estimation model built using CK metrics.

This may appear counterintuitive since more information

is present at the time of design. It must be kept in mind,

however, that these two models use different predictors.

It is quite possible that the predictors of the early size

estimation model (for instance, number of rules) capture

crucial information about the requirements which may

have been missed by the CK metrics.

6. THREATS TO VALIDITY

A couple of factors may have an impact on the validity of

our results. The first of these is related to the comparison

of the size estimation model obtained using CK metrics

and the size estimation model proposed earlier. The earlier

size estimation model was calibrated using 65 open source

board-based games. Since all of these games were not

Utility of CK Metrics in Predicting Size of Board-Based Software Games

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
985

developed using object-oriented languages, the exact

same dataset could not be used for building a size

estimation model based on the CK metrics. A slightly

smaller subset comprising games developed using only

object-oriented programming languages was used instead.

The second factor is related to measuring the values of

CK metrics. In this research, we have used a single static

analysis tool i.e. Understand [24]. Since different static

analysis tools may use slightly different conventions for

calculating the values of the CK metrics, a change of tool

may lead to a slight variance in results.

7. CONCLUSION

This paper has presented the results of an investigation

conducted to determine the utility of CKmetrics in

estimatingsoftware size. A dataset comprising around 60

open source board-based desktop games was used as a

starting point. The values of CK metrics of each game

were extracted using a commercial static analysis tool.

These values were then used for model fitting using

forward stepwise multiple linear regression. The fitted

model was assessed via commonly used accuracy

parameters and validated using K-fold cross validation.

Assessment and validation results indicate that the

accuracy of this model does not meet the recommended

standards suggesting that CK metrics alone may have

little utility in estimating software size.

The prediction accuracy of this model was also compared

to that of an existing size estimation model developed

specifically for estimating the size of board-based games.

The existing model relies on information available at the

time of inception while CK metrics, on the other hand, are

available only after the completion of detailed design.

Therefore, even though one may expect the model using

CK metrics to be more accurate, comparison results

indicate that the existing model outperforms the model

based on CK metrics with respect to prediction accuracy.

This unexpected behavior is, perhaps, the result of not

capturing crucial game requirements such as the number

of rules of the game.

8. FUTURE WORK

This work can be extended in a variety of ways. So far, we

have focused on a small subset dealing with just board-

based desktop games. Other types of games (e.g. card-

based) may also be considered. Similarly, games made for

other platforms (e.g. mobile) may also be explored. Thirdly,

the utility of other suites of object-oriented metrics may

be investigated. Last but not the least, a hybrid-model

using a combination of object-oriented design-based

software metrics and requirements-based metrics may be

built to get the best of both worlds.

ACKNOWLEDGEMENT

Authors are thankful to National University of Sciences

& Technology, Islamabad, Pakistan, and FAST-National

University of Computer & Emerging Sciences, Lahore,

Pakistan, for their joint collaboration in the research work.

REFERENCES

[1] Fenton, N.E., and Pfleeger, S.L., “Software Metrics: A
Rigorous and Practical Approach”, 2nd Edition, PWS
Publishing Co., pp. 435-445, Boston USA, 1998.

[2] QSM Code Counters, http://www.qsm.com/resources/
code-counters/, [Last Accessed: 30th December 2016].

[3] Pfleeger, S.L., Wu, F., and Lewis, R., “Software Cost
Estimation and Sizing Methods: Issues and Guidelines”,
RAND Corporation, pp. 1-7, California USA, 2005.

[4] Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark,
B.K., Horowitz, E., Madachy, R., Reifer, D.J., and Steece,
B., “Software Cost Estimation with COCOMO-II”,
Prentice Hall, New Jersey USA, 2000.

[5] Laird, L.M., and Brennan, M.C., “Software Measurement
and Estimation: A Practical Approach”, John Wiley &
Sons, New Jersey, USA, 2006.

[6] Albrecht, A.J., “Measuring Application Development”,
Proceedings of the IBM Applications Development Joint
SHARE/ GUIDE Symposium, pp. 83–92, California,
USA, 1979.

[7] Meyer, B., “Object-Oriented Software Construction”,
Prentice Hall, Volume. 2, pp. 331-410. New York USA,
1988.

[8] Booch, G., ”Object-Oriented Analysis and Design”,
Addison-Wesley, California USA, 1980.

[9] Blaha, M., and Rumbaugh, J., “Object-Oriented Modeling
and Design with UML”, Pearson Education, Upper Saddle
River, USA, 2005.

Mehran University Research Journal of Engineering & Technology, Volume 36, No. 4, October, 2017 [p-ISSN: 0254-7821, e-ISSN: 2413-7219]
986

Utility of CK Metrics in Predicting Size of Board-Based Software Games

[10] Zhou, Y., Yang, Y., Xu, B., Leung, H. and Zhou, X.,
“Source Code Size Estimation Approaches for Object-
Oriented Systems from UML Class Diagrams: A
Comparative Study”, Information and Software
Technology, Volume 56, No. 2, pp. 220-237, 2014.

[11] Chikofsky, E.J. and Cross, J.H., “Reverse Engineering
and Design Recovery: A Taxonomy”, IEEE
Software, Volume 7, No. 1, pp. 13-17, 1990.

[12] Chidamber, S.R. and Kemerer, C.F., “A Metrics Suite for
Object-Oriented Design”, IEEE Transactions on Software
Engineering, Volume 20, No. 6, pp. 476–493, 1994.

[13] Chidamber, S.R., Darcy, D.P. and Kemerer, C.F.,
“Managerial Use of Metrics for Object-Oriented
Software: An Exploratory Analysis”, IEEE Transactions
on Software Engineering, Volume 24, No. 8,
pp. 629-639, 1998.

[14] Picard, R.R., Cook, R.D., “Cross-Validation of Regression
Models”, Journal of the American Statistical Association,
Volume 79, No. 387, pp. 575-83, 1984.

[15] Mišic, V.B., Tešic, D.N., “Estimation of Effort and
Complexity: An Object-Oriented Case Study”, Journal
of Systems and Software, Volume 41, No. 2,
pp. 133-143, 1998.

[16] Harizi, M., “The Role of Class Diagram in Estimating
Software Size”, International Journal of Computer
Applications, Volume 44, No. 5, pp. 31-33, 2012.

[17] Costagliola, G., Ferrucci, F., Tortora, G., Vitiello, G., “Class
point: An Approach for the Size Estimation of Object-
Oriented Systems”, IEEE Transactions on Software
Engineering, Volume 31, No. 1, pp.52-74, 2005.

[18] Tan, H.B.K., Zhao, Y. and Zhang, H., “Conceptual Data
Model-based Software Size Estimation for Information
Systems”, ACM Transactions on Software Engineering
and Methodology, Volume 19, No. 2, pp. 1-37, 2009.

[19] Antoniol, G., Lokan, C., Fiutem, R., “Object-Oriented
Function Points: An Empirical Validation”, Empirical
Software Engineering, Volume 8, No. 3, pp. 225-254,
2003.

[20] Antoniol, G., Lokan, C., Caldiera, G., and Fiutem, R., “A
Function Point-like Measure for Object-Oriented
Software”, Empirical Software Engineering, Volume 4,
No. 3, pp. 263-287, 1999.

[21] Carbone, M., Santucci, G., “Fast&&Serious: A UML Based
Metric for Effort Estimation”,Proceedings of the 6th
International ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering,
pp. 35-44, 2002.

[22] Chidamber, S.R. and Kemerer, C.F., “Towards a Metrics
Suite for Object-Oriented Design”, Proceedings of 6th
OOPSLA Conference, ACM, pp. 197-211, 1991.

[23] Bakar, N.S., “The Analysis of Object-Oriented Metrics
in C++ Programs”. Lecture Notes on Software
Engineering, Volume 4, No. 1, pp. 48, 2016.

[24] Understand tool, https://www. scitools.com/,
[Last Accessed: 25thDecember 2016].

[25] Sabahat, N., Malik, A.A., Azam, F., “A Size Estimation
Model for Desktop Games”, Submitted to IEEE Access,
2017.

[26] Sabahat, N., Malik, A.A., Azam, F., “Size Estimation of
Open Source Board-based Software Games”, Presented
at the 9th IEEE International Conference on Open
Source Systems and Technologies, 2015.

[27] UCC, Unified Code Counter, http://sunset.usc.edu/ucc_wp/
, [Last Accessed: 30thOctober 2016].

[28] QSM Gearing Factors, “A Flexible Sizing Approach,
Quantitative Software Management. Inc. http://
w w w. q s m . c o m / B l o g / G e a r i n g % 2 0 F a c t o r s . p d f ,
[Last Accessed: 30thDecember 2016].

[29] QSM, Function Point Languages Table Version 4.0,
Quantitative Software Management, http://
www.qsm.com/resources/function-pointlanguages-table/
index.html, [Last Accessed: 30th December 2016].

[30] Weisberg, S., “Applied Linear Regression”, Wiley, 1980.

[31] Fritz, M., and Berger, P.D., “Improving the User
Experience Through Practical Data Analytics”, Morgan
Kaufmann, pp. 239-269, 2015.

[32] IBM Corp. Released 2013. IBM SPSS Statistics for
Windows, Version 22.0, IBM Corp, New York, 2013.

[33] Cook, R.D., “Detection of Influential Observations in
Linear Regression”, Technometrics, Volume 19,
pp.15-18, 1977.

[34] O’brien, R.M., “A Caution Regarding Rules of Thumb
for Variance Inflation Factors”, Quality and Quantity,
Volume 41, No.5, pp.673-690, 2007.

[35] Foss, T., Stensrud, E., Kitchenham, and B., Myrtveit, I.,
“A Simulation Study of the Model Evaluation Criterion
MMRE”, IEEE Transactions on Software Engineering,
Volume 29, No. 11, pp. 985-95, 2003.

[36] Port, D., and Korte, M., “Comparative Studies of the
Model Evaluation Criterions MMRE and PRED in
Software Cost Estimation Research”, Proceedings of
the Second ACMIEEE International Symposium on
Empirical Software Engineering and Measurement, 2008.

[37] Conte, S.D., Dunsmore, H.E., and Shen, V.Y., “Software
Engineering Metrics and Models”, BenjaminCummings
Publishing Co.,Redwood, 1986.

[38] Myrtveit, I., Stensrud, E., and Shepperd, M., “Reliability
and Validity in Comparative Studies of Software
Prediction Models”, IEEE Transactions on Software
Engineering, Volume 31, No. 5, pp. 380-391, 2005.

