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ABSTRACT 

Armijo rule is an inexact line search method to determine step size 𝛼𝑘 in some descent method to solve 

unconstrained local optimization. Modified Armijo was introduced to increase the numerical 

performance of several descent algorithms that applying this method. The basic difference of Armijo and 

its modified are in existence of parameter 𝜇 ∈ ,0,2) and estimating parameter 𝐿𝑘 that be updated in 

every iteration. This article is comparing numerical solution and time of computation of gradient descent 

and conjugate gradient hybrid Gilbert-Nocedal (CGHGN) that applying modified Armijo rule. From 

program implementation in Matlab 6, its known that gradient descent was applying modified Armijo 

more effectively than CGHGN from one side: iteration needed to reach some norm of gradient ‖𝑔𝑘‖ 

(input by the user). The amount of iteration was representing how long the step size of each algorithm in 

each iteration. In another side, time of computation has the same conclusion.  

Keywords: Armijo line search; conjugate gradient hybrid Gilbert-Nocedal; gradient descent; modified 

Armijo line search 

1. INTRODUCTION 

Optimization is still an interesting issue to be 

learned and developed, especially numerical 

methods for finding solutions. This is known as 

numerical optimization. Optimization is the 

process of finding the optimal solution of a 

problem either with constraints or without 

constraints. Numerical optimization allows the 

discovery of solutions to problems that are difficult 

to be solved analytically.  

The optimization problem is essentially a 

matter of minimizing a function  ( ). As for 

maximization, a function  ( ) can also be formed 

as a minimization problem of function   ( ). To 

solve the minimization problem, some descent 

iterative methods have been introduced, including 

gradient descent (steepest descent) and conjugate 

gradient methods. These two methods are just 

some of the many methods that can be used to 

solve local optimization problems. There is much 

useful application of gradient descent method. One 

of them is to find the saddle point of a complex 

integral (Wang, 2008). While Chen (2009) use 

gradient descent to fit the measured data of laser 

grain-size distribution of the sediments. 

While in the conjugate gradient method itself 

there are various types of parameter determination 

 𝑘. In this paper, we will use conjugate gradient 

hybrid Gilbert-Nocedal which is a hybrid of 

Fletcher-Reeves conjugate gradient (FR) and 

Polak-Ribiere-Polyak conjugate gradient (PRP).  

Gradient descent and conjugate gradient 

algorithms start with determining the initial point 

to run the first iteration. The next points will be 

obtained from each iteration in which the 

conditions determined will converge to the 

optimum solution of the optimization objective 

function. One important part of these two 

algorithms is the determination of step size (𝛼𝑘) 

on each iteration. This step size determination can 

be done in many ways called line search. One of 

the line search rules often used is Armijo rule.  

To improve the numerical performance of 

Armijo rules, Shi (2005) have introduced and 

developed Armijo modification rules. The 

difference with classical Armijo is the value of 

parameter 𝜇 ∈ ,0,2) and 𝐿𝑘 which is updated on 

each iteration with a certain estimate. In modified 
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Armijo rules, it is easier to obtain larger step sizes, 

meaning that with the same stopping criteria, the 

iterations required by a descent algorithm will be 

less than using classical Armijo. This will be 

compared to the gradient descent and conjugate 

gradient hybrid Gilbert-Nocedal algorithms. 

Likewise, the time required for each algorithm to 

solve the optimization problem by applying the 

classical Armijo rules and its modification in step 

size determination.  

 

2. METHODS 

2.1. Gradient Descent 

Gradient descent is one of the optimization 

algorithms for the problem of unconstrained 

minimization. The problem is to minimize 

     ,     . The iteration renews  𝑘  so that 

in the end of iterations, there is an approximation 

of the above minimization problem. To find the 

local minimum of a function using gradient 

descent, one of the important steps is to determine 

the descent direction,  𝑘, as the negative of the 

gradient 𝑔𝑘    ( ) of the objective function 

 ( ) at     iteration point. Next, select the step 

size 𝛼𝑘  by using line search, either in exact or 

inexact. 

For more details about this method, the 

following is gradient descent algorithm. 

Step 0. Given starting point   ,   0. 

Step 1. Select the descent direction  𝑘   𝑔𝑘. If 

 𝑘  0, then the iteration stops. 

Step 2. Select step size 𝛼𝑘 using line search 

method (either exact or not exact). 

Step 3. Renew the point  𝑘    𝑘  𝛼𝑘 𝑘,   
   . Return to step 1. 

The iteration stops if the iteration termination 

criterion has been reached. for example if the 

  th point is close enough to the minimum point 

of the destination function. 

 

2.2. Conjugate Gradient 

Suppose that a quadratic function optimization 

problem will be solved as follows. 

     ( )  
 

2
         

The descent direction,  𝑘, of the conjugate 

gradient is Qconjugate vectors, where Q is the 

positive definite matrix found in the function  ( ) 

above. 

Suppose given a starting point   . The descent 

direction for the starting point    uses the descent 

direction of the descent gradient algorithm i.e 

    𝑔     (  ). 

In this paper, the descent direction,  𝑘, is 

determined as follows: 

 𝑘  {
 𝑔𝑘 ,                                 0
 𝑔𝑘   𝑘 𝑘  ,               

 

Where 𝑔𝑘    ( 𝑘) and  𝑘 are parameters. 

Actually, there are several types of conjugate 

gradient algorithm based on an estimation of 
parameter  𝑘. Some of them by Andrei (2007) are 

as follows: 

 Fletcher-Reeves (FR) conjugate gradient 

 𝑘
   

𝑔𝑘
 𝑔𝑘

𝑔𝑘  
 𝑔𝑘  

 

 Poly-Ribiere-Polyak (PRP) conjugate 

gradient 

 𝑘
    

𝑔𝑘
  𝑘

𝑔𝑘  
 𝑔𝑘  

,  𝑘  𝑔𝑘  𝑔𝑘   

 Dai-Yuan (DY) conjugate gradient 

 𝑘
   

𝑔𝑘
 𝑔𝑘

 𝑘
  𝑘

,  𝑘  𝑔𝑘  𝑔𝑘  , 

  𝑘   𝑘   𝑘   

 Hestenes-Stiefel (HS) conjugate gradient 

 𝑘
   

𝑔𝑘
  𝑘

 𝑘
  𝑘

,  𝑘  𝑔𝑘  𝑔𝑘  ,  

 𝑘   𝑘   𝑘   

 Conjugate descent (CD) 

 𝑘
    

𝑔𝑘
 𝑔𝑘

𝑔𝑘   𝑘
,  𝑘   𝑘   𝑘   

 Liu-Storey (LS) conjugate gradient 

 𝑘
    

𝑔𝑘
  𝑘

𝑔𝑘   𝑘
,  𝑘   𝑘   𝑘   

 

In addition to several types of determination of 

the parameters of  𝑘 mentioned above, there are 

also some hybrids of the types that have been 

developed. But in this paper will be used conjugate 

gradient hybrid Gilbert-Nocedal as follows. 

 𝑘
   {

  𝑘
         𝑘

      𝑘
  ,

 𝑘
         | 𝑘

   |   𝑘
  ,

 𝑘
         𝑘

     𝑘
   

 

It can be written briefly, 

 𝑘
      {  𝑘

  ,   { 𝑘
   ,  𝑘

  }}  

For more details about this method, here is the 

conjugate gradient algorithm. 

Step 0. Given starting point   ,   . 

Step 1. For   0,  𝑘   𝑔𝑘. For    , find  𝑘 , 
 𝑘   𝑔𝑘   𝑘 𝑘  . If  𝑘  0, then the iteration 

stops. 

Step 2. Select step size 𝛼𝑘 using line search 

method (either exact or not exact). 

Step 3. Renew the point  𝑘    𝑘  𝛼𝑘 𝑘,  
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   . Return to step 1. 

 

2.3. Line Search Method 

To determine the step size, 𝛼𝑘, there are many 

line search methods that can be used, either in 

exact or inexact. One method of line search that is 

not exact is the rule of Armijo. 

2.3.1. Line Search Armijo 

The Armijo rules in determining step size are 

as follows: 

𝛼𝑘     * 𝑘,   𝑘,  
  𝑘,  + 

That fulfills 

 ( 𝑘  𝛼 𝑘)   𝑘   𝛼𝑔𝑘
  𝑘 

Where 

 𝑘   
𝑔𝑘

  𝑘

𝐿‖ 𝑘‖ 
,  ∈ (0, ),  ∈ (0,

 

2
) , 𝐿  0 

 

2.3.2. Modified Armijo 

In this modified Armijo rule, it will be found 

that the step size, 𝛼𝑘, which is defined as greater 

than that defined in the classic Armijo rules. In 

other words, the step size defined on the modified 

Armijo rule is easier to find than the step size in 

the classic Armijo rules. 

The modified Armijo Rules by Shi (2005) are 

as follows: 

Determine the scalars  𝑘,  , 𝐿𝑘, 𝜇, and  , where 

 𝑘   
𝑔𝑘

  𝑘

𝐿𝑘‖ 𝑘‖
 
, 

 ∈ (0, ), 𝐿𝑘  0, 𝜇 ∈ ,0,2),  ∈ (0,
 

2
), 

and 𝛼𝑘 is the largest 𝛼 scalar in * 𝑘,   𝑘,  
  𝑘,  , + 

such that 

 ( 𝑘  𝛼 𝑘)   𝑘   𝛼 [𝑔𝑘
  𝑘  

 

 
𝛼𝜇𝐿𝑘‖ 𝑘‖

 ]  

 

2.3.3.    Estimation 

In the modified Armijo rule there is a 

parameter that needs to be estimated and updated 

on each iteration, ie 𝐿𝑘. Here is the difference 

between the classic Armijo rules and it's modified, 

as well as the 𝜇 parameter. In the classic Armijo 

rule, the parameter 𝐿 is not updated on each 

iteration. 𝐿𝑘 in the modified Armijo rule can be 

approximated by the Lipschitz constant of the 

gradient 𝑔( ) of the objective function  ( ),   . 

If    is given, then, of course, can be taken 

𝐿𝑘    . However,    is often unknown in many 

cases, so the 𝐿𝑘 parameter can be estimated in one 

of the following ways. 

Let  𝑘    𝑘   𝑘  ,  𝑘   𝑔𝑘  𝑔𝑘  , 
  2, , ,  Then the parameter value 𝐿𝑘  can be 

determined as follows. 

𝐿𝑘  
‖ 𝑘  ‖

‖ 𝑘  ‖
 

or 

𝐿𝑘     {
‖ 𝑘  ‖

‖ 𝑘  ‖
|   ,2, , } 

Where      ,   is a positive integer. The 

second way to estimate these parameters is as 

follows. 

𝐿𝑘  
 𝑘  

  𝑘  

‖ 𝑘  ‖
 

 

or 

𝐿𝑘     {
 𝑘  

  𝑘  

‖ 𝑘  ‖
 

|   ,2, , } 

The third way is as follows. 

𝐿𝑘  
‖ 𝑘  ‖

 

 𝑘  
  𝑘  

 

or 

𝐿𝑘     {
‖ 𝑘  ‖

 

 𝑘  
  𝑘  

|   ,2, , } 

As for     taken 𝐿   . 

The above estimates are just a few of the many 

ways to estimate   . The above estimates will be 

used in the gradient descent and conjugate gradient 

hybrid Gilbert-Nocedal (CGHGN) algorithms 

which contain modifications to Armijo's rules in it 

(Shi, 2005). 

 

3. RESULTS AND DISCUSSION  

3.1. Numerical Results for Test Function with 

Gradient Descent 

The gradient descent algorithm with modified 

Armijo rules, as described in the above sections, is 

applied to Matlab 6 software, with an estimated 

parameter 𝐿𝑘, various scalar inputs  ,  , 𝜇 

maximum iteration, and maximum errors  . 

The numerical results of two variable test 

functions using gradient descent algorithm with 

estimated parameter 𝐿𝑘  
‖       ‖

‖       ‖
, the parameter 

value is selected   0   ,   0   , Maximum 

iteration 100, and the maximum difference 

between analytical solutions and numerical 

solutions ε = 0.005, listed in Table 1 below. 

Iteration will stop if either one of the maximum 

iterations or the maximum difference between the 

analytical solution and the numerical solution is 

reached. In each of the following tables, compare 

the numerical solution of the test function with the 

parameter value range 𝜇 at ,0,2). 

From Table 1 below it can be seen that in a 

simple function, with 𝜇  0, there are fewer 
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iterations and ‖𝑔𝑘‖ is much smaller. 𝜇  0 

represents the classical Armijo rule with 𝐿   , not 

updated on each iteration, whereas 𝜇  0 

represents the modified Armijo rule with 𝐿𝑘 

updated on each iteration. While on the Quadric 

function, the gradient descent with modified 

Armijo works better than the classic Armijo. This 

is demonstrated by the achievement of ‖𝑔𝑘‖ which 

is not much different, modified Armijo requires 

much less iteration. In the Zakharof function, of 

the number of iterations, the classical Armijo 

seems to work a little better than the modification. 

However, the ‖𝑔𝑘‖ obtained by Armijo 

modification is slightly smaller than the classic 

Armijo. Almost the same in Himmenblau function, 

on some values 𝜇, modified Armijo works a little 

better, but on some other 𝜇 values, on the contrary, 

it works a little worse than the classic Armijo. 

 

Table 1. Numerical Results of  Two Variable Test 

Functions with Gradient Descent 

𝜇 

Number of 

iteration 

( ) 

  ‖𝑔𝑘‖ 

Quadric function with    (1,2) 

0 20 5.961 (10
-6

) 0.0043994 

0.5 4 2.3624 (10
-6

) 0.0045728 

1.0 4 1.2997 (10
-5

) 0.0048104 

1.5 4 1.2997 (10
-5

) 0.0048104 

1.99 4 1.2997 (10
-5

) 0.0048104 

Zakharof function with     (1,2) 

0 4 7.381 (10
-8

) 0.00081505 

0.5 6 5.181(10
-9

) 0.00021548 

1.0 6 5.181(10
-9

) 0.00021548 

1.5 6 5.181(10
-9

) 0.00021548 

1.99 6 5.181(10
-9

) 0.00021548 

De Jong function with    (1,2) 

0 4 1.0207 (10
-6

) 0.0020206 

0.5 2 9.9104 (10
-29

) 1.991 (10
-14

) 

1.0 2 2.4155 (10
-28

) 3.1048 (10
-14

) 

1.5 2 2.4155 (10
-28

) 3.1048 (10
-14

) 

1.99 2 2.4755 (10
-28

) 3.1468 (10
-14

) 

Himmenblau function with    (0,0) 

0 14 1.9501 (10
-7

) 0.0033515 

0.5 12 2.0832 (10
-8

) 0.0015424 

1.0 12 1.6794 (10
-7

) 0.0032052 

1.5 10 3.8923 (10
-8

) 0.0014833 

1.99 17 2.5695 (10
-7

) 0.0039309 

McCormic function with    (0,0) 

0 8 1.9132 0.0020333 

0.5 7 1.9132 0.0020157 

1.0 7 1.9132 0.0023628 

1.5 5 1.9132 0.0048835 

1.99 5 1.9132 0.0016221 

 

 

With a bit more iteration but ‖𝑔𝑘‖  which is 

also slightly smaller, in Zakharof and Himmenblau 

functions, it cannot be concluded that gradient 

descent with Armijo modification is not better than 

gradient descent with classic Armijo, although it 

cannot be concluded otherwise. Moreover, it turns 

out the numerical results of the De Jong function 

show again that modified Armijo is still better than 

classic Armijo. 

Figures 1.a and 1.b below show the different 

results of the gradient descent iteration using 

classic Armijo with those using modified Armijo. 

From the figure, it can be seen that the modified 

Armijo requires fewer iterations to satisfy the 

termination criteria (  0 00 ). In other words, 

modified Armijo converges faster on the minimum 

solution of the optimization problem.  

 

 
Figure 1.a Gradient Descent with Classic Armijo 

(𝜇  0) on Quadric Function 

 

 
Figure 1.b Gradient Descent with Modified Armijo 

on Quadric Function 

 

While Figure 2.a and 2.b show differences in 

the effect of parameter values 𝜇. With larger 𝜇, the 

step size will be larger. 
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Figure 2.a Gradient Descent with Modified Armijo on 

DeJong Function (𝜇   , 𝜇     ) 

 

 
Figure 2.b Gradient Descent with Modified Armijo on 

DeJong Function (𝜇      ) 

 

To summarize in general this comparison, then 

there should be test functions with larger 

dimensions to test the method. The parameters 

used are the same as the parameters used in the 

two-dimensional test function in Table 1. But the 

termination criterion used is different, ie if it has 

reached maximum iteration 1000 iterations or 

‖𝑔𝑘‖  0 00 . The numerical results of gradient 

descent with classical Armijo rules and its 

modified on large-dimensional test functions are 

presented in Table 2 and Table 3. 

Using a four-dimensional test function, it can 

be seen that gradient descent with modified Armijo 

works better in terms of a number of iterations 

required to achieve the same ‖𝑔𝑘‖ than the 

classical Armijo that is  0 00 . In each of the 

four-dimensional functions in Table 2, modified 

Armijo always works better than the classical 

Armijo, even though the termination requirement 

(  0 00 ) is same, the modified Armijo still gets 

a smaller ‖𝑔𝑘‖ than the classic Armijo, with much 

less number of iterations. In Powell Singular 

function, if the iteration is not limited to 1000 

iterations, then to get the expected ‖𝑔𝑘‖, the 

process has not been completed. That means the 

required iteration will be much more than the 

modified Armijo. In Powell Singular, Watson, 

Trigonometric, and Penalty II functions, it is also 

generated that the iterations needed will be less as 

the parameter value of 𝜇 is greater. This proves 

that selection of this parameter value has important 

value in modified Armijo. 

Similarly, for the 8 dimension test function, the 

results can be seen in Table 3. At Watson function, 

it is seen that there is a significant decrease in the 

number of iterations of the classical Armijo 

application to the application of its modification. 

While in Penalty II, there was also a decrease in 

the number of iterations although not as significant 

in the Watson function. This further reinforces the 

assumption of early test functions that modified 

Armijo works better than classical Armijo on the 

gradient descent algorithm. 

Table 2. The Numerical Result of 4 Dimension 

Test Function with Gradient Descent 

𝜇 
Number of 

iteration( ) 
  ‖𝑔𝑘‖ 

4 dimension Powell Singular function with    (1,1,1,1) 

0 1000 0.00040193 0.013225 

0.5 279 0.00020607 0.0049055 

1.0 209 0.00020451 0.0049746 

1.5 182 0.00020795 0.0049696 

1.99 169 0.00020783 0.0049937 

4 dimension Watson function with    (0,0,0,0) 

0 410 0.0060494 0.0047514 

0.5 129 0.0060433 0.0042924 

1.0 100 0.0060441 0.0044026 

1.5 96 0.0060496 0.0047381 

1.99 83 0.0060247 0.0039382 

4 dimension Penalty function with    (1,2,3,4) 

0 84 0.0062071 0.004998 

0.5 2 0.0017474 0.001944 

1.0 2 0.0017474 0.001944 

1.5 2 0.0017474 0.001944 

1.99 2 0.0017474 0.001944 

4 dimension Variably-Dimensioned function with    

(0,0,0,0) 

0 98 2.6045 (10
-6

) 0.0049899 

0.5 17 1.2441 (10
-9

) 0.00039367 

1.0 17 1.2441 (10
-9

) 0.00039367 

1.5 17 1.2441 (10
-9

) 0.00039367 

1.99 17 1.2441 (10
-9

) 0.00039367 

4 dimension Trigonometric function with    

(0.25,0.25,0.25,0.25) 

0 18 0.00035521 0.0039039 

0.5 12 0.00033347 0.0036763 

1.0 10 0.00040127 0.0046417 

1.5 10 0.00039599 0.004532 

1.99 10 0.00038882 0.0044509 

4 dimension Penalty II function with    (1,1,1,1) 

0 16 0.82485 0.0046897 

0.5 13 0.82485 0.0035263 

1.0 12 0.82485 0.002263 

1.5 12 0.82485 0.002263 

1.99 12 0.82485 0.002263 
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Table 3. The Numerical Result of 8 Dimension 

Test Function with Gradient Descent 

𝜇 
Number of 

iteration ( ) 
  ‖𝑔𝑘‖ 

8 dimension Watson function with    (0,0,0,0,0,0,0,0), 

maximum number of iterations:1000,   0 0  

0 249 0.0056431 0.049389 

0.5 87 0.0060244 0.049453 

1.0 55 0.0060305 0.048821 

1.5 56 0.005936 0.047586 

1.99 48 0.0061168 0.048974 

8 dimension Penalty II function with    

(1,1,1,1,2,2,2,2), maximum number of iterations:1000, 

  0 00  

0 16 0.82494 0.0046897 

0.5 13 0.82494 0.0035121 

1.0 12 0.82494 0.0021299 

1.5 12 0.82494 0.0021299 

1.99 12 0.82494 0.0021299 

 

3.2. Numerical Results for Test Function with 

CGHGN 

After comparing classical Armijo and its 

modification to the gradient descent algorithm, 

here is the next comparison on CGHGN. The test 

functions used remain the same as the test 

functions in the above sections. Similarly, for the 

value of the parameters used and the iteration 

termination criterion. 

From Table 4 it is generally found that 

conjugate gradient does not work better than 

gradient descent in applying modified Armijo. This 

can be seen from the numerical results on Quadric, 

Himmenblau, and Zakharof functions. Even the 

performance is very bad on the Quadric function, 

with more iterations needed to achieve the same 
‖𝑔𝑘‖ stopping criteria. Also, the ‖𝑔𝑘‖ obtained is 

worse than the classic Armijo. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The Numerical Results of The Two 

Variable Test Function with CGHGN 

𝜇 

Number of 

iteration 

( ) 

  ‖𝑔𝑘‖ 

Quadric function with    : (1,2) 

0 8 9.435 (10
-7

) 0.0020482 

0.5 18 3.7116 (10
-6

) 0.0028629 

1.0 15 1.0485 (10
-5

) 0.0041436 

1.5 19 4.9341 (10
-6

) 0.003629 

1.99 13 7.0949 (10
-6

) 0.0033074 

Zakharof function with    : (1,2) 

0 4 7.3802 (10
-8

) 0.00081502 

0.5 6 5.1685 (10
-9

) 0.00021537 

1.0 6 5.1685 (10
-9

) 0.00021537 

1.5 6 5.1685 (10
-9

) 0.00021537 

1.99 6 5.1685 (10
-9

) 0.00021537 

De Jong function with    : (1,2) 

0 4 1.0207 (10
-6

) 0.0020206 

0.5 2 1.7711 (10
-28

) 2.6617 (10
-14

) 

1.0 2 6.7025 (10
-28

) 5.1778 (10
-14

) 

1.5 2 6.7025 (10
-28

) 5.1778 (10
-14

) 

1.99 2 1.6852 (10
-27

) 8.2102 (10
-14

) 

Himmenblau function with    (0,0) 

0 12 8.8547 (10
-8

) 0.0039747 

0.5 13 4.732 (10
-8

) 0.0018234 

1.0 23 4.1353 (10
-7

) 0.0046038 

1.5 15 3.2192 (10
-8

) 0.0033049 

1.99 12 2.4744 (10
-7

) 0.0033668 

McCormic function with    (0,0) 

0 6 1.9132 0.0038449 

0.5 7 1.9132 0.0045575 

1.0 8 1.9132 0.0026397 

1.5 7 1.9132 0.0016163 

1.99 10 1.9132 0.0041537 

 

The CGHGN iteration behavior using both 

classical Armijo and its modification is not so 

different. It can be seen in Figure 4.a-d below. 

With various parameter values 𝜇, the resulting 

iteration points are not much different in 

Himmenblau function. 

 

 
 

Figure 4.a CGHGN with Classic Armijo (𝜇  0) on 

Himmenblau Function 
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Figure 4.b CGHGN with Modified Armijo (𝜇  0  ) in 

Himmenblau Function 

 

 

Figure 4.c CGHGN with Modified Armijo (𝜇   ) in 

Himmenblau Function 

 

 

Figure 4.d CGHGN with Modified Armijo (𝜇     ) in 

Himmenblau Function 

 

Table 5 below shows CGHGN numerical 

results with modified Armijo on four-dimensional 

functions. The result is that CGHGN works very 

badly in applying modified Armijo. 

 

 

 

 

 

 

 

 

 

 

 

 

Tabel 5. Numerical Result 4-dimensional Test 

Function with CGHGN 

𝜇 
Number of 

iteration ( ) 
  ‖𝑔𝑘‖ 

4-dimensional Powell Singular function with    

(1,1,1,1) 

0 74 2.5467 (10
-5

) 0.0033689 

0.5 1000 0.00053896 0.016547 

1.0 1000 0.00052487 0.016728 

1.5 1000 0.00052992 0.015748 

1.99 1000 0.00053591 0.016243 

4-dimensional Watson function with    (0,0,0,0) 

0 34 0.0060263 0.003837 

0.5 462 0.0060228 0.0041832 

1.0 528 0.0060492 0.004726 

1.5 449 0.0060409 0.003878 

1.99 559 0.0060495 0.0048206 

4-dimensional Penalty function with    (1,2,3,4) 

0 84 0.0062071 0.004998 

0.5 2 0.0017474 0.001944 

1.0 2 0.0017474 0.001944 

1.5 2 0.0017474 0.001944 

1.99 2 0.0017474 0.001944 

4-dimensional Variably-Dimensioned with    (0,0,0,0) 

0 12 8.7638 (10
-7

) 0.0018735 

0.5 85 2.3254 (10
-6

) 0.0041347 

1.0 77 3.2597 (10
-6

) 0.0047175 

1.5 46 5.3615 (10
-6

) 0.0047064 

1.99 76 4.195 (10
-6

) 0.0048226 

4-dimensional Trigonometric funtion with    

(0.25,0.25,0.25,0.25) 

0 12 0.00040346 0.0049897 

0.5 23 0.00034834 0.0034499 

1.0 20 0.00037274 0.0044723 

1.5 23 0.00034909 0.0038791 

1.99 20 0.00037369 0.0049191 

4-dimensional Penalty II function with    (1,1,1,1) 

0 11 0.82484 0.00081602 

0.5 18 0.82484 0.00092696 

1.0 18 0.82485 0.0042525 

1.5 20 0.82485 0.0033585 

1.99 21 0.82485 0.003335 

 

In Table 5, it can be seen that the conjugate 

gradient only works well on the Penalty function. 

While in other functions, to meet the same 

termination criteria (  0 00 ), conjugate 

gradient with modified Armijo requires much more 

iteration. This is enough to show the 

ineffectiveness of Armijo modification if applied 

to this algorithm. In contrast, in Table 1 and Table 

2, CGHGN with Classical Armijo works better 

than if classical Armijo is applied to the gradient 

descent. However, as discussed in this paper is 

how effective modified Armijo is applied to the 
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gradient descent and CGHGN, it is sufficient to 

answer that modified Armijo works more 

effectively on the gradient descent. 

 

3.3. Comparison of Computational Time 

Gradient Descent and CGHGN 

In addition to comparing numerical solutions 

of each algorithm by applying classical Armijo and 

its modifications, it can be compared computation 

time, ie the time required by the algorithm to solve 

the problem of minimizing the test functions until 

the desired stopping criterion is reached. Before 

reading the tables below, by comparison of the 

number of iterations as described in the above 

sections, it is possible to guess the computational 

time behavior required for each algorithm. For 

gradient descent, the average number of iterations 

decreases, so too is the computation time. 

 

Tabel 6. Computational Time of Gradient Descent 

and CGHGN on Two-dimensional 

Function 

𝜇 
Gradient Descent CGHGN 

        

Zakharof function 

0 7.381 (10
-8

) 0.016 7.3802 (10
-8

) 0.016 

0.5 5.181(10
-9

) 0.016 5.1685 (10
-9

) 0.015 

1.0 5.181(10
-9

) 0.016 5.1685 (10
-9

) 0.016 

1.5 5.181(10
-9

) 0.016 5.1685 (10
-9

) 0.015 

1.99 5.181(10
-9

) 0 5.1685 (10
-9

) 0.016 

De Jong function 

0 1.0207 (10
-6

) 0 1.0207 (10
-6

) 0.015 

0.5 9.9104 (10
-29

) 0.016 1.7711 (10
-28

) 0.016 

1.0 2.4155 (10
-28

) 0 6.7025 (10
-28

) 0.016 

1.5 2.4155 (10
-28

) 0 6.7025 (10
-28

) 0.015 

1.99 2.4755 (10
-28

) 0 1.6852 (10
-27

) 0.016 

Himmenblau function 

0 1.9501 (10
-7

) 0.031 8.8547 (10
-8

) 0.031 

0.5 2.0832 (10
-8

) 0.015 4.732 (10
-8

) 0.016 

1.0 1.6794 (10
-7

) 0.015 4.1353 (10
-7

) 0.016 

1.5 3.8923 (10
-8

) 0.016 3.2192 (10
-8

) 0.016 

1.99 2.5695 (10
-7

) 0.016 2.4744 (10
-7

) 0 

McCormic function 

0 1.9132 0.875 1.9132 0.016 

0.5 1.9132 0.406 1.9132 0.015 

1.0 1.9132 0.016 1.9132 0.016 

1.5 1.9132 0.015 1.9132 0.016 

1.99 1.9132 0.015 1.9132 0.016 

 

In Table 6 have not been able to prove the 

guess because the computation time difference is 

not so large on each parameter value 𝜇, both on the 

gradient descent and on CGHGN. However, in 

Table 7, and Table 8 with larger dimensioned 

functions, it can prove that guess because the 

computation time difference is large enough for 

each parameter change, especially from the value 

of 𝜇  0 to other 𝜇 values. The considerable 

computation time difference can be seen, among 

others, on 4-dimension Powell Singular function 

and 4-dimension and 8-dimension Watson 

function. Gradient descent shows better results 

than CGHGN in terms of computational time in 

applying modified Armijo on average test function 

used, either 2, 4, or, 8-dimension. 

 

Tabel 7. Computational Time of Gradient Descent 

and CGHGN on Four-dimensional 

Function 

𝜇 
Gradient Descent CGHGN 

        

4 dimension Powell Singular function 

0 0.00040193 2.156 2.5467 (10
-5

) 0.078 

0.5 0.00020607 0.125 0.00053896 1.031 

1.0 0.00020451 0.094 0.00052487 1.015 

1.5 0.00020795 0.078 0.00052992 0.985 

1.99 0.00020783 0.062 0.00053591 0.985 

4 dimension Watson function 

0 0.0060494 10.11 0.0060263 0.578 

0.5 0.0060433 0.75 0.0060228 3.969 

1.0 0.0060441 0.578 0.0060492 4.391 

1.5 0.0060496 0.547 0.0060409 3.734 

1.99 0.0060247 0.438 0.0060495 4.219 

4 dimension Penalty function 

0 0.0062071 0.031 0.0062071 0.032 

0.5 0.0017474 0.016 0.0017474 0.016 

1.0 0.0017474 0.016 0.0017474 0.015 

1.5 0.0017474 0.015 0.0017474 0.015 

1.99 0.0017474 0.016 0.0017474 0.015 

4 dimension Variably-Dimensioned function  

0 2.6045 (10
-6

) 0.266 8.7638 (10
-7

) 0.062 

0.5 1.2441 (10
-9

) 0.016 2.3254 (10
-6

) 0.078 

1.0 1.2441 (10
-9

) 0.016 3.2597 (10
-6

) 0.063 

1.5 1.2441 (10
-9

) 0.015 5.3615 (10
-6

) 0.047 

1.99 1.2441 (10
-9

) 0.015 4.195 (10
-6

) 0.062 

4 dimension Trigonometric function  

0 0.00035521 0.031 0.00040346 0.015 

0.5 0.00033347 0.015 0.00034834 0.031 

1.0 0.00040127 0.015 0.00037274 0.032 

1.5 0.00039599 0.015 0.00034909 0.031 

1.99 0.00038882 0.015 0.00037369 0.032 

4 dimension Penalty II function  

0 0.82485 0.125 0.82484 0.094 

0.5 0.82485 0.031 0.82484 0.032 

1.0 0.82485 0.016 0.82485 0.031 

1.5 0.82485 0.015 0.82485 0.047 

1.99 0.82485 0.015 0.82485 0.032 
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Table 8. Computational Time of Gradient Descent 

and CGHGN on Eight-dimensional 

Function 

𝜇 
Gradient Descent CGHGN 

        

Fungsi Watson dimensi 8 

0 0.0056431 40.39 0.0039089 3.5 

0.5 0.0060244 3.703 0.0056966 14.266 

1.0 0.0060305 2.25 0.0056511 16.031 

1.5 0.005936 2.25 0.0054967 15.954 

1.99 0.0061168 2.047 0.0053083 17.266 

Fungsi Penalty II dimensi 8 

0 0.82494 0.125 0.82494 0.078 

0.5 0.82494 0.047 0.82494 0.046 

1.0 0.82494 0.047 0.82494 0.062 

1.5 0.82494 0.031 0.82494 0.063 

1.99 0.82494 0.031 0.82494 0.078 

Of the two comparable parameters, a number 

of iterations required to achieve a required 

stopping criterion and computational time required 

to solve numerical minimization problem, it has 

been shown that gradient descent is better and 

more effective than CGHGN in applying the 

modified Armijo rule. 

 

4. CONCLUSIONS 

From the discussion above, it can be concluded 

that modified Armijo works very well on the 

gradient descent, not only in terms of the number 

of iterations required to achieve a stopping 

criterion, but also of computation time on the test 

functions tested. The parameter value 𝜇, affecting 

its numerical performance, ie with the increasing 

value of this parameter, then the required iteration 

also becomes less. Similarly, the effect on program 

computing time. 

The Armijo modification works very poorly on 

the conjugate gradient so that increase of 

parameter value 𝜇 cannot be seen affecting the 

number of iterations required. 

The two variable test functions have not been 

able to answer exactly the comparison of the 

effectiveness of the application of modified Armijo 

on gradient descent and conjugate gradient. The 

larger dimension test functions respond to the 

comparison of the effective application of modified 

Armijo to the gradient descent and conjugate 

gradient. The modified Armijo is more effectively 

applied to gradient descent than conjugate gradient 

hybrid Gilbert-Nocedal. 
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