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The present study was conducted to explore the fractal behavior and establish fractal 
dimensions of soil physical and chemical properties (i.e., sand, silt, and clay contents, bulk 
density, degree of moisture saturation, pH, organic carbon content, total nitrogen, 
available phosphorus, and available potassium) to characterize their spatial patterns. Soil 
samples were collected from 0-30 (surface) and 30-60 cm (subsurface) depths from an 
agricultural field, Mashhad Plain, Northeast Iran. Descriptive statistics and fractal analysis 
were used to describe the extent and form of variability. Spatial patterns of the soil 
properties were estimated using GS+ 10.0 software.  Soil properties showed low to high 
variations in both surface and subsurface layers across the field, where bulk density and 
pH being the most reliable soil physical and chemical properties in the study area. The 
variability was high (CV > 35%) for total N, available P, available K and organic carbon in 
both surface and subsurface soils and it could be attributed to management practices and 
micro-topographical variations as these are the dynamic properties of soil. The fractal 
dimension (D) values of soil physical properties ranged from 1.398 to 1.913 at the surface, 
and from 1.874 to 1.934 at the subsurface indicating both short and long range variations. 
The D values for the chemical properties ranged from 1.331 to 1.975, and 1.148 to 1.990 in 
the surface and subsurface layers, respectively. The results showed that fractal analysis 
could be employed to effectively describe the structure of soil heterogeneity in spatial 
scale for effective agricultural and environmental management of soil. 
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Introduction 
Soil covers land as a continuum having properties that vary enormously and continuously with depth and 
horizontal distances (Gessler et al., 2000). This variability is reflected in soil test results and variations in 
crop yields (Tuffour, 2015). These variations are largely the results of various factors and processes of soil 
formation, and management, functioning independently or in combination over broad spatial and temporal 
scales with different intensities (Beckett and Webster 1971; Burrough, 1983a,b; Tuffour, 2015). The spatial 
variation of soil properties such as organic matter, clay content, pH and water retention capacity is caused 
by pedogenic processes which are influenced by hydrological and temperature regimes modified by 
topography (Pilesjő et al., 2005; Florinsky, 2012; Vasu et al., 2017a). The source of these variations, which 
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hitherto recognized as a nuisance, has received widespread recognition among researchers in recent times 
(Bengough et al., 2000; Linsenmeier et al., 2011; Tuffour, 2015; Miloš and Bensa, 2017; Vasu et al., 2017a).  

Knowledge on the spatial distribution of soil properties at different scales is a prerequisite for site specific 
soil management and minimizes the negative effects of management practices on environmental quality 
(Cambardella et al., 1994; Bogunovic et al., 2014). In recent past, GPS (Global Positioning System), GIS 
(Geographical Information System) and geostatistics have played a very significant role in the study of 
spatial variability of soil properties (Vasu et al., 2017b). Geostatistical tools incorporate the spatial 
coordinates of soil observations in data processing, facilitate description and modelling of spatial patterns, 
predict values for unsampled locations and validates these predictions (Goovaerts, 1998). Because of these 
advantages, geostatistical techniques have been widely employed by researchers to address the 
heterogeneity in soil properties and processes in space under different environmental conditions (Wang and 
Shao, 2011; Tuffour et al., 2013, 2016; Kooch et al., 2014). The structure of spatial variation is vital to decide 
the magnitude of variability and that can be assessed by semivariograms which indicate the spatial 
correlation in values measured at sample locations (Vasu et al., 2017b). The spatial patterns are described in 
terms of dissimilarity between samples as a function of separation distance (Goovaerts, 1998). The average 
dissimilarity between data is separated by a vector and is measured by the semivariogram. However, 
anomalies in soil data and their deviation from normal (Gaussian) or log-normal distribution need to 
recognized for identification, accurate delineation, and modeling of soil properties for site specific soil 
management and precision agriculture (Fu et al., 2010; Bogunovic et al., 2014; Vasu et al., 2017a).  

Soil particles were assumed to have “self-similar” features, and fractal theories were employed to investigate 
their characteristics in several studies (e.g., Oleschko et al., 2008; Tuffour, 2015; Li et al., 2016; Miloš and 
Bensa, 2017). For example, fractal dimensions of particle size distribution (PSD) were found to be influenced 
by land use and management practices (Wang et al., 2008). For newly formed wetlands in Yellow river delta, 
the fractal dimension values (D) of PSD varied from 1.82 to 1.90 indicating coarse texture (Yu et al. 2015).  
Therefore, the objective of this study was to investigate the fractal behavior and establish fractal dimensions 
of soil physical and chemical properties to characterize their spatial patterns. 

Material and Methods 

Study area 

The study site is located in Mashhad Plain, Khorasan-e-Razavi Province, Northeast Iran with an area of 6131 
km2 (Figure 1). The region is located between latitudes 35° 59′ N to 37° 04′ N and longitudes 58° 22′ E to 60° 
07′ E. The elevation of the study area ranges from 900 to 1500 m a.s.l., while the elevation of surrounding 
areas is up to ~1200 m a.s.l. The study area is characterized by semi-arid climate with mean annual 
precipitation of 222.1 mm and mean annual temperature of 15.8°C (Keshavarzi et al., 2016). The major soil 
types include Calcaric Cambisols, Gypsic Regosols, Calcaric Regosols and Calcaric Fluvisols occurring in 
pediment plains, plateau, upper terraces and gravelly colluvial fans, respectively. Soil texture varied from 
loam, to sandy loam to sandy clay loam. The main land use in the study area is irrigated farming.  

 

Figure 1. Location and geographical position of the study area 
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Soil sampling and laboratory analyses  

A Digital Elevation Model (DEM) with 10×10 m grid size was extracted from a paper-based topographic map 
(1:25000 scale) using GIS platform and 10-meter contour lines interval. Vasu et al. (2016) established the 
importance of subsurface soil properties in evaluation of soil quality, spatial variability and their 
management. Disturbed and undisturbed samples were collected from surface (0-30 cm) and subsurface 
(30-60 cm) of 48 representative soil profiles (96 samples) by stratified random sampling technique. The 
sampling points were designed to represent all the major soil and land use types. Large plant materials and 
pebbles in the samples were separated by hand and discarded. Collected soil samples were air dried, 
crushed and sieved by using 2 mm sieve size before laboratory analysis. Soil organic carbon (SOC) content 
was determined by the Walkley and Black method (Walkley and Black, 1934) with dichromate extraction 
and titrimetric quantization (Nelson and Sommers, 1986). Percentages of clay (< 0.002 mm), silt (0.002–0.05 
mm), and sand (0.05–2 mm) particles were measured by hydrometer method (Gee and Bauder, 1986). Soil 
moisture content based on the degree of saturation (DS) and bulk density (BD) (Blake and Hartge, 1986; 
Gardner, 1986) were also determined. Soil reaction (pH) was measured in saturated paste extract using a 
digital pH-meter (Thomas, 1996). Total N, Olsen P (available phosphorus) and available potassium were 
measured using standard procedures (Sparks et al., 1996). 

Data analyses 

Descriptive statistics 

Measured variables in the data set were analyzed using descriptive statistics including the minimum, 
maximum, mean, coefficient of variation (CV), skewness and kurtosis. The CV values were classified 
according to Wilding (1985). Due to the presence of small variations that could result in chance fluctuations 
in the skewness and kurtosis (Tuffour et al., 2013, 2016), the frequency distribution was validated using the 
Watson normality test. 

Fractal analysis 

Fractal dimension (𝐷) was estimated from the slope of log-log semivariogram. Semivariogram analysis was 
conducted to ascertain the spatial structure of the soil properties using GS+ (Geostatistics for environmental 
science; Gamma Design, Plainwell, Mich.) 10.0 software. Isotropy and anisotropy of the semivariograms 
were determined in four directions (i.e., 0°, 45°, 90° and 135°) with a tolerance of 22.5°, and the structure of 
spatial variance between observations was calculated from the semivariogram defined by the equation 
(Gupta et al., 2003; Tuffour, 2015): 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖 − 𝑍(𝑥𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1

   

(1) 

where,  

𝛾(ℎ) is the semi-variance for separate distance class ℎ, 𝑁(ℎ) is the number of sample pairs at each distance 
interval ℎ, 𝑍(𝑥𝑖) is the value of the variable 𝑍 at sampled location 𝑥𝑖 and 𝑍(𝑥𝑖 + ℎ) is the value of the variable 
𝑍 at a distance ℎ away from 𝑥𝑖 (Lark, 2000).  

The fractal dimensions (𝐷) were estimated from the slopes of log-log semivariograms as (Tuffour, 2015): 

𝐷 = 2 −
𝑚

2
 (2) 

where: 
𝐷 = Fractal dimension (Hausdorff-Besicovitch statistic), between 1 and 2 
𝑚 = Slope of the log-log semivariogram plot 
To measure the smoothness of the measured data sets, the Hurst exponent (𝐻) was estimated from 𝐷 as 
follows (Tuffour, 2015): 

𝐻 = 2 − 𝐷 (3) 

where: 
0 ≤ 𝐻 ≤ 1; The closer the value of 𝐻 to 0, the more random will be the distribution of the property. 
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Results and Discussion 

Descriptive statistics for soil properties 

Soils in the study area were predominantly Aridisols, with a few patches of Entisols. The descriptive 
statistics of the analyzed soil properties are presented in Tables 1.1 and 1.2. The variability was interpreted 
using the coefficient of variation (CV). The results indicate that the CVs varied from 1.47 to 91.49%. The 
criteria proposed by Wilding (1985) was used to classify the parameters into most (CV >35%), moderate (CV 
15-35%) and least (CV <15%) variable classes. Accordingly, the variability was high (CV >35%) for total N, 
available P, available K and organic carbon in both surface and subsurface soils and it could be attributed to 
management practices and micro-topographical variations as these are the dynamic properties of soil (Vasu 
et al., 2016). Clay is an intrinsic soil property whose depth distribution is influenced by parent material, 
topography and hydraulic conductivity. In the present study, clay varied moderately in surface soils 
(CV=33.43%) but found to be high in variability in subsurface soils (CV=41.02%). Bulk density and pH were 
low in variability in both surface and subsurface soils (Tables 1.1, 1.2). Similarly, Tuffour et al. (2016) 
observed low variability for BD in the 0-20 and 20-40 cm depth of an Acrisol.  

Table 1.1. Descriptive statistics for soil physical features in study site 

Soil property Depth 
(cm) 

Descriptive statistics 
Min. Max. Mean CV (%) Skew. Kurt. Normality 

Sand (%) 
0-30 14.00 64.00 32.12 32.14b 0.85 1.29 0.14 

30-60 13.00 73.00 32.92 34.55b 1.35 3.050 NS 

Silt (%) 
0-30 26.00 64.00 49.60 16.30b -0.84 0.71 0.14 

30-60 19.00 66.00 47.17 18.96b -0.67 1.22 NS 

Clay (%) 
0-30 4.00 32.00 18.27 33.43b 0.21 -0.49 NS 

30-60 4.00 41.00 19.92 41.02a 0.45 -0.051 NS 

BD (g/cm3) 
0-30 1.28 1.47 1.39 3.55c -0.44 -0.49 NS 

30-60 1.43 1.65 1.55 3.66c -0.34 -0.44 NS 

DS (%) 
0-30 21.80 50.40 36.21 17.20b 0.20 0.15 NS 

30-60 18.30 56.10 37.83 19.86b -0.025 0.47 NS 
Kurt. = Kurtosis; Skew. = Skewness Min. = Minimum parameter value; Max. = Maximum parameter value;  
CV = Coefficient of Variation (a, b, c = very high, moderate and weak variations, respectively); BD = Bulk Density;  
DS = Degree of Saturation; NS = Not Significant. 

The moderate variability observed for DS in both layers was due to the influence of both static (topography 
and soil properties) and dynamic (precipitation and soil moisture content) properties of the study area, 
which causes variation in soil moisture patterns (Western et al., 2004; Mapfumo et al., 2006; Tuffour et al., 
2016). The observed variability in the soil physical properties considered in this study, viz., BD, DS and 
particle size distribution have important implications on infiltration rate, and runoff/erosion processes. 
They could have severe impacts on the variability soil-plant-water relationships, and on crop growth 
(Tuffour et al., 2016).  

Table 1.2. Descriptive statistics for soil chemical properties in study site 

Soil property 
Depth 
(cm) 

Descriptive statistics 
Min. Max. Mean CV (%) Skew. Kurt. Normality 

Total N (%) 
0-30 0.006 0.20 0.089 44.49a 0.69 0.93 NS 

30-60 0.004 0.203 0.0679 65.50a 1.083 1.093 0.1286 

Olsen P (mg/kg) 
0-30 1.60 30.40 10.16 73.55a 1.32 0.79 NS 

30-60 1.20 32.80 5.63 91.79a 3.56 14.90 NS 

Available K (mg/kg) 
0-30 92.62 525.50 239.60 38.11a 0.66 0.69 NS 

30-60 53.98 525.50 194.30 46.14a 0.88 2.079 NS 

OC (%) 
0-30 0.13 1.61 0.55 51.14a 1.72 3.56 NS 

30-60 0.11 1.58 0.43 57.35a 2.34 7.94 NS 

pH 
0-30 7.70 8.30 8.085 1.59c -0.93 0.72 NS 

30-60 7.90 8.40 8.11 1.47c 0.36 0.050 NS 
NS = Not significant; Kurt. = Kurtosis; Skew. = Skewness; Min. = Minimum parameter value; Max. = Maximum parameter 
value; CV = Coefficient of Variation (a, b, c = very high, moderate and weak variations, respectively).   
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The mean values of sand, clay, BD and DS were higher in the subsurface layers than the surface layers but 
mean silt content was higher in the surface layer than in the subsurface layer. The high heterogeneity 
observed for the primary soil particles (i.e., from moderate to high) in both depths could be attributed to 
land use and soil management in the study area (Tuffour et al., 2016).  

Skewness, kurtosis and the Watson normality test results indicated that only sand and silt contents in the 
surface layer and total N in subsurface layer followed normal distribution. The mean values show high 
contents of N, P, and K in the surface layer than the subsurface layer. However, OC was higher in the surface 
than the subsurface layer. The high N, P and K contents observed in the subsurface layer can be attributed to 
leaching as evidenced by the high degree of moisture saturation in the subsurface layer than the surface 
layer (Table 1.1), which suggests high water transmission and infiltration rate of the soils studied. The high 
OC content in the surface layer, however, could have resulted from the accumulation of organic residues 
from different sources with different compositions and rates of decomposition, and the differential growth 
behavior of crops in the field (Santra et al., 2008; Tuffour et al., 2013). Similarly, studies by Camacho-Tamayo 
et al. (2008), Balasundram et al. (2009) and Tuffour et al. (2013) also reported high OC content in the soil 
surface than the subsurface layer.  

Soil pH was not significantly different among the soil layers, however, it was slightly higher in the subsurface 
than the surface layer. Soil pH in both soil layers showed a more consistent pattern than other properties 
which was evident from the low CVs (Table 1.2). This low variation in pH could be attributed to the sampling 
distance adopted in this study, since soil pH has been reported to show higher variations at scales of 
centimeters than at meters (Göttlein and Stanjek, 1996; Tuffour et al., 2013). However, relatively higher 
variability of pH in the surface layer than the subsurface layer could be the result of soil management 
practices, such as tillage and fertilizer application (Huang et al., 1999), seasonal fluctuations in soil moisture, 
temperature, microbial activity, plant growth and parent materials of the soil in the study area (Tuffour et 
al., 2013).  

Fractal characterization of soil physical and chemical properties 

The fractal dimensions (D) determined from the slope obtained by plotting the semivariance against the 
sample spacing (distance) (Figures 2.1–2.10) were used to describe the spatial variability of the soil 
properties. The Hurst exponents (H) estimated from Equation (3) are presented for various depths in Table 
2. The values of D ranged from 1.398 to 1.934 for the physical properties, and 1.148 to 1.990 for the chemical 
properties. The range of H for the physical properties was between 0.066 and 0.602, and 0.01 and 0.852 for 
the chemical properties. 

Table 2. Summary of fractal analysis of soil physical and chemical properties in the field 

Soil property Depth (cm) 
Fractal parameter 

D H 

Sand (%) 
0-30 1.913 0.087 

30-60 1.934 0.066 

Silt (%) 
0-30 1.878 0.122 

30-60 1.899 0.101 

Clay (%) 
0-30 1.841 0.159 

30-60 1.881 0.119 

Bulk Density (g/cm3) 
0-30 1.870 0.13 

30-60 1.874 0.126 

Degree of Saturation (%) 
0-30 1.398 0.602 

30-60 1.876 0.124 

Total Nitrogen (%) 
0-30 1.947 0.053 

30-60 1.584 0.416 

Olsen Phosphorus (mg/kg) 
0-30 1.524 0.476 

30-60 1.746 0.254 

Available Potassium (mg/kg) 
0-30 1.914 0.086 

30-60 1.990 0.01 

Organic Carbon (%) 
0-30 1.331 0.669 

30-60 1.148 0.852 

pH 
0-30 1.975 0.025 

30-60 1.858 0.142 
D = Fractal dimension; H = Hurst exponent 
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Figure 2.1. Log-log plot of isotropic variograms with fractal dimension (D) for sand content 

 

Figure 2.2. Log-log plot of isotropic variograms with fractal dimension (D) for silt content 

 

Figure 2.3. Log-log plot of isotropic variograms with fractal dimension (D) for clay content 

 

Figure 2.4. Log-log plot of isotropic variograms with fractal dimension (D) for bulk density 

 

Figure 2.5. Log-log plot of isotropic variograms with fractal dimension (D) for degree of saturation 
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Figure 2.6. Log-log plot of isotropic variograms with fractal dimension (D) for total nitrogen 

 

Figure 2.7. Log-log plot of isotropic variograms with fractal dimension (D) for Olsen phosphorus 

 

Figure 2.8. Log-log plot of isotropic variograms with fractal dimension (D) for available potassium 

 

Figure 2.9. Log-log plot of isotropic variograms with fractal dimension (D) for soil organic carbon 

 

Figure 2.10. Log-log plot of isotropic variograms with fractal dimension (D) for soil pH 
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The results obtained for D revealed that the soil properties show fractal behavior, wherein, lower the value 
of D, longer the range of variation, and vice versa (Vieira et al., 2010; Tuffour, 2015). Based on the scaling 
properties of fractional Brownian motion reported by Sugihara and May (1990) and Tuffour (2015), H 
values > 0.5 represent smooth or persistent nature of the soil property, whereas, H < 0.5 represents anti-
persistent nature. Liao et al. (2017) successfully employed fractal analysis to investigate the spatio-temporal 
variability of soil moisture content in contrasting land uses. The above studies showed that fractal 
dimension can be used for assessing the spatial distribution of soil properties at different scales. 
Mohammadi et al. (2017) analyzed spatial variability of soil textural fractions and fractal parameters derived 
from Particle Size Distributions (PSD). In this research, fractal features of particle size distribution of soil 
samples were studied using fractal geometry and then the geostatistics approach was applied to characterize 
the spatial variability of fractal and soil textural parameters. According to the semivariogram models and 
validation parameters applied to the models, it was found that the fractal parameters had powerful spatial 
structure and could better describe the spatial variability of soil texture. The results of the present study 
(Table 2) showed that the nature of the distribution of the soil properties ranged from smooth (persistent) 
to rough (anti-persistent). For instance, DS in the surface layer with D and H values of 1.398 and 0.602, 
respectively implies a long range variation and a more persistent nature than in the subsurface layer (D = 
1.876 and H = 0.124), wherein it would exhibit a short range variation and an anti-persistent nature. 
Furthermore, with the exception of DS in the surface layer (H = 0.602), and OC in both the surface and 
subsurface layers (H = 0.669 and 0.852, respectively), all the soil properties were anti-persistent in nature 
across the study area.   

Conclusion 

In this study, classical and fractal methods were applied to reveal and describe the spatial variability of soil 
properties (i.e., sand, silt, and clay contents, bulk density, degree of moisture saturation, pH, organic carbon 
content, total nitrogen, available phosphorus, and available potassium) in an agricultural field, Northeast 
Iran using fractal parameters (fractal dimension and  Hurst exponent). Comparing the results of the 
descriptive statistics and fractal analysis, revealed that the selected soil properties in the study area exhibit 
short to long range variations at the local scale. The results also showed that fractal characterization is an 
applicable technique for describing the spatial patterns of soil properties. 
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