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The objectives of this research were: (i) to assess the accuracy of diffuse reflectance 
spectroscopy (DRS) in predicting the soil organic carbon (SOC) content, and (ii) 
determine the importance of wavelength ranges and specific wavelengths in the SOC 
prediction model. The reflectance spectra of a total of 424 topsoils (0-25 cm) samples 
were measured in a laboratory using a portable Terra Spec 4 Hi-Res Mineral 
Spectrometer with a wavelength range 350-2500 nm. Partial least squares regression 
(PLSR) with leave-one-out cross validation was used to develop calibration models for 
SOC prediction. The accuracy of the estimate determined by the coefficient of 
determination (R2), the concordance correlation coefficient (ρc), the ratio of 
performance to deviation (RPD), the range error ratio (RER) and the root mean square 
error (RMSE) values of 0.83, 0.90, 2.22, 14.2 and 2.47 g C kg-1 respectively, indicated 
good model for SOC prediction. The near infrared (NIR) and the short-wave infrared 
(SWIR) spectrums were more accurate than those in the visible (VIS) and short-wave 
near-infrared (SWNIR) spectral regions. The wavelengths contributing most to the 
prediction of SOC were at: 1925, 1915, 2170, 2315, 1875, 2260, 1910, 2380, 435, 1960, 
2200, 1050, 1420, 1425 and 500 nm. This study has shown that VIS-NIR reflectance 
spectroscopy can be used as a rapid method for determining organic carbon content in 
the Red Mediterranean soils that can be sufficient for a rough screening. 
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Introduction 
Soil organic carbon content (SOC) is a fundamental constituent of the soil. It governs physical, chemical and 
biological processes in soils. The decline of SOC content in soils is one of the main threats for soil 
degradation. There is an increasing interest for large amounts of the accurate SOC data to be used in 
protection and enhancement of the global environment, soil quality assessment and precision agriculture.  

In last few decades diffuse reflectance spectroscopy (DRS) due to its cost-efficiency, ease of handling, 
rapidity, minimal sample preparation and the development of chemometrics is being considered as a 
possible alternative to the conventional soil laboratory analyses. The visible-near-infrared (VIS-NIR) 
spectroscopy provides a large number of information on the organic and inorganic soil components. 
Absorption in the visible range provides a measure of soil colour, organic matter (Ben-Dor et al., 1999) and 
Fe minerals, mainly haematite and goethite (Sherman and Waite, 1985). The near-infrared (NIR) portions of 
the electromagnetic spectrum are associated with the stretching and bending of NH, OH and CH groups 
(Dalal and Henry, 1986; Clark, 1999; Viscarra Rossel and Behrens, 2010). 
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Published data pointed out that different spectral ranges and wavelengths can be responsible for the 
prediction of the SOC content (Brown et al., 2006; Viscarra Rossel et al., 2006a; Viscarra Rossel and 
Behrens, 2010). Sudduth and Hummel (1991) reported that near-infrared (NIR) reflectance data provided 
considerably better predictions of soil organic matter content than visible (VIS). Islam et al. (2003) 
evaluated the ability of reflectance spectroscopy in the UV, VIS, and NIR ranges to predict several soil 
properties. They demonstrated that the overall prediction of SOC was better with the whole spectral range 
(VIS-NIR) than NIR or VIS. Several studies have examined the question of the spectral ranges most suitable 
for predicting SOC concentration, considering the VIS, VIS-NIR, NIR and mid-infrared (MIR) (Viscarra Rossel 
et al., 2006b). They indicated that the MIR was more suitable than the NIR or VIS, but also noted that the MIR 
spectroscopy is more expensive and complex than VIS‐NIR measurement.  

The contribution of each wavelength of the VIS-NIR reflectance spectra for the SOC prediction was the 
subject of numerous studies (Ben-Dor and Banin, 1995; Dalal and Henry, 1986; Chang and Laird, 2002; Lee 
et al., 2009; Stenberg et al., 2010; Sarkhot et al., 2011; Xu et al. 2016). They have identified different 
wavelengths as important for estimation of SOC.  

Numerous studies used VIS-NIR spectroscopy to analyse SOC content on the global (Brown et al., 2006; 
Viscarra Rossel et al., 2016), continental (Stevens et al., 2013), national (Vasquez et al., 2010; Knadel et al., 
2012; Shi et al., 2015; Wijewardane et al., 2016), regional (Ben-Dor and Banin, 1995; Islam et al. 2003; Lee et 
al., 2009; Summers et al., 2011; Sarkhot et al., 2011; Leone et al., 2012; Shi et al., 2015) and local/field scales 
Kuang and Mouazen, 2012; Wetterlind et al., 2010; Fontán et al., 2011). The most studies were conducted on 
the heterogeneous sets of soil samples with respect its geographical origin and varying of soil forming 
factors (Climate, Organisms, Topography, Parent material and Time). The exposed literature sources showed 
that the estimates of the SOC have been validated with a substantial range of the accuracy. The possible 
factors of the relatively large differences in the accuracy of the SOC estimation related with a number of 
factors (high SOC variability, the heterogeneity of soil types and parent material, land uses and size of the 
sampling area). Numerous studies have shown that geographically closer and more homogeneous sample 
sets with similar characteristics resulted in the improved SOC prediction models (Vasques et al., 2010, 
Wijewardane et al., 2016).  

In this context, we decided to explore the accuracy of VIS-NIR spectroscopy for prediction of SOC content 
using soil samples that are similar with respect to soil types, parent materials and land use. We have chosen 
Red Mediterranean soils from Dalmatia, Croatia on limestones and dolomites used in agricultural 
production. The objectives of this work were (i) to assess the accuracy of the diffuse reflectance 
spectroscopy and PLSR for the SOC measurement and (ii) to determine the importance of different VIS-NIR 
spectral ranges and the wavelengths for the estimating SOC content. 

Material and Methods 
Study area and soil data  

In our analyses, we used the SOC content data and soil spectra for a total of 424 topsoil samples selected 
from a Spectral library of soils from Dalmatia (Miloš, 2013). Dalmatia occupies the middle part of the 
Adriatic coastal zone of Croatia. The SOC content was determined using the Kotzman method (JDPZ, 1966). 
Selected data belong to soils with a characteristic reddish-brown to red colour what is commonly referred to 
as a Red Mediterranean soil or Terra Rossa on hard limestone and dolomites. According to the Croatian soil 
classification system, these soils belong to the class of Cambic soils. The World Reference Base for soil 
resources (FAO, 2014) equivalents is Chromic Cambisols and Rhodic Cambisols. The climate of the study 
area is Mediterranean, with dry, hot summers and mild, moderately rainy winters. Agricultural areas of this 
typical karst environment consists a large number of dislocated smaller areas and parcels of olive groves, 
vineyards, fruit orchards and abandoned agricultural land. 

Spectra measurements and data pre-processing 

The reflectance spectra of soil samples were measured in a laboratory using a portable Terra Spec 4 Hi-Res 
Mineral Spectrometer with a wavelength range 350-2500 nm. Soil samples were air-dried and sieved 
through 2 mm sieve. The correction with a standardised white Spectralon® panel (Analytical Spectral 
Devices, Boulder, CO, USA) with 100% reflectance was made prior to the first scan and after every ten 
samples. All spectra were recorded at 1 nm data spacing interval over the wavelength range of 400-2500 
nm. Pre-processing method: first derivative with Savitzky-Golay smoothing (Savitzky and Golay, 1964), with 
a second order polynomial fit. The spectral range of the soil spectra was first reduced to 400 - 2490 nm to 
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eliminate the noise at the edges of each spectrum. Spectral shortening was followed by averaging of the 
adjacent 5 nm wavelength. Thus, the total number of wavelengths for VIS-NIR modelling were 419 
wavelengths. 

Model Calibration and Validation  

We used the partial least squares regressions (PLSR) with leave-one-out cross-validation method for 
calibrating the spectral data with the reference data and SOC model construction. For more details on the 
PLSR see e.g. Martens and Naes (1989) and Wold et al. (2001). Leave-one-out cross-validation method 
(Efron and Tibshirani, 1994) we used to determine the optimal number of the factors to retain in the 
calibration model. The regression coefficients for each of the 419 wavelengths in the range of 400 to 2490 
nm were calculated. The best SOC model was generated when the PLS analyses were run using only 
significant wavelengths (p<0.05) identified with Marten's uncertainty test. 

Model Performance Evaluation  

Predictive performances of the SOC model were evaluated by calculating the root mean square error 
(RMSEP) of prediction, the ratio of performance to deviation (RPD), range error ratio (RER) the coefficient of 
determination (R2) and the concordance correlation coefficient (ρc). RMSEP is defined as the square root of 
the average of squared differences between predicted and measured Y values of the validation objects and 
evaluated by Equation (1): 

RMSEP =

√
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Eq. (1) 

where 𝑦𝑖  and yî are the measured and predicted values of sample i, respectively, and N is the number of 

samples.  

The RPD was initially used by Williams (1987) for assessing the goodness of fit for NIR calibrations. The RPD 
represents the division between the reference data standard deviation and the standard error of the 
prediction and deduced with Equation (2): 

RPD = SD
SEP⁄  Eq. (2) 

where SD is the standard deviation of the validation dataset and SEP (Equation 3), which is standard error of 
prediction.  SEP is the RMSEP corrected for bias (Equation 3). Bias is the average value of the difference 
between predicted and measured values (Equation 4). 
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Eq. (4) 

To interpret the RPD values we adopted the six level interpretations given by Viscarra Rossel et al. 
(2006b) as follows: RPD<1.0 indicate very poor model/predictions and their use is not recommended; RPD 
between 1.0 and 1.4 indicate poor model/predictions where only high and low values are distinguishable; 
RPD between 1.4 and 1.8 indicate fair model/predictions which may be used for assessment and 
correlation; RPD values between 1.8 and 2.0 indicate  good  model/predictions where quantitative 
predictions are possible; RPD between 2.0 and 2.5 indicate very good, quantitative model/predictions and 
RPD>2.5 indicate excellent model/predictions. 

Range Error Ratio (RER, Equation 5) is the ratio of the range of the reference data to the SE in the validation 
set (Starr et al., 1981).  

RER = 
Max − Min

SEP
 

Eq. (5) 
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In Equation 5, Max and Min are the maximum and the minimum values observed in the reference data. The 
RPD and RER are dimensionless statistics, meaning they can be compared on the same basis between 
different models. The RER values we interpreted according to the thresholds given by Malley et al. (2004) as 
follows: RER>20 indicate excellent prediction model; 15≤ RER ≤20 successful; 10≤ RER 15 moderately 
successful and 8≤ RER <10 indicate moderately useful prediction model.   

To interpret the predictive performances of the SOC models calculated by the coefficient of determination 
(R2) we adopted threshold values given by Saeys et al. (2005) as follows: a value for R2 between 0.66 and 
0.80 indicates approximate quantitative predictions, R2 between 0.81 and 0.90 reveals good prediction 

and R2 >0.90 is considered to be an excellent prediction. The concordance correlation coefficient (ρc) was 
proposed by Lin (1989) for assessment of concordance (agreement) between two measures of the 
continuous data. Like a correlation, Lin's concordance correlation coefficient (ρc) ranges from -1 to 1, where 
a value of 1 denotes perfect agreement; values >0.90 suggest excellent agreement; values between 0.80 and 
0.90 substantial agreement; between 0.65 and 0.80 moderate agreement and values <0.65 poor agreement. 

Results and Discussion 

The soil organic carbon statistics and soil spectral properties 

The descriptive statistics of the soil organic carbon content analysed using conventional laboratory method 
analysis (reference dataset), and their calibration and cross-validated PLSR predictions for the four spectral 
regions: VIS (400-700 nm), NIR (700-2490 nm), SWNIR (700-1100 nm), SWIR (1100-2490 nm) and 
combined VIS-NIR (400-2490 nm) is given in Table 1. The SOC content for the reference dataset varies from 
0.81 to 37.87 g C kg−1 with an average value of 21.35 g C kg−1 (Table 1). 

Table 1. Statistical description of the soil organic carbon content (g kg-1) for the reference, calibration and validation 
datasets for different spectral ranges  

Statistics Reference 
Calibration Validation 

VIS-NIR VIS-NIR NIR VIS SWIR SWNIR 

Mean 21.35 21.35 21.36 21.37 21.36 21.37 21.36 

Minimum 0.81 0.36 0.25 0.32 0.05 0.25 0.02 

Maximum 37.87 35.35 35.28 33.84 31.11 33.51 29.04 

Range 37.06 34.99 35.03 33.52 31.06 33.25 28.92 

Std.Dev. 5.96 5.52 5.47 5.19 4.37 5.12 4.12 

Skewness -0.55 -0.79 -0.81 -0.84 -1.19 -0.86 -1.51 

VIS-NIR – visible and near infrared range (400-2490 nm); NIR – near infrared range (700-2490 nm); VIS – visible range (400-700 
nm); SWIR - shortwave infrared range (1100-2490 nm); SWNIR – shortwave near infrared range (700-1100 nm) 

The negatively skewed distribution for the reference, calibration and VIS-NIR, NIR and SWIR validation 
dataset indicate a slightly asymmetrical distribution with a long tail to the left. The skewness for the 
validation VIS and SWNIR spectral regions are less than -1.0 and indicate substantial skewness and the 
distribution is far from symmetrical. 

Figure 1 and 2 show mean reflectance spectra and mean first-derivative reflectance spectra of the soil 
samples that were used to develop PLSR calibration model. The shape of the overall reflectance spectra 
(Figure 1) shows a typical soil spectrum characterised with reflectance increasing with increasing 
wavelength in the visible range (400–700 nm) and does not contain distinct or sharp peaks that can be 
directly associated with specific constituents. In the visible range, the mean first-derivative of the SOC 
reflectance spectra (Figure 2) shows two obvious adsorption bands near 430 and 565 nm which can be 
attributed to the presence of the chromophorous constituents, mainly iron oxide (Ben-Dor et al., 1999).  The 
mean reflectance spectra (Figure 1), as well as mean first-derivative spectra (Figure 2), show a weak 
concave shape at the wavelengths around 800-970 nm. This concavity can be attributed mainly to increased 
iron oxide content since the soil samples contain a low content organic matter which can mask the effect of 
Fe (Demattê et al., 2004).  

Furthermore, soil mean reflectance and first-derivative spectra (Figure 1 and Figure 2) show several 
important absorptions around 1400, 1900, and 2200 nm. In addition to this, first-derivative spectra shows 
strong adsorption around 2400 nm (Figure 2). These absorptions can be attributed to water molecule 
vibrations and OH- groups (1400 nm), water (1900 nm) and mineral influences (2200 nm and 2400 nm).   
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Figure 1. The mean reflectance spectra for 424 soil 
samples 

Figure 2. The mean first-derivative spectra for 424 soil 
samples 

Performance assessment of calibration and validation models  

Statistical description of the PLSR calibrated and their cross-validated PLSR SOC predictions for different 
spectral ranges is given in Table 2. The best SOC prediction model for the each spectral range was generated 
when the PLSR analyses included five factors. The PLSR SOC model with the lowest RMSEP and highest R2, 
ρc, RPD and RER is considered as the best model. The best prediction for SOC was obtained from the VIS-NIR 
spectra with validation R2, ρc, RPD, RER and RMSEP values of 0.83, 0.90, 2.22, 14.2 and 2.47 g C kg-1 
respectively. 

Table 2. Calibration and validation results of the SOC models diagnostics for the different spectral ranges and combined 
VIS-NIR spectral range 

Spectral 
range 

Calibration Validation 
RMSEC R2 RMSEP Bias SEP R2 ρc RPD RER 

VIS-NIR 2.18 0.88 2.47 -0.01 2.46 0.83 0.90 2.22 14.2 
NIR 2.70 0.84 2.99 0.02 3.01 0.75 0.86 1.72 14.1 
SWIR 2.96 0.75 3.24 -0.01 3.23 0.70 0.83 1.35 9.6 
VIS 4.11 0.52 4.53 -0.01 4.52 0.42 0.61 1.13 7.4 
SWNIR 4.23 0.49 4.50 0.01 4.51 0.46 0.61 0.91 6.4 

RMSEC - root mean square error of calibration; R2 - coefficient of determination; RMSEP - root mean square error of 
prediction; SEP – standard error of prediction, ρc - concordance correlation coefficient; RPD - ratio of performance to 
deviation; RER -  range error ratio 

According to threshold values for the coefficient of determination (R2) given by Saeys et al. (2005) R2 values 
of the SOC validation models for the spectral ranges (Table 2) can be interpreted as follows: the SOC model 
developed using the VIS-NIR spectral range reveals good prediction; NIR and SWIR region indicate 
approximate quantitative predictions until the calibrations for VIS and SWNIR region are only able to 
discriminate between high and low SOC values.  

Lin's ρc values of the SOC validation models for the VIS-NIR range (Table 2) suggests good agreement; the 
NIR and SWIR region denote substantial agreement and VIS and SWNIR region suggest a poor agreement 
between reference data and the cross-validated SOC values.  

According to the stated interpretation given by Viscarra Rossel et al. (2006b), follows that the VIS-NIR 
spectral range with the RPD value of 2.22 (Table 2) indicates very good quantitative model for the SOC 
prediction; NIR indicates fair model; SWIR and VIS regions with the RPD values between 1.0 and 1.4 indicate 
poor prediction model and SWNIR regions with values of the RPD <1.0 and indicates very poor SOC 
prediction model.  

The RER values for different spectral ranges (Table 2) we interpreted according to the thresholds given by 
Malley et al. (2004) as follows: the SOC model created using VIS-NIR and NIR range (10≤RER≤15) indicate 
moderately successful prediction; SWIR spectral range with 8≤RER<10 indicates moderately useful 
prediction model and model created using the VIS and SWNIR region RER<8 indicate poor prediction.   

The RMSEP is the most efficient measure of the average uncertainty in spectral predictions that can be 
expected for future predicting new samples. The future predictions of the samples in the test set can be 
considered that 2 times RMSEP represents a 95% confidence interval for the real values. Since RMSEP values 
for the SOC predicted models (Table 2) ranged from 2.47 g C kg-1 (VIS-NIR) to 4.53 g C kg-1 (VIS) with its 
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mean value of 21.36 g C kg-1 (Table 1), then there is a 95% chance that the mean value of the SOC content, as 
measured in laboratory, lies between 16.42 to 26.30 g C kg-1 and 12.30 to 30.42 g C kg-1 respectively. 

The predictive performance of the SOC prediction model in this study (Table 2) is a similar accuracy as those 
obtained by Gras et al. (2014), Wijewardane et al. (2016) and Knadel et al. (2012) who achieved similar R2 
values of 0.82, 0.83 and 0.81 and RPD of 2.40, 2.41 and 2.40, respectively. Some authors (Brown et al., 2006; 
Chang and Laird, 2002 and Viscarra Rossel et al., 2016) reported the higher accuracy of SOC prediction 
models than our with R2 values of 0.87, 0.89 and 089, respectively. Leone et al. (2012) obtained a high 
accuracy (R2 0.84-0.93 and 2.36-2.53 RPD) for local SOC predictive models in the soils of southern Italy. 
Study of Kuang and Mouazen (2012) at the farm-scale in four different European countries showed a very 
wide range of R2 and RPD, 0.12-0.96 and 1.07-4.95, respectively. Wetterlind et al. (2010) reported a very 
good prediction of SOM (R2 = 0.89, RMSE = 4.70 g kg-1 and RPD= 3.0) achieved for a farm-scale calibration 
model using only 25 soil samples. However, numerous studies achieved a less predictive capacity of SOC 
models than our e.g. Gao et al. (2014), Shi et al. (2015), Summers et al. (2011) and Fontán et al. (2011). In the 
mentioned studies R2 ranged from 0.55 to 0.79 and RPD from 1.80 to 2.01. The exposed large differences in 
the accuracy of the SOC estimates related with a number of factors (high SOC variability, the heterogeneity of 
soil types and parent material, land uses and size of the sampling area) and it cannot be easily identified. 

In general, all parameters of cross-validated predictions diagnostic (R2, Lin's ρc, RPD, RER and RMSP) given 
in Table 2, showed that the SOC prediction model created using combined VIS-NIR spectra provides the most 
accurate predictions. So, the NIR and the short-wave infrared (SWIR) spectrum predictions were more 
accurate than those in the VIS and short-wave near-infrared (SWNIR) spectral region. Exposed is in 
accordance with previous findings, e.g. Sudduth and Hummel (1991) who reported that NIR reflectance data 
provided considerably better predictions of soil organic matter content than those in the visible range.  Islam 
et al. (2003) demonstrated that the overall prediction of SOC was better with the whole VIS-NIR spectral 
range than in the NIR.  

Identification of the important wavelengths for the SOC prediction 

The contribution of each wavelength of the VIS-NIR spectral range for the SOC prediction model, marked 
with PLSR regression coefficient, is shown in Figure 3. The best SOC prediction model included only those 
wavelengths for which Marten's test of uncertainty showed that significantly contribute (p < 0.01) to the 
prediction. Figure 3 illustrates that the final SOC model retained a very large number of wavelengths (total 
number of selected wavelengths were 176) and that the significant wavelengths with large regression 
coefficients were observed throughout the spectrum. 

 

Figure 3. Regression coefficients of the wavelengths retained as a significant (p < 0.01) in the final a fifth-component 
SOC prediction model for VIS-NIR range 

In the visible range the significant wavelengths with the maximum regression coefficients of the SOC 
prediction model were observed as individual peaks at 430 and 435 nm and a broad spectral range from 500 
to 590 nm, with maximum peaks at 500 and 555 nm (Figure 3). In the SWNIR (700-1100 nm) spectral region 
there is noticeable a broad region around 800 nm with a maximum contribution at 815, 830 and 840 nm. 
Wavelengths in these spectral regions associated with the chromophorous constituents - iron oxides – 
mainly haematite and goethite (Sherman and Waite, 1985) and organic matter (Ben-Dor et al., 1999). The 
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highest correlation coefficients were observed in the short-wave infrared (SWIR, 1100-2500 nm) region 
(Figure 3). This spectral region is characterised with featured absorption bands around 1400 (max. peak at 
1420 nm), 1900 (max. peak at 1925 nm), 2200 and 2300 nm due to OH- and water (1400 nm and 1900 nm) 
and mineral influences (2200 and 2300 nm). These absorption bands associated also with the overtones and 
combination absorptions of C–H, O–H, S–H, C=O, and N–H (Dalal and Henry, 1986; Clark, 1999; Viscarra 
Rossel and Behrens, 2010) and consequently contain information about the concentration of the organic 
composition of the scanned soil sample. The high contributing wavelengths of the water adsorption features 
are consistent with research findings by Viscarra Rossel et al. (2006a) and Sarkhot et al. (2011). The 
wavelengths contributing most to the SOC prediction model are found around 2200 nm (max. peak at 2170 
nm) and around 2300 nm (max. peaks at 2315 and 2380) due to Al–OH bend plus O–H stretch combinations, 
that are diagnostic absorption features in clay mineral identification (Clark et al., 1990). Many other authors 
(Ben-Dor and Banin, 1995; Dalal and Henry, 1986; Stenberg et al. (2010) and Viscarra Rossel and Behrens 
(2010) have also identified the bands around 2200 and 2300 nm as being important for SOC calibration.  

Ordering 15 wavelengths with the highest regression coefficients in the final a fifth-component SOC model 
for VIS-NIR range were: 1925, 1915, 2170, 2315, 1875, 2260, 1910, 2380, 435, 1960, 2200, 1050, 1420, 1425 
and 500 nm. This is consistent with other research findings. For example, Lee et al. (2009) reported 450–
465, 965, 1409, and 1775–2200 nm as important wavelengths for soil organic carbon prediction. Sarkhot et 
al. (2011) observed the significant wavelengths throughout the spectrum, while the magnitude of PLSR 
coefficients was higher in the region 400, 1400, 1900 and 2200 or 2300 nm. Chang and Laird (2002) 
reported that the wavelengths important for organic carbon were in the range between 1770 nm to 2500 
nm. This study showed that twelve of the fifteen most significant wavelengths were greater than 1100 nm. 
The advantage of the wavelengths above 1100 nm is that they are uncorrelated with Fe- oxides that reduced 
the collinearity problem with organic matter. This is consistent with previous research (Ben-Dor and Banin, 
1995; Dalal and Henry, 1986; Stenberg et al., 2010; Xu et al., 2016) which have identified wavelengths 
around 1100, 1600, 1700 to 1800, 2000, and 2200 to 2400 nm as being particularly important for SOC 
calibration. 

As conclusions, (i) all parameters of cross-validated predictions diagnostic R2, Lin's ρc, RPD, RER and RMSEP 
with values of 0.83, 0.90, 2.22, 14.2 and 2.47 g C kg-1 respectively indicated good model for predicting of the 
organic carbon in Red Mediterranean soil, (ii) the SOC prediction model created using combined VIS-NIR 
spectra provided the most accurate SOC predictions, (iii) the NIR and the short-wave infrared (SWIR) 
spectrum predictions were more accurate than those in the VIS and short-wave near-infrared (SWNIR) 
spectral region and (iv) the wavelengths contributing most to the prediction of SOC content were at 1925, 
1915, 2170, 2315, 1875, 2260, 1910, 2380, 435, 1960, 2200, 1050, 1420, 1425 and 500 nm. Taking into 
account the predictive statistics and accuracy of created model, it can be sufficient for rapid and a rough 
screening of the organic carbon in Red Mediterranean soils. 
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