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BACKGROUND: Atherosclerosis is a leading 
cause of vascular disease worldwide. During the 
past several decades, landmark discoveries in the 

field of vascular biology have evolved our understanding 
of the biology of blood vessels and the pathobiology of 
local and systemic vascular disease states and have led 
to novel disease-modifying therapies for patients. This 
review is made to understand the molecular mechanism of 
atherosclerosis for these future therapies.

CONTENT: Advances in molecular biology and -omics 
technologies have facilitated in vitro and in vivo studies 
which revealed that blood vessels regulate their own 
redox milieu, metabolism, mechanical environment, and 
phenotype, in part, through complex interactions between 
cellular components of the blood vessel wall and circulating 
factors. Dysregulation of these carefully orchestrated 
homeostatic interactions has also been implicated as the 

mechanism by which risk factors for cardiopulmonary 
vascular disease lead to vascular dysfunction, structural 
remodeling and, ultimately, adverse clinical events.

SUMMARY: Atherosclerosis is a heterogeneous disease, 
despite a common initiating event of apoB-lipoproteins. 
Despite of acute thrombotic complications, an adequate 
resolution response is mounted, where efferocytosis 
prevents plaque necrosis and a reparative scarring response 
(the fibrous cap) prevents plaque disruption. However, 
a small percentage of developing atherosclerotic lesions 
cannot maintain an adequate resolution response, which 
leading to the formation of clinically dangerous plaques that 
can trigger acute lumenal thrombosis and tissue ischemia 
and infarction.
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Abstract

Introduction

The burden of cardiovascular disease (CVD) has been risen 
to be a leading cause of morbidity and mortality despite the 
existence of statin and other preventive strategies to resolve 
it.(1,2) Simultaneously, many clinical researches had been 
performed to unravel the mechanisms and pathophysiology 
of atherosclerosis along with the clinical complications. 
These let us discover the development of new therapeutic 
approaches to combat CVD which is accompanied by so 
many advances and surprises.(3)

 Gimbrone and García-Cardeña described the 
endothelial cells as a gatekeeper with barrier function, 
emerging the defender of vascular homeostasis.(4) 
Disturbances in antithrombotic, profibrinolytic, anti-
inflammatory and antioxidant properties of the normal 
endothelium lead to endothelial dysfunction and impairment 
of its vasodilator capacity.
 Inflammation is entangled with traditional and 
emerging risk factors of atherosclerosis and its complication 
as a linked target pathways for developing therapies. 
Current large-scale study is applying weekly administration 
of low-dose methotrexate (MTX) or a monoclonal antibody 
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(Mab) that neutralizes interleukin 1β.(5,6) The point of this 
study is about applying anti-inflammatory intervention on 
the right spot that will quell the disease without impairing 
tumor surveillance or defenses against infection.(7)
 Some studies affirmed the dynamic regulation to keep 
free cholesterol (FC) in cellular membrane micro domains 
and esterified cholesterol in lipid droplets in a balance state, 
which was regulated by lipoproteins and cellular cholesterol 
exporters. So, increasing FC in immune cells promotes 
receptor over sensitization that lead to inflammation, 
hematopoietic stem cell proliferation, leukocytosis and 
T-cell activation. Thus, these links of cellular cholesterol 
and inflammation are affecting not only atherosclerosis but 
also influence autoimmune diseases.(3)
 The ascertainment of high-density lipoprotein (HDL) 
functions (such as cholesterol efflux potential), HDL 
particle number and therapeutic approaches that increase 
these variables faces challenges from disappointing results 
in many clinical studies and Mendelian randomization 
analyses.(8) Other approaches focusing on increasing the 
HDL function, using HDL mimetics to reverse transporting 
cholesterol or apolipoprotein A1 (apo A1) infusion, are also 
need to be reconsidered.
 Recent studies on triglyceride-rich type lipoproteins 
and its pathogenicity have revitalized the enthusiasm for 
finding apolipoproteins V, apolipoproteins and C3, Angptl3 
and Angptl4 as new therapeutic triglycerides targets 
or perhaps more specifically cholesterol-rich remnant 
lipoproteins.(8,9) Genome-wide association studies and 
Mendelian randomization analyses brought up Lipoprotein 
(a) (Lp(a)) as a causative agent in atherothrombosis.(10) 
Another study found the role of noncoding small RNAs 
(micro-RNAs) as the power switch on atherosclerotic 
progression and regression as well as regression and lipid 
metabolism, which has opened entirely new vistas on the 
molecular pathways that control this disease.(11)
 Then any availability of validated genetic markers 
proposes the possibility for applied risk stratification 
and personalized or precision medicine targeting 
therapy mode.(10,11) Paynter, et al., proposed about the 
usefulness of genetic information in risk prediction and 
pharmacogenomic determinants of the response to therapies 
for atherothrombosis.(12) More studies were needed to 
bring those hypotheses from basic research to advance 
clinical application.(3)
 We know that one size fits all approach is nowadays 
need to be developed into a smarter design. The goal 
of precision medicine in the future management of 
atherosclerotic risk in our patients could be achieved by 

using biomarkers and genetic information rationally to 
classify target therapies toward those who will most likely 
to benefit from the treatment.(13,14)

Today, it is no longer a hypothesis, but an established 
fact, that increased plasma concentrations of cholesterol-
rich apolipoprotein-B (apoB)-containing lipoproteins are 
causatively linked to atherosclerotic CVD and that lowering 
low-density lipoprotein (LDL) concentrations with statins 
and non-statins reduces atherosclerotic cardiovascular 
events in humans.(15-20) After decades of research, 
however, there is now a large body of evidence to support 
the response-to-retention hypothesis, which proposed that 
the key initiating event in atherogenesis is the retention, or 
trapping, of cholesterol-rich apoB-containing lipoproteins 
within the arterial wall. The retained lipoproteins and their 
byproducts provoke a series of strikingly maladaptive 
local responses that cause plaque initiation, growth, and 
evolution.(21)
 The response-to-retention hypothesis, which was drew 
on work from the 1940s to the 1980s, shows that lipoproteins 
can interact with proteoglycans of the arterial wall.(22-25) 
Lipids and apoB are accumulated at lesion-prone sites before 
gross morphological changes occur.(26-29) Retention of 
apoB-lipoproteins is seen throughout the progression of 
atherosclerosis. The consequences of the retention of apoB-
lipoproteins include, not only an accumulation of lipid, but 
also prolonged exposure of these particles  to local enzymes 
and other factors within the vessel wall. The retained and 
modified apoB-lipoproteins trigger cellular responses within 
the artery wall that accelerate further lipoprotein retention 
and lesion development.(30-32) 
 In earliest atherogenesis, negatively charged 
proteoglycans in the extracellular matrix of the arterial 
intima bind and trap apoB-lipoproteins via electrostatic 
interactions with specific positively charged aminoacyl 
residues in the full-length hepatic form of apoB, apoB100 
(residues 3359–3369) (33), and in the truncated intestinal 
form, apoB48 (residues 84–94) (34). Moreover, apoB48-
lipoproteins typically contain numerous molecules of apoE, 
an apoprotein that has a proteoglycan-binding domain 
almost identical to the proteoglycan-binding sequence in 
apoB100. Proteoglycans are negatively charged due to the 
sulfate and carboxylic acid groups in their GAG side-chains.
Lipoproteins normally flux into and out of the arterial 
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wall.(28,35) The molecular mediators of this trans-
endothelial movement of lipoproteins remain incompletely 
characterized. Recent evidence has suggested roles for 
caveolin-1 (36,37) and the scavenger receptor class B type 
I (SR-BI) (38). Following retention of cholesterol-rich 
apoB-lipoproteins within the artery wall, the lipoproteins 
have been shown to undergo several modifications with 
important biological consequences (Figure 1).
 Aggregated apoB-lipoproteins are avidly taken up 
by macrophages (30,39) and by vascular SMCs (40) and 
lead to foam-cell formation. These processes stimulate 
the release of proatherogenic factors that induce the 
synthesis of proteoglycans with enhanced affinity for 
atherogenic lipoproteins.(30,39) In addition, monocyte/
macrophages recruited into atheromata secrete proretentive 
enzymes, notably lipoprotein lipase, sphingomyelinase and  
PLA2,  that  accelerate  further  retention  of  atherogenic  
lipoproteins.(21)
 Key enzymes implicated in apoB-lipoprotein 
retention, aggregation, and atherogenesis include the 
secretory sphingomyelinase (S-SMase), lipoprotein lipase, 
and the non-pancreatic secretory group V phospholipase-A2 
(PLA2-V).(30,41-45) These enzymes, particularly 
lipoprotein lipase, are bridging between LDL and 
proteoglycans independently of the physical state of apoB 
and thereby cause a shift in the retentive mechanism from 

Figure 1. The response-to-retention 
model of initiation and progression 
of atherosclerosis.(21) (Adapted with 
permission from Wolter Kluwer Health).

a low-affinity process (apoB-GAG binding) in the pristine 
arterial wall to a high-affinity process (lipoprotein-GAG 
binding) in an established atheroma. This shift in retentive 
mechanism has direct clinical consequences. A lifetime 
plasma LDL cholesterol concentration of 80 mg/dL will 
almost always protects from atherosclerosis (46), but the 
pre-existing plaques will grow if the LDL-cholesterol is 80 
mg/dL (47).
 In the context of the response-to-retention hypothesis, 
roles for HDL in every step have been hypothesized.
(48) Those roles include interfering with the irreversible 
binding of plasma LDL to arterial wall proteoglycans (49-
51), blocking SMase-induced aggregation of LDL (52,53), 
removing toxic lipids and resolving the maladaptive 
inflammatory infiltrate (54-58). Along these lines, the apoA-I 
mimetic peptide 4F was recently shown to block SMase-
induced LDL aggregation and the increase in binding of 
the modified LDL particles to human aortic proteoglycans.
(59) In contrast, abnormal HDL or apoA-I within the 
arterial wall may have adverse effects.(53,60-62) Using our 
extensive knowledge of the pathogenesis of atherosclerosis, 
we can now reclassify nearly all epidemiologic risk factors 
into causative agents, exacerbating factors and bystander 
phenomena.(63) Causative and exacerbating factors are 
targets for therapy, meanwhile bystander phenomena are 
not.
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Key steps in the atherosclerosis process include the 
accumulation and oxidation of LDLs by reactive oxygen 
species (ROS) within the artery wall accompany with 
persistent inflammatory process via infiltration of 
monocyte-macrophages, forming foam cells on uptake of 
oxidized LDL (ox-LDL). This process sooner or later can 
result in rupture or erosion of the arterial wall, forming 
thrombus and subsequent platelet aggregation called 
atherothrombosis, which resulting in blood flow occlusion 
and downstream cellular damage. The involvement of 
ROS in atherothrombosis process is including nitric oxide 
(NO) inactivation or NO synthase inhibition and platelet 
activation via overexpression of platelet eicosanoids and 
platelet NO inhibition, which finally contribute to the 
arterial dysfunction.(64,65)
 Besides LDL, sphingolipids are also proven to have 
a potent biological effects in atherosclerotic process. 
Ceramides are a group of sphingolipids generated from 
hydrolysis of sphingomyelin by sphingomyelinases, 
neutral sphingomyelinases, and acidic sphingomyelinases 
(A-SMase). By the activation of sphingomyelinases, 
ox-LDL increases the production of ceramides.(53,66) 
Then sphingomyelinase-dependent hydrolysis of LDL–
sphingomyelin become a potential pathway for ceramide 
accumulation in atherosclerotic plaques.(53) Compared 
to healthy vascular tissue, glycosphingolipids, such as 
glucosylceramide and lactosylceramide, which are generated 
from ceramides have also been found higher in human 
atherosclerotic plaque.(67,68) Both lactosylceramide and 
ceramide through the action of neutral sphingomyelinase 
were involved in cell apoptosis (69-71), but lactosylceramide 
has been suggested to contribute in plaque formation by 
stimulating cell proliferation in human aortic smooth muscle 
cells (72,73). Not only associated with, but also suggested 
to induce plaque inflammation and instability, sphingolipids 
especially glucosylceramide open up opportunities to be a 
novel therapeutic targets.
 Lipid rafts, microdomains, or nanodomains, different 
in sizes from 5- to 500-nm-diameter structures, could be 
highly ordered formed regularly from glycerophospholipids, 
sphingomyelin and FC, but not cholesteryl ester (CE).
(74-76) Membrane rafts are small heterogeneous, highly 
dynamic, sterol- and sphingolipid-enriched domains 
that compartmentalize cellular processes.(76) They are 
detergent-resistant membrane complexes rich in FC. FC 

Oxidative Stress, Inflammation and 
Atherosclerosis

serve as the raft stabilizer through hydrophobic binding to 
the other components. Lipid raft commonly present in two 
types, planar lipid raft and invaginated one, with caveolar or 
little cave whose structure depends on the caveolin proteins 
that are unique to caveolae. Cholesterol is an essential 
component of both lipid rafts and caveolae.(77-81)
 To maintain lipid raft, cells require FC. Excess FC for 
this purpose will be stored in the cytoplasm as CE. When 
the influx of cholesterol is greater than the outflow, the 
accumulation of CE droplets and foam cell formation occurs. 
Otherwise, loss of foam cell cholesterol will occur. Thus, high 
value of EC/total cholesterol ratio implies cell progression, 
whereas a low value implies foam cell regression.(82) Lipid 
raft must be carefully regulated so the microdomains or 
nanodomains are able to provide a platform for organizing 
the signaling of many receptors and proteins, including 
the B-cell receptor, T-cell receptor (83-85) and major 
histocompatibility class receptors (86,87). The cholesterol 
used to form and maintain lipid raft can be obtained from 
exogenous sources, such as lipoproteins, especially LDL, 
or from endogenous cellular synthesis via the mevalonate 
pathway in the endoplasmic reticulum followed by transport 
to the plasma membrane, or from the intracellular lipid 
droplets.(88,89) From lipid droplets, cholesterol will move 
out with help of extrinsic signals promoting the hydrolysis 
of CE by cholesterol ester hydrolases.(90,91) FC also 
can be used for cellular membrane maintenance, unless it 
will be moved to a substrate pool for export via ABCA1.
(92,93) The membrane cholesterol that regulates lipid raft 
composition, controlled by ABCA1 under the regulation of 
the liver X receptor.(94)
 Modified lipoproteins, such as ox-LDL, enhance 
endothelial damage that trigger leukocyte recruitment, 
which eventually fail to clear lipoproteins, undergo cell 
death, and contribute to inflammation. Ultimately, growing 
lesions will lead to vessel occlusion and subsequent 
ischemia or (arterial) thrombosis.(95,96) After long time 
been denied, neutrophils and their specific contribution 
in atherosclerosis pathophysiology, recent studies present 
substantial evidences about the actions of neutrophils in 
early and established human and murine atherosclerotic 
lesions.
 Suicidal neutrophils expel become neutrophil 
extracellular traps (NET), which consist of a complex 
structure of nuclear chromatin and proteins of nuclear, 
granular and cytosolic origin. They have a net-like 
structures which also found in atherosclerotic lesions and 
arterial thrombi in humans and mice. Functionally, NET can 
induce pro-inflammatopry immune response via activation 
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Figure 2. Macrophage apoptosis, autophagy and necroptosis in atherosclerosis.(105) (Adapted with permission from Wolter Kluwer 
Health).

of endothelial cells, antigen-presenting cells and platelets. 
Thus, NET not only presents in plaques and thrombi but 
also plays a causative role in triggering atherosclerotic 
plaque formation and arterial thrombosis in any stage of 
diseases progression, especially where there are high local 
concentration of pro-inflammatory effector molecules.(97) 
The present neutrophil-derived proteases and ROS lead to 
plaque destabilization.(98-100)
 Atherosclerosis is a chronic lipid-driven, maladaptive 
and non-resolving inflammatory disease of the vessel 
wall. Over several decades, atherosclerosis progresses in 
indolence and silence, eventually resulting in the formation 
of a life-threatening, rupture-prone atherosclerotic plaque.
(101-103) In brief, the disease is triggered by subendothelial 
retention of infiltrated LDL into the intimal space. The 
accumulated LDL undergoes oxidation and aggregation 
in the intima, presenting a source of chronic stimuli 
that instigate and propagate an innate immune reaction. 

This includes the recruitment, homing, migration and 
differentiation of monocytes into macrophages that avidly 
phagocytose modified cholesterol, secrete pro-inflammatory 
cytokines, enzymes and ROS and eventually undergo cell 
death. Together, these processes and the defective clearance 
of the dying cell propagate the inflammatory response, 
forming a vulnerable atherosclerotic plaque. The key 
characteristics of a vulnerable plaque include a very thin 
fibrous cap encapsulating acellular necrotic core regions, 
lipid-laden macrophages and T lymphocytes and sometimes, 
intraplaque hemorrhage.(104) Figure 2 shows macrophage 
apoptosis, autophagy and necroptosis in atherosclerosis.
 Necroptosis is a new term for a type of programmed 
necrosis besides apoptosis and autophagic. Current 
findings demonstrate that macrophage necroptosis directly 
contributes to necrotic core formation and plaque instability. 
Pro-resolving mediators have been shown to promote the 
inflammation resolution and enhance efferocytosis, thus 



109

The Indonesian Biomedical Journal, Vol.10, No.2, August 2018, p.104-22 Print ISSN: 2085-3297, Online ISSN: 2355-9179

decrease plaque vulnerability. Otherwise, the canonical 
‘don’t eat me’ signal cluster of differentiation (CD)47 plays 
a role in impairing efficient efferocytosis then progress the 
atherosclerotic lesion.(105) Improving our understanding 
of the mechanisms that regulate macrophage death in 
atherosclerosis (apoptosis, necroptosis and efferocytosis) 
will provide novel therapeutic opportunities to resolve 
atherosclerosis and promote plaque stability.(105)

Endothelial, Vascular Smooth Muscle 
Cells and Atherosclerosis

Endothelial cell dysfunction (ECD) on the lesion-prone 
covering areas of the arterial vasculature contributes in 
the pathobiology of atherosclerotic CVD. ECD covers 
a constellation of various non-adaptive alterations in 
functional phenotype, that regulating hemostasis and 
thrombosis, local vascular tone and redox balance, also the 
orchestration of acute and chronic inflammatory reactions 
within the arterial wall.
 ECD manifest as the earliest detectable changes 
on lesion-prone areas of the arterial vasculature in 
atherosclerotic lesion progression, in form of focal 
permeation, trapping, and physicochemical modification 
of circulating lipoprotein particles in the subendothelial 
space.(106-108) These pathogenic sequence commenced 
by selective recruitment of circulating monocytes from 
the blood into the intima.(107-113) They differentiate 
into macrophages and internally modified lipoproteins 
become foam cells, endothelium and macrophages will 
be activated in elaboration with multiple chemokines and 
growth factors, and induce the nearby smooth muscle cells 
(or their precursors) proliferation and extracellular matrix 
components synthesis within the intimal compartment, 
finally generating a bromuscular plaque.(114)
 Developing lesions involve a continuous structural 
remodeling, which result in fibrous cap, overlying a lipid-
rich, necrotic core consisting of oxidized lipoproteins, 
cholesterol crystals and cellular debris. Matrix remodeling 
and calcification varying degrees also play a role in this 
complicated plaques, along with a rich population of 
inflammatory cells (activated macrophages and T cells, 
natural killer T cells and dendritic cells), modulating the 
endothelial proinflammatory phenotype and proteolytic 
modification of its extracellular matrix component, provide 
the plaques’ structural instability.(115-117) When the 
plaque is unstable or vulnerable, frank plaque rupture, 
with luminal release of the highly thrombogenic contents 

of the necrotic core, an atherothrombotic occlusion could 
be triggered.(118-121) Evidently, superficial intimal 
erosions without plaque rupture also make a consequence 
of significant clinical sequelae, suggested due to endothelial 
cell apoptosis, with localized endothelial denudation and the 
triggering of thrombus formation.(4,122)
 By this angle, the vascular endothelium can be 
regarded as a dynamically adaptable interface distributed 
organ, and at individual cell level, an integrator of the 
local pathophysiological milieu. Thus, dysfunction 
endothelial certainly alter its normal functional phenotype 
non-adaptively, entangle the regulation of hemostasis and 
thrombosis (123), local vascular tone (124) and redox 
balance (125), also induce the orchestration of acute and 
chronic inflammation (124). Thus, the term endothelial 
cell dysfunction was proposed into the mainstream of 
atherosclerosis research (126,127), and the molecular 
manifestations of ECD began to be characterized in detail.
(117,121,124,128)
 Several studies documented that Kruppel-like factor 
2 (KLF2) expression in endothelial cells promotes an 
anti-inflammatory, antithrombotic endothelial phenotype, 
due to its antagonism of the nuclear factor kappa-B (NF-
κB) pathway.(129) KLF2 regulates the functions of other 
endothelial cells, making it important  for atherogenesis, 
including endothelial barrier function (130), metabolism 
(131) and the release of miRNAs via the shedding of 
endothelial microvesicles (132). It also stimulates the 
production of several autocoids, including NO and C-type 
natriuretic peptide, which were found to be deficient in 
dysfunctional endothelium in vivo.(133) Study showed that 
mice genetically deficient in KLF2  enhanced atherosclerotic 
plaque formation compared to wild-type controls.(134)
 Nuclear factor erythroid 2-related factor-2 (Nrf2), 
activated by atheroprotective flow in cultured endothelial 
cells, via the phosphoinositol 3-kinase/ Akt and extracellular 
signal-regulated protein kinase 5 pathways, counted to have 
an atheroprotector properties. Nrf2 controls a subsequential 
of target genes that play a role in the regulation of intracellular 
redox balance, as well as resistance to extracellular oxidant 
stress.(135-137) Nrf2 in vivo expressed differentially in 
those relatively atherosclerosis-resistant regions of the 
vasculature, suggesting its pathophysiological relevance.
(135,138)
 Current studies reported the independent act of KLF2 
and Nrf2 in the activation of  flow-mediated gene expression, 
with a requirement for KLF2 expression for full activity of 
Nrf2 antioxidant vasoprotection-mediated.(139,140) These 
2 transcription factors are pointed as master regulators of the 
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vasoprotective endothelial phenotype (4), as they counted 
for ≈70% of the atheroprotective  flow-induced endothelial 
transcriptome activation.(141)
 Protein modifications with small ubiquitin-like 
modifier (SUMO) have been found to play a key role in 
regulating the formation of atherosclerosis.(141-143) SUMO 
proteins covalently modify certain residues of specific target 
substrates and change the function of these substrates. It has 
been well established that the protein inhibitor of activated 
signal transducer and activator of transcription (STAT) 
family of proteins has not only SUMO E3 ligase activity, 
but also transrepression activity.(144) Lerchenmüller, et al., 
assume that this may be one of the regulatory mechanisms 
by which interferon-inducible transmembrane protein 1 
(IFITM1) can inhibit endothelial cell proliferation.(145) 
Some studies performed postmortem and/or by imaging 
have identified some plaque instability characteristic that 
could lead to rupture: 1) a thin or fragmented fibrous cap 
with smooth muscle α-actin (ACTA2)–positive cells, guess 
to be derived from vascular smooth muscle cells (VSMCs); 
2) CD68 or galectin-3 positive cells found in a large mass, 
suspect to be macrophages; and 3) necrotic core containing 
cells filled with lipid (foam cells) found in a large numbers, 
suspect to be macrophages.(146)
 These was correlated with the general dogma that 
bulks of macrophages and macrophage-derived foam 
cells relative to VSMCs found in atherosclerotic plaque, 
particularly within the fibrous cap and shoulder regions, 
are less stable and more prone to rupture.(107,147) Thus, 
VSMCs in advanced lesions could generally regarded as 
the atheroprotective plaque-stabilizer, while macrophages 
are regarded to promote atherosclerosis and detriment the 
plaque stabilization. VSMC can phenotypically switching, 
and this is affecting the plaque stability.  Inhibiting VSMC 
phenotypic switching regulation may be beneficial in 
advanced atherosclerosis, suggest this could be a chance 
to replace these more conventional antiatherosclerotic 
therapies.(146)

MicroRNA and Circadian Control in 
Atherosclerosis

Both immune and non-immune cellular constituents 
of the vessel wall were involved in many stages of the 
pathogenesis of atherosclerotic lesion formation. Over 
decades many studies strive to uncover any key signaling 
and molecular regulatory pathways involve in the plaque 
initiation and progression. MiRNA provides novel 

molecular insights on atherosclerosis progressive pathways, 
and is reported to have an important role in regulating many 
pathophysiological processes, such as cellular adhesion, 
proliferation, lipid uptake and efflux, also generation of 
inflammatory mediators. The appreciation of miRNAs 
detection extracellularly including in circulating blood make 
a hike in its potential as new tool for diagnosis, prognosis, or 
in response to cardiovascular therapeutics.(11)
 MiRNAs are a small (≈18–24 nucleotides), 
evolutionary conserved, single-stranded noncoding RNAs 
that regulate >60% gene expression, either reducing protein 
expression by blocking mRNA translation and by promoting 
mRNA degradation at the post-transcriptional level by 
typically binding to the 3′-untranslated region (UTR) of 
specific target mRNA sequences, using a conserved ≈7–8 
nucleotide seed sequence.(148-152) Moreover, one miRNA 
can bind to and regulate >1 target, even as a part of the 
same signaling pathway, also can harbor several distinct 
miRNA-binding sites within its 3′-UTR, adding multiple 
levels of regulation. Recent studies reported of LDL and 
HDL abundance and function controlled by miRNAs, 
have greatly expanded our understanding of the regulatory 
circuits governing plasma lipoprotein levels.
 MiR-148a is negatively regulating LDL-C plasma 
levels by targeting the LDL receptor (LDLR) and is showed 
to increase the clearance of circulating labeled LDL and 
decrease plasma LDL-C levels.(153,154) Some miRNAs, 
such as miR-33 (155-159), miR-758 (160), miR-26 (161), 
miR-106 (162), miR-144 (163,164), miR-128-118 and miR-
148a (154), play role in regulating HDL biogenesis and 
cholesterol efflux by controlling the levels of plasma HDL-C 
and the reverse cholesterol transport pathway by targeting 
ATP-binding cassette transporter (Figure 3). ABCA1 plays 
a central role in these processes by controlling cholesterol 
efflux across the cell membrane onto lipid-poor apoA1 
(155), and mediate both hepatic HDL biogenesis and the 
removal of excess cholesterol from peripheral cell including 
macrophages in atherosclerotic plaques.
 The cholesterol homeostasis in macrophages is 
maintained by the balance between cholesterol uptake, 
endogenous synthesis, esterification/hydrolysis and 
efflux. miR-27a/b, which is involved in this lipoprotein 
homeostasis, regulates the cholesterol in macrophage via 
genes involved in cholesterol esterification (ACAT1), 
uptake (LDL and CD36), and efflux (ABCA1).(165) 
While miR-125a-5p and miR-146a decrease lipid uptake 
and cytokine release in ox-LDL-stimulated macrophages, 
via oxysterol binding protein-like 9 and toll-like receptor 
(TLR)4 genes, respectively.(166,167) Furthermore, miR-
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Figure 3.  MicroRNA (miRNA) orchestration of cholesterol homeostasis and macrophage activation in atherosclerosis.(11) (Adapted 
with permission from American Heart Association).

155 plays a role in macrophage foam cell formation by 
negatively regulates macrophage inhibitory factor,  via the 
transcriptional repressor HMG box-transcriptional protein 
1, a protein known to increase the uptake of ox-LDL by 
macrophages.(168)
 Circulating miRNA can be detected in peripheral 
blood, saliva and urine, so their expression may be harbingers 
of a range stages of CAD from subclinical atherosclerotic 
disease to acute coronary syndromes.(11) miRNAs may 
have enormous effects on biological pathways, cell function 
and homeostasis in the vessel wall, liver and periphery. 
Experimenting a MiRNA mimics or inhibitors may offer an 
attractive therapeutic approach for atherosclerotic disease in 
specific stages and the management of its complications.
 Circadian rhythms refer to 24 hours biological process 
that endogenously, entrainable oscillation, which adjust 
behavior and physiological activities to environmental 
changes. This involves daily rhythmicity such as regulation 

of sleep-wake cycles, feeding, body temperature, blood 
pressure, heart rate, hormone secretion, metabolism 
(including lipid metabolism), and many other biological 
functions.(169,170) Our circadian clock is set by the 
brain’s suprachiasmic nucleus, which interprets recurring 
external stimuli, and autonomous molecular networks in 
peripheral cells together. When circadian clock is disrupted 
or misaligned, multiple pathologies, including chronic 
inflammatory and metabolic diseases such as atherosclerosis 
could rise.(171)
 Some studies suggest a circadian oscillations of 
circulating counts of leukocytes, or at least immune cell 
numbers involved in atherosclerosis (Figure 4).(172) 
Emerging evidence suggests that circadian rhythms play an 
important role in vascular function and health. Circadian 
rhythms not only influence systemic atherosclerosis 
mediators, including leukocytes and lipids, but also locally 
control cells within the vessel wall. Studies conducted 



 112

Advanced in Molecular Mechanisms of Atherosclerosis (Meiliana A, et al.)
Indones  Biomed J.  2018; 10(2): 104-22DOI: 10.18585/inabj.v10i2.479

Figure 4. Circadian influence on 
atherosclerosis.(171) (Adapted with 
permission from American Heart Association).

>15 years ago demonstrated the existence of a functional 
circadian clock in the vasculature.(173-175) It was found 
that among 330 genes, 5% to 10% of the transcriptome, 
exhibit circadian expression patterns in mouse aortae.(176) 
Circadian patterned genes include those related to the core 
molecular clock, lipid and glucose metabolism, protein 
folding, and vascular integrity.
 VSMC from human carotid plaque exhibits lower 
amplitudes of mRNA expression levels of core clock 
genes compared to normal carotid smooth muscle cells 
from same donors. This rose a notion about the role of 
mismatching circadian gene expression patterns toward the 
central clocks in atherosclerotic vessels, that might play a 
role in plaque stability.(177) Some evidences showed that 
brain and muscle Arnt-like protein-1 (BMAL1)-dependent 
peripheral circadian clocks in immune cells have a role 
in inflammatory markers expression, such as C-C motif 
chemokine ligand 2 (CCL2).(178) Studies in atherosclerotic 
mouse models indicated the importance of the CCL2 
and C-C motif chemokine receptor (CCR2) axis in early 
lesion development. CCL2 or its corresponding receptor 
CCR2 genetic deficiency leads to a reduction in lesion 
development with lower monocyte/macrophage content in 
the lesion.(179,180) Indicate that the CCL2-CCR2 axis in 
atherogenesis as a result of mobilization and homeostasis 
of classical monocytes under steady state rather than their 
recruitment.(181) Circadian clock gene perdiod 2 (PER2) 
deficiency promotes aortic endothelial dysfunction (182), 
which is the initial stage of lesion development.

 We can conclude that circadian rhythmicity plays an 
important role in atherosclerosis progressive by influencing 
atherosclerotic plaque development, either by central clock 
or many peripheral clocks existed. Cell-intrinsic molecular 
clocks found in leukocytes, endothelial cells, macrophages 
and SMC have been identified to be linked to inflammatory 
processes underlying atherosclerotic lesion development.
(183) A better understanding of the link between circadian 
rhythms and cardiovascular pathologies might help 
developing more targeted and personalized therapeutic 
strategies for cardiovascular disease patients.

Gut Microbiota in Atherosclerosis

New and emerging technologies are continue to reveal that 
the microbiome plays a critical role in the maintenance of 
vascular health and in the development of vascular disease. 
The diversity of the human microbiome between individuals, 
in both species and patterns of colonization, may underlie 
the differential phenotypic expression of vascular disease 
and ultimately establish a new paradigm in personalized 
medicine.(184) The Human Microbiome Project used next-
generation DNA sequencing to identify thousands of distinct 
bacterial species that are resident in and on the normal 
human body. The aggregate number of bacteria far exceeds 
the total number of human cells and accounts for 1% to 3% 
of the total body mass (i.e., 0.7-2.1 kg in a 70-kg person). 
DNA sequence analysis also revealed that microbes residing 
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in different anatomic sites such as the gut, skin, respiratory 
tract and genitourinary system are characterized by distinct 
enzymatic pathways that are adapted to metabolize nutrients 
present in the local environment.(185)
 To understand the mechanisms by which the 
microbiome regulates vascular function, metabolomic 
profiling was used to identify specific bacteria-derived 
molecules related to energy metabolism and vascular 
homeostasis. Further analysis identified trimethylamine as 
the gut metabolite and bacteria-derived chemical with the 
clearest association with cardiovascular disease.(186) In 
clinical studies, unbiased metabolic profiling further revealed 
a significant increase in the levels of trimethylamine-N-
oxide (TMAO) and related metabolites in plasma samples 
from patients with increased risk for CVD compared 
with matched control subjects.(187) TMAO is formed by 
bacterial metabolism of choline and phosphatidylcholine in 
the gut to yield trimethylamine, which is oxidized in the liver 
by the enzyme  flavin monooxygenase-3 to form TMAO.
(187) TMAO has become the target of several therapeutic 
interventions, ranging from schemes to reduce dietary 
intake of trimethylamine precursors to manipulations of the 
gut microbiome to reduce trimethylamine synthesis. The 
revelation regarding atherosclerosis susceptibility that could 
be transmitted from an atherosclerosis-prone strain of mice 
to another strain typically resistant to atherosclerosis simply 
by the transplantation of gut microbes provided additional 
causal evidence to support the role of the gut microbiome in 
regulating atherosclerosis (Figure 5).(188)
 Studies of the gut microbiome in rodent models show 
that in response to changes in dietary intake of carbohydrates, 

Figure 5. The gut microbiome and atherosclerosis.(184) (Adapted with permission from American Heart Association).

fat, and fiber, there are changes in the gut microbiota at the 
phylum level. Similar studies in humans have shown the 
same trend, but there is significant interindividual variability. 
There is also regional variability in the microbiome, and 
the diversity and composition can reflect an industrialized 
versus agrarian diet. Thus, it may be possible to predict 
disease risk vis-à-vis diets rich in phosphatidylcholine, a 
source of choline, or dietary carnitine, which is ultimately 
metabolized to TMAO.(189)
 At present, the causal pathways and molecular 
mechanisms whereby the gut microbiome initiates and 
perpetuates cardiopulmonary vascular disease remain 
incompletely characterized. However, early studies in the 
field indicate that future in vitro and in vivo studies of the 
blood vessel function must now contend with an additional 
layer of complexity in experimental design. These studies 
will need to examine local and remote interaction with the 
gut microbiota and metabolites. For in vitro studies often 
done in the presence of antibiotics, this remains a challenge. 
Further adding to the experimental complexity, the 
microbiome may be altered by diet and by drugs. Thus, in 
addition to standardizing diets for in vivo studies, the effects 
of drugs (and delivery vehicle) will need to be evaluated.
(184)

Gut Microbiota in Atherosclerosis

Cell senescence describes the irreversible inability of a 
previously proliferative cell to proliferate, despite adequate 
mitogen stimulation. Cell senescence is a fundamental 
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process underlying normal biological ageing and aged-
related degeneration of multiple tissues. However, recent 
studies have identified that cell senescence is also part of 
normal tissue remodeling, for example during development, 
as a process that regulates tissue mass and architecture.(190) 
Cellular senescence induces an evolutionarily conserved 
senescence-associated secretory phenotype (SASP), 
resulting in release of inflammatory cytokines, chemokines 
and proteases.(191) The SASP may be beneficial, for 
example attraction of immune cells to clear senescent cells 
(192-195) and tumor suppression (196,197). However, 
a persistent SASP may be deleterious, promoting cell 
proliferation (197), angiogenesis through increased vascular 
endothelial growth factor (VEGF) expression (198), 
epithelial-to-mesenchymal transformation and invasiveness 
of premalignant epithelial cells (199). The role of the SASP 
in atherosclerosis remains largely unknown, although the 
SASP of human senescent VSMCs requires interleukin 
(IL)-1a, and causes both endothelial cell dysfunction and 
mononuclear cell recruitment (200).
 Telomere erosion in endothelial cells is increased in 
vessels prone to develop atherosclerosis (201,202), and 
the telomeres are shorter in VSMCs in human plaques 
compared with non-atherosclerotic vessels from the same 
donor (203). However, telomere shortening is not just 
a marker of senescence, but also promotes senescence, 
plaque development and features of unstable plaques. 
For example, telomere uncapping in VSMCs by forced 
expression of a dominant-negative telomeric repeat-binding 
factor 2 (TRF2) protein accelerates atherogenesis, increases 
necrotic core and reduces fibrous cap areas.(204) This 
suggests that dysfunctional telomeres predispose to both 
initiation and progression of atherosclerosis.(205) The 
effects of cell senescence in atherosclerosis clearly depend 
upon the cell type being affected. Senescent endothelial 
cells also accumulate in vessels with age (202,206) and in 
atherosclerosis (207,208), which may importantly contribute 
to age-accelerated atherogenesis.
 Senescent endothelial cells are dysfunctional and have 
reduced and uncoupled endothelial NO synthase (eNOS) 
activity, resulting in enhanced superoxide anion production 
and decreased NO bioavailability.(208,209) Senescent 
endothelial cells also exhibit increasing inflammatory 
responses, which include enhanced expression of vascular 
cell adhesion molecule-1 (VCAM-1) and intercellular 
adhesion molecule-1 (ICAM-1) (208,210), and also 
develop a SASP characterized by increased IL-6 and IL-8. 
Senescence, eNOS uncoupling and the SASP are regulated 
in part by p38a mitogen-activated protein kinase (MAPK), 
S6-kinase (S6K) and arginase II (211). 

Figure 6. Molecular involvement of PAI-1 (plasminogen 
activator inhibitor-1) in cellular senescence and associated 
diseases.(216) (Adapted with permission from American Heart 
Association).

 The senescence markers include elevated senescence-
associated β-galactosidase (SA β-Gal) activity and 
p16Ink4a, p53 and p21 expression.(208,212) However, 
whether and how senescent cells contribute to atherogenesis 
remains unclear.(213,214) Human plaques contain cells 
with shortened telomeres, which predispose cells to 
undergo senescence.(204) Consistent with a proatherogenic 
role of senescence, the expression of a loss-of-function 
TRF2 in VSMCs accelerates plaque growth in the ApoE−/− 

mouse model of atherosclerosis, although in vivo evidence 
for increased senescence in plaques was not provided.
(215) Importantly, senescent cells are metabolically and 
synthetically active, producing numerous factors that are 
released locally called senescence-messaging secretome or 
senescence-associated secretory phenotype. Interestingly, 
plasminogen activator inhibitor-1 (PAI-1) has been 
identified as a prominent member of the senescence-
messaging secretome.(214) PAI-1 is a validated marker of 
cellular senescence (Figure 6). 
 PAI-1 is not a mere marker of cellular senescence 
but also a key mediator of cellular senescence and a major 
contributor to the multi-morbidity of aging.(216) The almost 
ubiquitous presence of cell senescence in atherosclerosis 
and the fundamental role of senescence in regulating 
plaque development and stability suggest that prevention 
or amelioration of senescence in atherosclerosis is a viable 
therapeutic target.(190)
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Genetics and Precision Medicine in 
Atherosclerosis

Coronary artery disease (CAD) has important genetic 
underpinnings considered equivalent to that of environmental 
factors. The heritability of CAD has been estimated between 
40% and 60%, on the basis of family and twin studies, a 
method that yields high precision despite potential bias.(10) 
Precision medicine is an approach to disease treatment and 
prevention that seeks to maximize effectiveness by taking 
into account individual variability in genes, environment 
and lifestyle. One central aim of the recently launched US 
Precision Medicine Initiative is the return of genetic results 
for clinical utility.(217) The major clinical and biochemical 
atherosclerosis risk factors for coronary heart disease 
(CHD) and other forms of CVD have been well defined 
over the past 50 years by prospective population cohorts 
like the Framingham Heart Study and resulting randomized, 
controlled treatment trials (RCTs). Genetics for CVD risk 
prediction provides the opportunity to more precisely 
identify individuals at high risk for developing disease for 
whom preventive therapy can be directed.(218)
 Our initial understanding regarding genetic risk 
for myocardial infarction and other forms of CHD has 
focused on rare (<1:100 carrier rate) monogenic etiologies 
conferring exceptional risk, such as mutations in genes 
LDLR, proprotein convertase subtilisin/kexin type 9 
(PCSK9), or ApoB underlying the predisposition for 
familial hypercholesterolemia.(219-222) However, because 
of the efforts of international consortia over the past decade, 
genome wide association studies of hundreds of thousands 
of research participants have led to the discovery of  more 
than 50 common (>1:20 carrier rate) gene variants with 
strong evidence for modest increases in CHD risk, and 
>150 common genetic variants with strong evidence for 
modest alterations of levels of key lipid fractions.(223) An 
individual’s CHD genetic risk score (GRS) is an additive 
score of the burden of discovered CHD risk alleles that is 
often weighted by the estimated disease effect of each allele.
 Nevertheless, in a recent post hoc analysis of RCTs 
of statin therapy for primary and secondary prevention of 
CHD, persons with the highest burden of CHD risk alleles 
were not only at increased risk for CHD events, but also, 
surprisingly, experienced enhanced absolute and relative 
clinical benefit despite similar LDL-cholesterol lowering.
(224) These data suggest that a CHD GRS may identify 
people at increased risk who may be more likely to benefit 
from preventive interventions. 

 The evidence of CHD not only affected by 
environmental factors, genetics factor play an important 
role as rising the risk to 2- until 3-fold in one’s personal 
with parental history of premature CHD.(225) Some 
observational epidemiological studies showed that plasma 
LDL (assessed as LDL-C and TRLs), HDL (assessed as 
HDL-C), triglyceride-rich lipoproteins (TRLs), and Lp(a), 
all been found to be correlated with CHD risks.(226-228) 
About one half of the interindividual variation in plasma 
lipid concentrations attributable to genetic variants.(229) 
Lp(a) is an LDL-like particle that is covalently linked to a 
protein called apolipoprotein(a). Lp(a) level in plasma could 
varies up to 1000-fold determined by genetic variation.(230) 
Mendelian randomization studies found that genetically 
elevated Lp(a) results in increased risk of CHD.(231,232) 
Then, it was suggested that decreasing plasma Lp(a) may 
have a cardiovascular protective effect.
 Lipoprotein-associated phospholipase A2 (Lp-
PLA2) is an enzyme that is encoded by the phospholipase 
A2 group VII (PLA2G7) gene. Circulating Lp-PLA2 in 
plasma primarily associated with LDL particles, and thus 
its mass and activity is also associated with CHD risk.(233) 
Darapladib, an inhibitor of Lp-PLA2 in Stabilization of 
Atherosclerotic Plaque by Initiation of Darapladib Therapy 
(STABILITY) trial and The Stabilization Of pLaques usIng 
Darapladib-Thrombolysis In Myocardial Infarction 52 Trial 
(SOLID-TIMI 52) found that darapladib did not reduce the 
risk of CHD (234,235), dubious the Lp-PLA2 as a causal 
risk factor for disease. 
 CHD follow-up studies have demonstrated roles for 
many  other  genes  involved  in  CHD.  Lysosomal  acid 
lipase  A  (LIPA),  sortilin 1 (SORT1) and tribbles homolog 
1 (TRIB1)  act  as  plasma  lipid  regulators  in the  liver,  
as  well  as  in  macrophages  biology.  Transcription 
factor 21 (TCF21) within the vessel wall is upregulated in 
dedifferentiated smooth muscle cell, migrate to form  fibrous  
cap.  Adamts7  is  also  a  regulator  of  smooth muscle  
migration  but  also  suggested to  role  the  endothelial  cells 
(Figure 7).(236)
 The past decade of research has provided a broader 
understanding of the genetic architecture of CAD and 
demonstrates that the genetic basis of CAD largely derives 
from the cumulative effect of multiple common risk alleles 
individually of small effect size rather than rare variants 
with large effects on CAD risk. Although traditional risk 
factors remain important, application of these data using a 
systems genetics approach has pointed to substantial roles 
for genes and pathways relevant to vessel wall biology and 
immune function.(10)
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Figure 7.  Coronary heart 
disease (CHD) genome-
wide association studies 
(GwAS) risk genes are 
active in selective cell types 
involved in atherosclerosis.
(236) (Adapted with 
permission from American 
Heart Association).

Cardiovascular system homeostasis is sustained by 
the genetic and epigenetic interacting programs. Any 
disequilibrium will cause a complex stream of pathogenesis 
such as atherosclerosis and its life-threatening complications, 
myocardial infarction and stroke. Atherosclerosis is a 
chronic inflammatory disease that is initiated by the retention 
and accumulation of cholesterol-containing lipoproteins, 
particularly low-density lipoprotein, in the artery wall. In the 
arterial intima, lipoprotein components that are generated 
through oxidative, lipolytic and proteolytic activities lead 
to the formation of several danger-associated molecular 
patterns, which can activate innate immune cells as well as 
vascular cells. Moreover, self- and non-self-antigens, such 
as ApoB and heat shock proteins, can contribute to vascular 
inflammation by triggering the response of T and B cells 
locally. This process can influence the initiation, progression 
and stability of plaques. There are several uncertainties and 
challenges about the role of genetics in the management 
and prevention of chronic disease. The focus on precision 
medicine aims to catalyze an effort to better understand 
human disease biology, and optimize disease treatment and 
prevention by using a combination of clinical, biochemical, 
and genetic factors.
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164. Ramírez CM, Goedeke L, Rotllan N, Yoon JH, Cirera-Salinas D, 
Mattison JA, et al. MicroRNA 33 regulates glucose metabolism. 
Mol Cell Biol. 2013; 33: 2891-902. 



121

The Indonesian Biomedical Journal, Vol.10, No.2, August 2018, p.104-22 Print ISSN: 2085-3297, Online ISSN: 2355-9179

165. Zhang M, Wu JF, Chen WJ, Tang SL, Mo ZC, Tang YY, et al. 
MicroRNA-27a/b regulates cellular cholesterol efflux, influx and 
esterification/hydrolysis in THP- 1 macrophages. Atherosclerosis. 
2014; 234: 54-64. 

166. Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, et al. MicroRNA-
125a-5p partly regulates the inflammatory response, lipid uptake, 
and ORP9 expression in oxLDL-stimulated monocyte/macrophages. 
Cardiovasc Res. 2009; 83: 131-9. h

167. Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J, et al. MiR-
146a inhibits oxidized low-density lipoprotein-induced lipid 
accumulation and inflammatory response via targeting toll-like 
receptor 4. FEBS Lett. 2011; 585: 854–60. 

168. Tian FJ, An LN, Wang GK, Zhu JQ, Li Q, Zhang YY, et al. Elevated 
microRNA-155 promotes foam cell formation by targeting HBP1 in 
atherogenesis. Cardiovasc Res. 2014; 103: 100-10. 

169. Chen L, Yang G. Recent advances in circadian rhythms in 
cardiovascular system. Front Pharmacol. 2015; 6: 71. doi: 10.3389/
fphar.2015.00071. 

170. Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol 
Cell. 2012; 47: 158-67. 

171. McAlpine CS, Swirsky FK. Circadian influence on metabolism and 
inflammation in atherosclerosis. Circ Res. 2016; 119: 131-41. 

172. Scheiermann C, Kunisaki Y, Frenette PS. Circadian control of the 
immune system. Nat Rev Immunol. 2013; 13: 190-8. 

173. Davidson AJ, London B, Block GD, Menaker M. Cardiovascular 
tissues contain independent circadian clocks. Clin Exp Hypertens. 
2005; 27: 307-11. 

174. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, 
FitzGerald GA. Regulation of CLOCK and MOP4 by nuclear 
hormone receptors in the vasculature: a humoral mechanism to reset 
a peripheral clock. Cell. 2001; 105: 877-89. 

175. Nonaka H, Emoto N, Ikeda K, Fukuya H, Rohman MS, Raharjo SB, 
et al. Angiotensin II induces circadian gene expression of clock 
genes in cultured vascular smooth muscle cells. Circulation. 2001; 
104: 1746-8. 

176. Rudic RD, McNamara P, Reilly D, Grosser T, Curtis AM, Price TS, 
et al. Bioinformatic analysis of circadian gene oscillation in mouse 
aorta. Circulation. 2005; 112: 2716-24. 

177. Lin C, Tang X, Zhu Z, Liao X, Zhao R, Fu W, et al. The rhythmic 
expression of clock genes attenuated in human plaque-derived 
vascular smooth muscle cells. Lipids Health Dis. 2014; 13: 14. doi: 
10.1186/1476-511X-13-14.

178. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian 
gene Bmal1 regulates diurnal oscillations of Ly6C(hi) inflammatory 
monocytes. Science. 2013; 341: 1483-8. 

179. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation 
in CCR2-/- mice reveals a role for chemokines in the initiation of 
atherosclerosis. Nature. 1998; 394: 894-7. 

180. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, 
et al. Absence of monocyte chemoattractant protein-1 reduces 
atherosclerosis in low density lipoprotein receptor-deficient mice. 
Mol Cell. 1998; 2: 275-81. 

181. Soehnlein O, Drechsler M, Döring Y, Lievens D, Hartwig H, 
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