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 There are several areas of engineering that use thin plates as structural elements, 
among them, we can highlight their application in the construction of offshore 
structures, bridges, ship hulls, and aircraft fuselage. In some design situations, the 
plates may be subjected to compression stresses and, consequently, they may be 
under the effect of elastic and/or elasto-plastic buckling. The analysis of the 
buckling phenomenon presents significant differences between one-dimensional 
elements, such as beams and columns, and two-dimensional elements, such as 
plates. The buckling phenomenon is directly related to dimensional, constructive 
and/or operational aspects. In this sense, the presence of perforations in plates 
causes a redistribution of their stresses, affecting not only their resistance but also 
their buckling characteristics. In order to solve the problem of elasto-plastic 
buckling in thin steel plates with perforations, we used computational models 
developed in Ansys(R) software, which is based on the Finite Element Method 
(FEM). For the analysis, it was considered perforated plates with constant 
thickness h for the relationships H/L = 1.0 and H/L = 0.5, where H is the plate width 
and L is the plate length. For the volume fraction Ф, i.e., the ratio between the 
volume of the perforation and the volume of the plate, the following values were 
considered: 0.08; 0.10; 0.15; 0.20 and 0.25. In addition, the plates were considered 
to have centralized perforations with the following geometric forms: longitudinal 
oblong, transverse oblong, elliptic, rectangular, diamond, longitudinal hexagonal, 
and transverse hexagonal. The shape variation of each perforation type occurs 
through the ratio H0/L0, being H0 and L0 the characteristics dimensions of 
perforation. The Constructal Design method was employed to define the range of 
possible geometries for the perforated plates, allowing an adequately comparison 
about the von Mises stress distribution among the studied cases. The results show 
that the geometric shape variation, for all analyzed perforation types, leads to an 
optimum geometry.  
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Introduction 

The growing use of the steel plates in structures is directly related to the advantages that 
this element possesses when compared with other construction types. The high strength 
of the material to the several stress states, for instance, makes it possible to withstand 
great internal forces, in spite of having cross-sectional areas relatively small, what turns 
them lighter [1].  
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As for the thin plates, these are structural elements very used in the naval, aerial, and 
automotive industries, as well as in the civil construction. It stands out for its use in the 
construction of shipyards cranes, petroleum platforms, floating docks, ship hulls, and in 
the fuselage of airplanes. According to [2], thin plates are widely used in structures because 
they have excellent performance at imposed stresses, with the reduced weight of their 
elements, and, if added chrome, nickel or zinc to plates, high corrosion resistance. When a 
flat plate is subjected to transverse or axial loads, it develops stresses due to axial force, 
shear, bending, and torsion [3]. For [4] some factors must be analyzed with extreme care 
in the design of naval and offshore structures. The idealization and the design of a 
structural element should satisfy specific requirements of resistance, rigidity, and stability. 
In its great majority, structures as the ship hulls are formed basically by the association of 
beams, columns and plates, which are usually submitted to compression loads. In this 
context, when a slender structural element is subjected to compressive strengths, an 
extremely important phenomenon called buckling may occur, that is, making the element 
susceptible to instability. 

Moreover, the designers should observe carefully the presence of perforations in plates. 
These can be used with the objective of decrease the total weight of the structure or to 
make possible the people's access to certain sections or services, or still, as elements with 
an aesthetic purpose. However, the inclusion of perforations in the plates causes a 
redistribution of their stresses, and may even lead to modifications in their mechanical 
strength and in the buckling characteristics [5]. Other aspects related to perforations, such 
as the geometry, the dimension and the positioning of the perforation, influence directly in 
the performance of a plate submitted to uniaxial compression [6]. 

Several researchers have studied the mechanical behavior of thin steel plates subjected to 
compression, and among them can be cited: [7] determined the values of critical buckling 
loads in rectangular plates with centralized perforations and subjected to biaxial loading 
using FEM; [8] have developed, validated and summarized analytical expressions whose 
purpose is to estimate the influence of single or multiple perforations in determining the 
value of the critical buckling load of plates in bending or compression; [9] applied the 
Constructal Design method for the optimization of perforated thin steel plates submitted 
to the elastic buckling; [10] used the Constructal Design method to evaluate the influence 
of the type and the shape of centralized perforations in thin steel plates subjected to linear 
elastic and nonlinear elasto-plastic buckling; and [11] studied the mechanical behavior to 
nonlinear buckling of thin rectangular steel plates with rectangular perforations and 
rounded vertices subjected to uniform compression.  

Although there exists a significant number of scientific works addressed to the study of the 
elastic buckling in plates, there is a reduced number of these referring to the elasto-plastic 
buckling. This paper proposes to analyze the mechanical behavior of perforated thin steel 
plates subjected to uniaxial compression, using the computational modeling allied to the 
Constructal Design method for the generation of limit curves for elasto-plastic buckling. In 
this context, the type, the shape and the size of the perforation are essential parameters to 
be analyzed. 

In order to aid in understanding the next sections of this article, a list of abbreviations a 
and a list of symbols are presented in the Appendix.  

2. Buckling and Post-Buckling of Plates  

As already mentioned, according to [4], the majority of the parts that integrate a naval 
structure are composed of plates, beams and columns, which are, in several situations, 
subjected to compressive loads. Structural components as plates, for instance, when 
submitted to compression or tension forces, possess differentiated behavior. Plates axially 
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tensioned develop shear stresses, on the other hand, when submitted to compressive 
strengths it can occur its transverse deflection, which is called buckling. Therefore, it is 
extremely important considering the buckling phenomenon in the procedures that involve 
the structural design of naval and offshore structures. Evidently, this procedure should be 
used for any structural component that is under the influence of the buckling phenomenon. 

When a thin plate subjected to compression reaches its critical load value Pcr, the plate 
undergoes a sudden transverse deformation and may lose its ability to withstand loading, 
which would result in the collapse of the structure. The transverse deformation is 
curvilinear and graphically shows the buckling phenomenon. Moreover, according to [12], 
the application of a compression load, but less than the critical load value, does not cause 
the buckling phenomenon. In this case, a small perturbation (small lateral load or small 
initial curvature) causes a curvilinear deformation (lateral displacement) in the plate, but 
with the retreat of this, the plate returns to its initial configuration. However, for the least 
increase of the load beyond the critical value, a great transverse displacement occurs in the 
structure, that can cause the collapse of the plate.  

According to [13], the analytical solution to the problem of elastic buckling in thin steel 
plates without perforation subjected to uniaxial compression is: 

 𝑃𝑐𝑟 = 𝑘
𝜋2𝐷

𝐻2                                                                                                         

          (1) 

where, Pcr is the critical load per unit of length, π is a mathematical constant, D is the plate 
bending stiffness, and k is a function of the aspect ratio H/L. The plate bending stiffness 
and the buckling coefficient are defined, respectively, by: 

 𝐷 =
𝐸ℎ3

12(1−𝜈2)
                                                                                                             

(2) 

 𝑘 = (𝑚
𝐻

𝐿
+

1

𝑚

𝐿

𝐻
)

2
                                                                                                  

(3) 

being, E and 𝜈, respectively, the modulus of elasticity and the Poisson's ratio of the plate's 
material, h the plate thickness, and m the number of half-waves of the deformation pattern 
in the x-axis direction. 

A thin plate does not enter in collapse soon after the occurrence of the elastic buckling, but 
actually it can support loads significantly larger than the critical load without deforming 
excessively. The behavior of plates differs from that expected when considering the 
behavior of elastic bars submitted to compression that only withstands a slight increase in 
the load before excessive deformation of the bar occurs (see Fig. 1). The additional post-
buckling resistance of thin plates is due to several factors however, the main one is that the 
deformed shape of the buckling plate cannot be developed from the pre-buckling 
configuration without a redistribution of the stresses in the mid-plane along the plate. This 
redistribution, which is ignored in the theory of small displacements of elastic buckling, 
usually favors the less rigid regions of the plate and causes an increase in plate efficiency. 
One of the most common causes of this redistribution is associated with the boundary 
conditions in the plane of the loaded edges of the plate [14]. 
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Fig. 1 Post-buckling behavior in slender plates, adapted of [15] 

 

The load that defines the collapse of a plate, in its elasto-plastic behavior, is called post-
critical or ultimate load, being represented by Pu. However, as already mentioned, the final 
load capacity of a plate is not restricted to the occurrence of elastic buckling, i.e., the plates 
resist load higher than the critical load, which allows an increase of load after the 
occurrence of elastic buckling [12]. Still in agreement with [12], the capacity of the plates 
support this load increment is associated with the formation of a membrane force that 
stabilizes the displacement through a transverse tension (see Fig. 2). When the external 
load is increased in order to cause the plate buckling, it occurs a non-uniform distribution 
of the stresses caused by the external load. This provides an increased resistance, which is 
due to the fact that the transverse fibers are tensioned after the buckling, tending to 
stabilize the longitudinal fibers.  

 

Fig. 2 Redistribution of stresses in the post-buckling critical state [12] 

As described above, unlike the behavior of bars, plates exhibit significant resistance after 
the occurrence of buckling. In addition, if this post-critical resistance is fully utilized, a 
structural, efficient and economic design may be obtained [16]. According to [17] the post-
critical loading reserve is not unlimited, and according to experimental results, the plate 
reaches the collapse when the maximum compressive stress at the edges not charged reach 
the elastic limit. Still according to [17], Bleich proposed in 1924 the Eq. 4 to calculate 
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buckling of plates in the elasto-plastic regime, where τ = Et/E, and Et corresponds to the 
steel tangent modulus of elasticity. 

𝜕4𝑤

𝜕𝑥4
+ 2√𝜏

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
+

𝜎𝑥ℎ

𝐷

𝜕2𝑤

𝜕𝑥2
= 0                                                  

(4) 

In Eq. 4, the term √𝜏 is the plastic reduction factor of a plate subjected to uniform 
compression stress in one direction, being this factor variable with the type of loading and 
with the boundary conditions of the plate. According to [17], the analysis of the differential 
equation proposed by von Karman, 1910, and after by Bleich, 1924, to elasto-plastic 
analysis is quite complex, being normally necessary resort to numerical and computational 
methods.  

3. Constructal Design Method 

The Constructal Theory stands out for present time context and for the perception of the 
design importance of natural structures. As a basic reference, it is based on the perception 
that the design of natural structures is directly related to the occurrence of a physical 
phenomenon, which occurs in small and large systems such as rivers, traffic in cities, 
vascularized living tissue, the dissemination of ideas, among others. Its guidelines and its 
major advances in science are directly related to the studies developed by its founder, 
Adrian Bejan, and researchers who use it in different areas of knowledge.  The line of 
reasoning where forms from nature are accepted, observed, and copied are still present 
today. However, the Constructal Theory, according to [18], proposes the inversion of this 
thought, that is, initially invokes the Constructal law and with that, theoretically, the 
architecture of the form is deduced. Then, the theoretical configuration obtained in the 
deduction is compared with that of the natural phenomena, and the agreement between 
the geometries is what validates the Constructal Law. 

According to [19], the Constructal Law for flow generation and configuration is defined as: 
"For a finite-size flow system to persist in time (to live), its configuration must evolve in 
such a way that provides greater and greater access to the currents that flow through it". 
This law corresponds to the basis of the Constructal Theory and represents a new 
extension of thermodynamics: the thermodynamics of systems out of balance and with 
constraints. Some confuse the Constructal Law with an assumed natural evolutionary 
trend with toward “more flow,” which is not correct. The natural tendency is to evolve 
freely into flow configurations that offer greater access to what flows, not more flow [20]. 
According to [21], in summary, the evolution of systems is strictly connected with the 
possibility of their morphing configuration, permitting that the new configurations replace 
existing configurations, to perform better (Constructal Law). This self-standing law of 
design has both local and global significance. It shows a fascinating connection between 
the Nature as a whole and what this law holds in our world. The paths of all natural flow 
systems (i.e., animate and inanimate systems) are drawn together and can be described 
and understood under a unified view. The application of the Constructal Law according to 
[18] occurs through the Constructal Method, called Constructal Design, and serves to 
predict many phenomena in nature and designs in engineering. This method is used to 
obtain configurations that optimize the flow systems through the optimal distribution of 
imperfections. 

3.1 Constructal Design Application 

The application of the Constructal Design method allows an adequate evaluation of the 
influence of the geometric configuration on the mechanical performance of a physical 
system. Taking into account that all the geometries proposed by the Constructal Design 
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method are evaluated, it can be said that there is a geometric optimization procedure 
through an exhaustive search process. Thus, in order to apply the Constructal Design 
method, it is fundamental to define some parameters, such as objective functions, degrees 
of freedom and constraints. After the definition of these parameters, it is possible to 
generate infinite geometries, enabling the application the exhaustive search method. 
However, according to [22] and [23], if the degrees of freedom and/or parameters are 
many, another optimization method can be used. 

Here, the objective function seeks to maximize the ultimate stresses by varying the degrees 
of freedom H/L and H0/L0. The degrees of freedom relate, respectively, the width H to the 
length L of the plate and the width H0 to the length L0 of the perforation. For H/L, two 
possibilities were adopted: H/L = 1.0 and H/L = 0.5, while for H0/L0 several possible values 
were considered (being related to the perforation type and the problem constraints). The 
variables H, L, H0 and L0 as well as the perforation types used in this work are presented in 
Fig. 3. It is worth to mention that the plate without perforation, used to verify the 
computational model, is presented in Fig. 3a. Besides, values of H = 1000.00 mm and L = 
2000.00 mm were considered for the plates with H/L = 0.5 and H = L = 1414.21 mm for the 
plates with H/L = 1.0. 

It was adopted, with the purpose of adequately comparing the different types of 
perforation and as a restriction to the resolution of the buckling problem, a fraction (Ф) for 
the perforation volume. This volume fraction is a function of the characteristic dimensions 
of each perforation type, being defined, respectively, for longitudinal oblong, transverse 
oblong, elliptical, rectangular, diamond, longitudinal hexagonal and transverse hexagonal 
cut out, as: 

𝛷 =
𝑉0

𝑉
=

((𝐿0 − 𝐻0)𝐻0 +
𝜋

4
𝐻0

2) ℎ

𝐻𝐿ℎ
=

(𝐿0 − 𝐻0)𝐻0 +
𝜋

4
𝐻0

2

𝐻𝐿
 

(5) 

𝛷 =
𝑉0

𝑉
=

((𝐻0 − 𝐿0)𝐿0 +
𝜋

4
𝐿0

2 ) ℎ

𝐻𝐿ℎ
=  

(𝐻0 − 𝐿0)𝐿0 +
𝜋

4
𝐻0

2

𝐻𝐿
 

(6) 

𝛷 =
𝑉0

𝑉
=

(𝜋𝐻0𝐿0ℎ)/4

𝐻𝐿ℎ
=

𝜋𝐻0𝐿0

4𝐻𝐿
 

(7) 

𝛷 =
𝑉0

𝑉
=

𝐻0𝐿0ℎ

𝐻𝐿ℎ
=

𝐻0𝐿0

𝐻𝐿
 

(8) 

𝛷 =
𝑉0

𝑉
=

(𝐻0𝐿0ℎ)/2

𝐻𝐿ℎ
=

𝐻0𝐿0

2𝐻𝐿
 

(9) 

𝛷 =
𝑉0

𝑉
=

𝐻0(𝐿1 + 𝐿2)ℎ

𝐻𝐿ℎ
=

𝐻0(𝐿1 + 𝐿2)

𝐻𝐿
 

(10) 

𝛷 =
𝑉0

𝑉
=

𝐿0(𝐻1 + 𝐻2)ℎ

𝐻𝐿ℎ
=

𝐿0(𝐻1 + 𝐻2)

𝐻𝐿
 

(11) 

where, V0 represent the perforation volume, V the total volume of the plate without 
perforation and h the plate’s thickness. 

For all studied cases in this work, plates with the total area without perforation of 2.00 m2 
and thickness of 10.00 mm were considered. In addition, as a geometric constraint, the 
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minimal distance between de cut out edge and the plate edge is H-H0 = 200.00 mm and L-
L0 = 200.00 mm, respectively, in transverse and longitudinal directions (see Figs. 3b to 3h). 

 

Fig. 3 Plate with: (a) no perforation, (b) longitudinal oblong perforation, (c) transverse 
oblong perforation, (d) elliptical perforation, (e) rectangular perforation, (f) diamond 

perforation, (g) longitudinal hexagonal perforation, and (h) transverse hexagonal 
perforation 

5. Computational Models 

The computational model used in this work to solve the problem of elasto-plastic buckling 
of thin steel perforated plates was developed in Ansys® software. For all numerical 
simulations, the SHELL93 finite element was adopted (see Fig. 4). This element, that can 
be used for the modeling of plates and shells, has eight nodes with six degrees of freedom 
in each node, being 3 translations and 3 rotations in the x, y, and z directions. The 
interpolating polynomials responsible for the deformation form are quadratic in both 
plane directions and the finite element in question can incorporate plasticity, hardening, 
and large deformations [24].  
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An example of discretization and mesh generation for the computational domain, using the 
SHELL93 finite element, is presented in Fig. 5. In this figure, the compression load P, the 
length L, the width H and the constraints are indicated. The plate has a constant thickness 
h of 10.00 mm. Concerning the boundary conditions, it was considered that the plates have 
all edges simply supported, i.e., all nodes along the four edges are restricted to deflection 
in z direction. Besides, the displacement in x direction is restricted at nodes 1, 3 and 4 as 
well as the displacement in y direction is restricted at nodes 1 and 2. 

 

Fig. 4 SHELL93 element [24] 

 

Fig. 5 Reference model generated in ANSYS® 

5.1 Elastic and Elasto-plastic Plate Buckling 

The numerical procedure used to calculate the load that causes elastic buckling is based on 
an analysis of eigenvalues and eigenvectors. Once assumed that the structure presents a 
linear elastic behavior, a structural instability is foreseen, being the focus of the study the 
verification of the load that provokes the elastic buckling of the plate. For this analysis type, 
that involves the equilibrium conditions of the finite element equations, it is necessary the 
solution of homogeneous algebraic equations, where the smallest eigenvalue and 
eigenvector correspond, respectively, to the critical buckling load and the elastic 
deformation mode of the structure [25]. 
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This consideration is necessary because the exact post-buckling problem does not allow 
for a direct analysis due to problems of response discontinuities at the bifurcation point. 
Starting from the first elastic buckling mode configuration, [26] defines that the maximum 
value to be assumed for the initial imperfection should obey the relationship H/2000, 
where H represents the width of the plate. Then, the ultimate load on the plate can be found 
using as reference the load Py = σyt, where σy represents the material yielding strength. This 
load should be applied in small loading increments on the plate in the direction parallel to 
the x-axis. As already adopted in [27], for each load increment the Newton-Raphson 
method is used to determine the displacements corresponding to the equilibrium 
configuration of the plate through the equations: 

 

{𝑃}𝑖+1 = {𝑃}𝑖 + {Δ𝑃} (12) 

{𝜓} = {𝑃}𝑖+1 − {𝐹𝑁𝐿}      (13) 

[𝐾𝑡]{Δ𝑈} = {𝜓}         (14) 

{𝑈}𝑖+1 = {𝑈}𝑖 + {Δ𝑈} (15) 

           

where [𝐾𝑡] is the updated tangent stiffness matrix, {Δ𝑈} corresponds to the vector of 

incremental displacements required to achieve the equilibrium configuration, {𝐹𝑁𝐿} 

represents the vector of internal nonlinear nodal forces and { 𝜓} is the vector of 

unbalanced forces. The vectors {𝑈}𝑖 and {𝑈}𝑖+1 correspond to the displacements, while 

the vectors {𝑃}𝑖  and {𝑃}𝑖+1 correspond to the external loads applied, to two successive 
equilibrium configurations of the structure, respectively. 

If at a certain load level the convergence can not be reached, or in other words, a finite 

displacement increment can not be defined so that the unbalanced forces vector { 𝜓} is 
nullified, this means that the structure failure load has been achieved. This occurs because 
no matter as large as the displacements and strains can be, the stresses and internal forces 
can not enhance as it would be necessary to balance the external loads. Therefore, in this 
case, the maximum resistance capacity of the material was reached [27]. 

The external compression load on the plate, used in this work for the elasto-plastic 
buckling analysis, was divided into 100 load increments with a maximum of 200 
iterations for each load increment. 

6. Results and Discussion 

Initially, the results will be presented for the verification of the computational model for 
the linear elastic buckling analysis and validation of the computational model for the 
nonlinear elasto-plastic buckling analysis. Then, the thin steel plates with H/L = 1.0 and 
H/L = 0.5, with various central perforation types (elliptical, rectangular, diamond, 
longitudinal hexagonal, transversal hexagonal, longitudinal oblong and transversal 
oblong), with different sizes (Ф = 0.08, 0.10, 0.15, 0.20 and 0.25) and for different 
geometric forms (obtained by the H0/L0 variation) are subjected to elasto-plastic buckling. 

6.1 Verification and Validation 

The computational model verification for the analysis of elastic buckling was performed 
by comparing the result of the critical load of a thin plate of steel without perforation with 
the analytical solution given by Eq. 1. It was considered a simply supported plate in its four 
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edges, with the following mechanical and dimensional properties: E = 210 GPa, ν = 0.30, σy 
= 250 MPa, H = 1000.00 mm, L = 2000.00 mm and h = 10.00 mm. It was used a structured 
and converged mesh, generated with the assistance of a finite square element of side 20.00 
mm, obtaining a critical stress of σcr = 75.37 MPa. This value, when compared to the 
analytical result (σcr = 75.92 MPa), represents a difference of -0.72%, verifying the 
developed computational model.  

After that, the computational model validation for the analysis of elasto-plastic buckling 
was performed considering the value of the ultimate load experimentally obtained in [26] 
for the comparison. For this purpose, a thin steel plate was used, simply supported in the 
four borders, with the dimensions H = L = 1000.00 mm and h = 20.00 mm, and with the 
mechanical properties: E = 210 GPa, ν = 0.30, σy = 350 MPa, with centralized circular 
perforation with diameter of 300.00 mm. The computational domain was discretized using 
a finite element with the maximum size of 20.00 mm. The ultimate stress determined 
experimentally in [26] was of σu = 213.50 MPa, and the result obtained by numerical 
simulation in this work was of σu = 217.00 MPa, which represents a difference of 1.64%, 
validating the proposed computational model. 

6.2 Normalization of the Limit Stress 

Here the objective is to define the limit curve that prevents the occurrence of elasto-plastic 
buckling. To do so, it is necessary to normalize the ultimate stresses, by means the 
equation:  

 

𝑁𝐿𝑆𝐸𝑃 =
𝜎𝑢

𝜎𝑦
                 (16) 

 

where NLS represents the normalized limit stress and the subscript EP refers to elasto-
plastic buckling. For all studied cases, the following properties of the material were 
considered: E = 210 GPa, ν = 0.30, σy = 250 MPa and h = 10.00 mm, respectively, for modulus 
of elasticity, Poisson's ratio, material yielding strength and thickness of the plate. 

The H0/L0 variation, i.e. the perforation shape variation, allows the generation of an elasto-
plastic buckling limit curve for each perforation size and for each perforation type. To 
exemplify, the plates with H/L = 1.0 and H/L = 0.5, for Ф = 0.20, having an elliptical 
perforation were considered, being its limit curves showed in Figs. 6a and 6b, respectively. 
The NLSMax and NLSMin factors are indicated in Fig. 6, corresponding to maximum and 
minimum normalized limit stresses and identify, respectively, the optimal geometry and 
the worst geometry. Regarding the normalized stresses, it was found that, in several 
situations and for several values of H0/L0, the stresses acting on the plates exceeded the 
limit to elastic buckling.  

So to take into account all studied perforation types the following nomenclature was 
employed: elliptic (E), rectangular (R), diamond (D), longitudinal hexagonal (LH), 
transverse hexagonal (TH), longitudinal oblong (LO), and transverse oblong (TO). 
Therefore, Figs. 7 to 11 show the elasto-plastic buckling limit curve for the plates with H/L 
= 1.0 and H/L = 0.5, for all volume fractions Ф and all type of perforations. 
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Fig. 6 Limit curve for the occurrence of elasto-plastic buckling in plates with elliptical 
perforation, for Ф = 0.20: (a) H/L = 1.0 e (b) H/L = 0.5 

 

 

Fig. 7 Limit curves for the occurrence of the elasto-plastic buckling for all types of 
perforation, and for Ф = 0.08: (a) H/L = 1.0 e (b) H/L = 0.5 

 

Fig. 8 Limit curves for the occurrence of the elasto-plastic buckling for all types of 
perforation, and for Ф = 0.10: (a) H/L = 1.0 e (b) H/L = 0.5   
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Fig. 9 Limit curves for the occurrence of the buckling for all types of perforation, and for Ф = 
0.15: (a) H/L = 1.0 e (b) H/L = 0.5 

 

 
Fig. 10 Limit curves for the occurrence of the elasto-plastic buckling for all types of 

perforation, and for Ф = 0.20: (a) H/L = 1.0 e (b) H/L = 0.5  

 
   Fig.11 Limit curves for the occurrence of the elasto-plastic for all types of perforation, and 

for Ф = 0.25: (a) H/L = 1.0 e (b) H/L = 0.5 

 

 The Figs. 7-11 show some recurrent aspects for the mechanical behavior of the limit 
curves considering the elasto-plastic buckling. Among them, in a general w, it is possible to 
highlight that: first, the plates with rectangular perforation present the greatest range for 
the variation of H0/L0, and those with to diamond perforation, the least range; second, 
there is a graphical similarity in the representation of the limit curves for Ф = 0.08 and 0.10 
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and for Ф = 0.15, 0.20 and 0.25; third, the plates with transverse hexagonal, longitudinal 
hexagonal and elliptical perforation type, present values very close to H0/L0; fourth, the 
values of maximum stresses to the plates with H/L = 1.0, defined from the NLSEP, are found 
for higher values of degree of freedom H0/L0 when compared to the plates H/L = 0.5; fifth, 
the plates with H/L = 0.5 show higher loading capacity compared to the plates with H/L = 
1.0; sixth, there is no universal perforation type that conducts to the best mechanical 
performance regarding the degree of freedom H0/L0, instead there are intervals in which 
one perforation type has better results than the other types, e.g. in plates with H/L = 0.5 
and for Ф = 0.20, in the interval 0.44 < H0/L0 ≤ 0.70, the best perforation type is the 
rectangular, and; finally, the geometric shape of the perforation, i.e., the variation of its 
geometric configuration on the x and y-axes, is important for the development of the elasto-
plastic buckling limit curves, causing an increase or decrease in the mechanical 
performance of the plates. 

In order to quantify the improvement in the mechanical behavior of the plates, Table 1 
shows the results obtained comparing the best and the worst geometries for each specific 
type of perforation and for each value of Ф. 

According to Table 1, the best mechanical performance for the plates with H/L = 1.0 
corresponds to an increase of 191.85% for the plates with Ф = 0.10 and transverse 
hexagonal perforation, while for the plates with H/L = 0.5 an improvement of 154.03% was 
achieved for the longitudinal oblong perforation type and Ф = 0.08. In turn, the worst 
mechanical performance, of 42.82%, refers to the plates with H/L = 1.0, was obtained with 
Ф = 0.25 and diamond perforation, as well as, of 36.54% for plates with H/L = 0.5, reached 
with Ф = 0.20 and longitudinal oblong perforation. 

Considering the mechanical performance for each studied perforation volume fraction Ф, 
it was observed:  

Plates with Ф = 0.08 for H/L = 1.0 and for H/L = 0.5 reached improvements of 185.41% for 
diamond perforation and 155.71% for rectangular perforation, respectively; while the 
worst obtained results were 132.97% and 107.50%, respectively, both for transversal 
oblong perforation.  

Plates with Ф = 0.08 for H/L = 1.0 and for H/L = 0.5 achieved improvements of 191.85% 
for transversal hexagonal perforation and 134.26% for elliptical perforation, respectively; 
while the worst results correspond, respectively, to 132.14% and 100.00% for plates with 
transversal oblong perforation. 

Plates with Ф = 0.15 for H/L = 1.0 and H/L = 0.5 presented improvements of 189.85% for 
rectangular perforation and 126.30% for elliptical perforation, respectively; and the worst 
results were 116.08% and 74.50%, respectively, for plates with transversal oblong 
perforation. 

Plates with Ф = 0.20 for H/L = 1.0 and H/L = 0.5 showed improvements of 176.44% for 
elliptical perforation and 130.88% for rectangular perforation, respectively; whereas the 
worst behaviors were 92.28% for transversal oblong perforation and 36.56% for 
rectangular perforation, respectively. 

Plates with Ф = 0.20 for H/L = 1.0 and H/L = 0.5 achieved improvements of 176.44% for 
elliptical perforation and of 130.88% for rectangular perforation, respectively; being the 
worst results of 92.28% for transversal oblong perforation and of 36.56% for longitudinal 
oblong perforation, respectively. 

Plates with Ф = 0.25 for H/L = 1.0 and H/L = 0.5 reached improvements of 186.31% for 
rectangular perforation and 137.25% for longitudinal oblong perforation, respectively; 
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whilst the worst results were of 42.86% and 86.67%, respectively, both for diamond 
perforation. 

The application of the Constructal Design method allows an adequate comparison about 
the von Mises stress distribution among the studied plates. Thus, to illustrate how the 
principle of optimal distribution of imperfections actually leads to superior performances, 
the Figs. 12 and 13 show the distribution of von Mises stresses for the best and worst 
geometries, according to the data exposed in the Table 1, for H/L = 1.0 with Ф = 0.10 and 
for H/L = 0.5 with Ф = 0.20, respectively. 

 

 
Fig. 12 Distribution of the von Mises stress in plates with H/L = 1.0, for all perforation 

types, and Ф = 0.10, being: (a, c, e, g, i, k, m), the best; and (b, d, f, h, j, l, n), the worst 
configurations 

 

 
Fig. 13 Distribution of the von Mises stress in plates with H/L = 0.5, for all perforation 

types, and Ф = 0.20, being: (a, c, e, g, i, k, m), the best; and (b, d, f, h, j, l, n), the worst 
configurations 

 

The Figs. 12 and 13 show that the plates with the optimized geometries have the best 
distribution of the material yielding stress at failure when compared with the plates with 
the worst geometries. Visually, this means that the optimal geometries have a larger region 
subjected to the limit stress (which is represented by the red color). In this context, the 
improvement in mechanical performance obtained in the optimized geometries is in 
accordance with the principles defined by the Constructal Theory, that is, this geometry 
promotes the better distribution of the imperfections [18].  
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Table 1: Best and worst geometries for all cases studied 

 

Hole 
type 

H/L = 1.0 H/L = 0.5 

 

(
𝐻0

𝐿0
)

𝑜

 NLSMax 
𝐻0

𝐿0
 NLSMin 

Diff. 
(

𝐻0

𝐿0
)

𝑜

 NLSMax 
𝐻0

𝐿0
 NLSMin 

Diff. 

 % % 

Ф
 =

 0
.0

8
 

LO 0.99 0.2890 0.12 0.1227 135.53 0.10 0.4636 0.05 0.1825 154.03 

TO 4.00 0.3215 8.99 0.1380 132.97 1.01 0.4150 3.77 0.2000 107.50 

E 3.50 0.3271 0.14 0.1165 180.77 0.25 0.4515 3.10 0.2050 120.24 

R 4.00 0.3165 0.12 0.1253 152.59 0.10 0.4636 0.05 0.1813 155.71 

D 2.30 0.3325 0.22 0.1165 185.41 0.30 0.4440 0.10 0.1972 125.15 

LH 3.50 0.3205 0.15 0.1227 161.21 0.20 0.4581 3.00 0.2000 129.05 

TH 3.50 0.3330 0.15 0.1190 179.83 0.20 0.4555 0.07 0.2036 123.72 

Ф
 =

 0
.1

0
 

LO 0.99 0.2840 0.14 0.1115 154.71 0.20 0.4496 0.07 0.2236 101.07 

TO 3.50 0.3250 7.15 0.1400 132.14 1.01 0.4000 2.96 0.2000 100.00 

E 2.80 0.3340 0.18 0.1178 183.53 0.20 0.4465 0.08 0.1906 134.26 

R 3.50 0.3130 0.14 0.1115 180.72 0.20 0.4495 3.20 0.1950 130.51 

D 1.80 0.3240 0.28 0.1177 175.28 0.30 0.4245 1.60 0.2096 102.53 

LH 2.50 0.3255 0.19 0.1203 170.57 0.20 0.4476 2.40 0.2000 123.80 

TH 2.70 0.3400 0.19 0.1165 191.85 0.30 0.4405 2.40 0.2090 110.77 

Ф
 =

 0
.1

5
 

LO 0.99 0.2730 0.22 0.1075 153.95 0.20 0.4186 0.10 0.1889 121.60 

TO 1.80 0.3090 4.68 0.1430 116.08 1.05 0.3490 1.89 0.2000 74.50 

E 1.80 0.3040 0.26 0.1050 189.52 0.30 0.4130 0.12 0.1825 126.30 

R 2.00 0.2971 0.21 0.1025 189.85 0.20 0.4155 0.10 0.1906 118.00 

D 1.50 0.2500 0.41 0.1025 143.90 0.35 0.3695 0.19 0.1972 87.37 

LH 1.50 0.3095 0.28 0.1075 187.91 0.20 0.4096 1.60 0.1986 106.24 

TH 1.50 0.2950 0.28 0.1075 174.42 0.30 0.4096 0.13 0.1863 119.86 

Ф
 =

 0
.2

0
 

LO 0.99 0.2440 0.29 0.0950 156.84 0.30 0.3830 0.17 0.2805 36.54 

TO 1.60 0.2740 3.45 0.1425 92.28 1.01 0.2800 1.34 0.1980 41.41 

E 1.30 0.2640 0.35 0.0955 176.44 0.30 0.3786 1.25 0.2000 89.30 

R 1.40 0.2740 0.30 0.1025 167.32 0.25 0.3895 0.13 0.1687 130.88 

D 1.30 0.1840 0.55 0.0890 106.74 0.45 0.3150 0.25 0.1725 82.61 

LH 1.20 0.2600 0.37 0.1000 160.00 0.30 0.3665 0.17 0.1813 102.15 

TH 1.50 0.2490 0.37 0.0955 160.73 0.30 0.3756 0.17 0.1687 122.64 

Ф
 =

 0
.2

5
 

LO 0.99 0.1955 0.37 0.0890 119.66 0.30 0.3535 0.16 0.1490 137.25 

TO 1.20 0.2240 2.71 0.1380 62.32 - - - - - 

E 1.20 0.2130 0.44 0.0915 132.79 0.40 0.3365 0.20 0.1640 105.18 

R 1.20 0.2405 0.34 0.0840 186.31 0.30 0.3586 0.16 0.1555 130.61 

D 1.01 0.1200 0.68 0.0840 42.86 0.50 0.2800 0.31 0.1500 86.67 

LH 1.40 0.2050 0.46 0.0890 130.34 0.47 0.3300 0.21 0.1650 100.00 

TH 1.40 0.1950 0.46 0.0890 119.10 0.40 0.3326 0.21 0.1573 111.44 
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7. Conclusions 

Computational models associated to the Constructal Design were used to analyze the 
influence of the geometric configuration of perforations on thin steel plates subjected to 
elasto-plastic buckling. It was possible, through these analyses, to obtain the values of the 
ultimate stresses in the elasto-plastic buckling. To do so, the type (longitudinal oblong, 
transverse oblong, elliptic, rectangular, diamond, longitudinal hexagonal, and transverse 
hexagonal), shape (by means the variation of H0/L0 ratio) and size (through of volume 
fraction Ф variation) of perforations were evaluated. 

The H0/L0 variation allows the definition of elasto-plastic buckling limit curve for all 
studied type and size of perforations. These curves represent the collapse of the plates by 
yielding of the material and indicate the effect of shape perforation in each case, being 
this a scientific contribution of the present work.  
The obtained results show a variation in the mechanical performance improvement from 
42.86% to 191.85% for the plates with H/L = 1.0, and from 36.54% to 155.71% for the 
plates with H/L = 0.5. 

According to the type of perforation, the best mechanical performances obtained for the 
plates with H/L = 1.0 were: 156.8% for longitudinal oblong perforation plates and Ф = 0.20; 
132.9% for the plates with transversal oblong perforation and Ф = 0.08; 189.5% for plates 
with elliptical perforation and Ф = 0.15; 189.8% for plates with rectangular perforation 
and Ф = 0.15; 185.4% for plates with diamond perforation and Ф = 0.08; 187.9% for the 
plates with longitudinal hexagonal perforation and Ф = 0.15; 191.8% for the plates with 
transverse hexagonal perforation and Ф = 0.10. For the plates with H/L = 0.5, there were: 
154.0% for the plates with longitudinal oblong perforation and Ф = 0.08; 107.5% for plates 
with transverse oblong perforation and Ф = 0.08; 134.2% for plates with elliptical 
perforation and Ф = 0.10; 155.7% for plates with rectangular perforation and Ф = 0.08; 
125.1% for plates with diamond perforation and Ф = 0.08; 129.0% for the plates with 
longitudinal hexagonal perforation and Ф = 0.08; 123.7% for the plates with transverse 
hexagonal perforation and Ф = 0.08. Hence, the plates with H/L = 1.0 presented a higher 
mechanical performance than the plates with H/L = 0.5, considering all types of 
perforation, for Ф = 0.10, Ф = 0.15, and Ф = 0.20. The exceptions refer to plates with oblong 
longitudinal and rectangular perforations, for Ф = 0.08; and with oblong longitudinal and 
diamond perforation for Ф = 0.25.  

Lastly, the use of the Constructal Design method associated with computational modeling 
allowed to show the importance that the geometric evaluation has for the definition of the 
mechanical behavior of the plates in elasto-plastic buckling. Its application made it possible 
to compare adequately the results obtained for all types and geometric forms of the 
proposed perforations. It was possible to evaluate the influence of the type, shape, and size 
of the perforation on the mechanical behavior of the plates as a function of H/L and H0/L0. 
In this sense, the Constructal Design method was used to define, through the analysis of 
the imperfection distribution, the optimal geometry for each H/L ratio, for each volume 
fraction (Ф) of the perforation, and for each type of perforation. It was verified that the 
optimal geometry, i.e., the geometry that promotes the maximization of the ultimate 
buckling stress, is in agreement with the statement: "The structures that present the best 
mechanical performance also present the best distribution of their imperfections, which is 
in accordance with the principles defined in the Constructal theory [18, 28]. 
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Nomenclature 

 

D Diamond perforation Et steel tangent modulus of elasticity 
E Elliptical perforation H plate width 
EP Elasto-Plastic buckling h, t plate thickness 
FEM Finite Element Method H/L relation between the width and the 

length of the plate 
LH Longitudinal Hexagonal 

perforation 
H0 perforation width 

LO Longitudinal Oblong perforation H0/L0 relation between perforation 
width and length 

NLS Normalized Limit Stress k function of the aspect ratio 
R Rectangular perforation L plate length 
TH Transversal Hexagonal 

perforation 
L0 perforation length 

TO Transversal Oblong perforation m number of half-waves of the 
deformation pattern in the x-axis 
direction 

(
𝑯𝟎

𝑳𝟎
)

𝒐

 
best geometry NLSMax maximum normalized limit 

stresses 

{𝑭𝑵𝑳} 
  

vector of internal nonlinear 
nodal forces 
 

NLSmin

  
minimum normalized limit stress 
 

[𝑲𝒕] updated tangent stiffness matrix Pcr critical load per unit of length 
{𝑷}𝒊 external load applied Pu ultimate load per unit of lenght 

{𝑷}𝒊+𝟏 external load applied V total volume of the plate without 
perforation 

{𝑼}𝒊 displacement V0 perforation volume 
{𝑼}𝒊+𝟏 displacement ν poisson's ratio of the plate's 

material 
{𝚫𝑼} vector of incremental 

displacements 
π mathematical constant 

√𝝉 plastic reduction factor of a plate 
subjected to uniform 
compression stress in one 
direction 

σcr critical stress 

{𝝍} vector of unbalanced forces σu ultimate stress 
D plate bending stiffness σy material yielding strength 
E modulus of elasticity Ф  fraction for the perforation volume 

 

References 

[1] Bellei IH. Edifícios Industriais em Aço: Projeto e Cálculo, Pini, São Paulo, SP, Brazil, 2006.  
[2] Silva VP. Design of Steel Structures, Course notes - USP, São Paulo, SP, Brazil, 2012.  



Helbig et al. / Research on Engineering Structures & Materials 4(3) (2018) 169-187 

 

186 

 

[3] Ventsel E, Krauthammer T. Thin Plates and Shells, Marcelo Dekker, New York, NY, USA, 2001.  
[4] Okumoto Y, Takeda Y, Mano M, Okada T. Design of Ship Hull Strucutures: A practical Guide 

for Engineers, Springer,Yokohama, Japan, 2009. https://doi.org/10.1007/978-3-540-
88445-3   

[5] Cheng B, Zhao JS. Strengthening of perforated plates under uniaxial compression: Buckling 
analysis. Thin-Walled Structures, 2010; 48(12): 905-914. 
https://doi.org/10.1016/j.tws.2010.06.001   

[6] Chow F, Narayanan R. Buckling of Plates Containing Openings, Seventh International 
Specialty Conference on Cold-Formed Steel Structures, 1984   

[7] El-Sawy KM, Martini MI. Elastic stability of bi-axially loaded rectangular plates with a single 
circular hole, Thin-Walled Structures, 2007; 45(1): 122-133. 
https://doi.org/10.1016/j.tws.2006.11.002   

[8] Moen CD, Schafer BW. Elastic buckling of thin plates with holes in compression or bending, 
Thin-Walled Structures, 2009; 47(12): 1597-1607. 
https://doi.org/10.1016/j.tws.2009.05.001   

[9] Helbig D, Real MV, Correia ALG, Dos Santos ED, Rocha LAO., Isoldi LA. Constructal Design of 
perforated steel plates subject to linear elastic and nonlinear elasto-plastic buckling. XXXIV 
Iberian Latin American Congress on Computational Methods in Engineering, 2013.  

[10] Lorenzini G, Helbig D, Da Silva CCC, Real MV, Dos Santos ED, Isoldi LA. Constructal design 
method applied to the analysis of the cutout type and cutout shape influences in the 
mechanical behavior of thin steel plates subjected to buckling, Constructal Law & Second 
Law Conference, 2015  

[11] Falkowicz K, Ferdynus M, Debski H. Numerical analysis of compressed plates with a cut-
out operating in the geometrically nonlinear range, Science and Technology, 2015; 17(2): 
222-227. https://doi.org/10.17531/ein.2015.2.8   

[12] Åkesson B. Plate Buckling in Bridges and other Structures, Taylor & Francis Group, London, 
England, 2007.  

[13] Vinson JR. Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, 
Including Sandwich Construction, Springer Science & Business Media, 2005. 
https://doi.org/10.1007/1-4020-3111-4   

[14] Chajes A. Principles of Structural Theory, Prentice-Hall, Englewood Cliffs, NJ, USA, 1974.   
[15] Bradford MA, Cuk PE. Elastic buckling of tapered monosymmetric I-beams, Journal of 

Structural Engineering, 1988; 114(5); 977-996. https://doi.org/10.1061/(ASCE)0733-
9445(1988)114:5(977)   

[16] Mulligan GP, Peköz T. The influence of local buckling on the structural behavior of single-
symmetric cold-formed steel columns, Center for Cold-Formed Steel Structures Library, 
1983.  

[17] Yu, Wei-Wen. Cold-formed steel design. John Wiley & Sons, 2000.   
[18] Bejan A, Lorente S. Design with Constructal Theory, John Wiley & Sons, Inc, Hoboken, NJ, 

USA, 2008. https://doi.org/10.1002/9780470432709   
[19] Bejan A, Lorente S. Constructal law of design and evolution: Physics, biology, technology, 

and society, Journal of Applied Physics, 2013; 113(15): 6. 
https://doi.org/10.1063/1.4798429   

[20] Bejan A, Evolution in thermodynamics, Applied Physics Reviews, 2017; 4(1): 011305. 
https://doi.org/10.1063/1.4978611   

[21] Miguel A F. Toward a quantitative unifying theory of natural design of flow systems: 
emergence and evolution. In: Constructal Law and the Unifying Principle of Design, Springer, 
New York, NY, USA, 2013: 21-39. https://doi.org/10.1007/978-1-4614-5049-8_2   

[22] Lorenzini G, Biserni C, Estrada E, Isoldi LA, Dos Santos ED, Rocha LAO. Constructal design 
of convective Y-shaped cavities by means of genetic algorithm, Journal of Heat Transfer, 
2014; 136(7): 071702. https://doi.org/10.1115/1.4027195   

[23] Gonzales GV, Estrada ESD, Emmendorfer LR, Isoldi LA, Xie G, Rocha LAO, et al. A comparison 
of simulated annealing schedules for constructal design of complex cavities intruded into 
conductive walls with internal heat generation, Energy, 2015; 93: 372-382. 
https://doi.org/10.1016/j.energy.2015.09.058   

[24] Ansys, User's manual (version 10.0), 2005.   

https://doi.org/10.1007/978-3-540-88445-3
https://doi.org/10.1007/978-3-540-88445-3
https://doi.org/10.1016/j.tws.2010.06.001
https://doi.org/10.1016/j.tws.2006.11.002
https://doi.org/10.1016/j.tws.2009.05.001
https://doi.org/10.17531/ein.2015.2.8
https://doi.org/10.1007/1-4020-3111-4
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:5(977)
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:5(977)
https://doi.org/10.1002/9780470432709
https://doi.org/10.1063/1.4798429
https://doi.org/10.1063/1.4978611
https://doi.org/10.1007/978-1-4614-5049-8_2
https://doi.org/10.1115/1.4027195
https://doi.org/10.1016/j.energy.2015.09.058


Helbig et al. / Research on Engineering Structures & Materials 4(3) (2018) 169-187 

 

187 

 

[25] Madenci E, Guven I. The Finite Element Method and Applications in Engineering Using 
Ansys, Springer, New York, NY, USA, 2006.   

[26] El-Sawy KM, Nazmy AS, Martini MI. Elasto-plastic buckling of perforated plates under 
uniaxial compression, Thin-Walled Structures, 2004; 42(8): 1083-1101. 
https://doi.org/10.1016/j.tws.2004.03.002   

[27] Helbig D, Silva CCCD, Real MDV, Santos EDD, Isoldi LA, Rocha LAO. (2016). Study About 
Buckling Phenomenon in Perforated Thin Steel Plates Employing Computational Modeling 
and Constructal Design Method. Latin American Journal of Solids and Structures, 2016; 
13(10); 1912-1936. https://doi.org/10.1590/1679-78252893   

[28] Bejan A, Zane J P. Design in nature. Mechanical Engineering, 2012; 134(6); 42. 

https://doi.org/10.1016/j.tws.2004.03.002
https://doi.org/10.1590/1679-78252893

	resm2017.37ds1123c
	resm2017.37ds1123m

