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 In this paper we investigate the natural convection which exists under the 
Boussinesq approximation and completely passive boundary conditions. This 
phenomenon is applicable to the cooling of a heated body and heating and 
cooling of rooms and buildings and etc. The model equations of momentum and 
energy are solved by using improved differential transform method. This 
method is an iterative way for obtaining Taylor series coefficients. The 
convergence of the Taylor series is obtained by combining the method with the 
Least Square method for the problem first time here. The combination of these 
two powerful methods yields semi analytical solutions in the form of a 
polynomial through a straightforward manner. The efficiency and applicability 
of the algorithm are assessed and tested and error calculations have been 
presented. 

© 2016 MIM Research Group. All rights reserved. 
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Introduction 

The heat transfers with convection involving fluid flow is generally divided into two basic 
processes: the forced convection and the natural convection. There are some differences 
between natural and forced convection but the main difference is the mechanism by which 
flow is generated. The forced convection where the motion of the fluid arises externally, 
for instance, by a fan, a blower, the wind, or the motion of the heated objects itself, and flow 
is driven by the pressure difference [1,2]. On the other hand, the natural convection of the 
fluid arises naturally by the effect of density difference which exists from a temperature or 
concentration difference in a body force field such as gravity. Also, velocities and the 
pressure differences in natural convection are usually much smaller than those in forced 
convection. Some of the examples of natural convection are the cooling of the heated body 
in ambient air, heating and cooling of rooms and buildings, recirculating flow driven by 
temperature and salinity differences in oceans as well as electronic cooling systems and 
further information can be obtained from [3,4]. 

High temperature for enclosures used in electronics has been the major problem. Reducing 
the operating temperature of components does not completely solve the problem, because 
integrated circuits are degraded by temperature cycling and surging. Heat conduction is 
also added to the overall cooling problem, since PCBs and other components are mounted 
using conducting materials such as bakelite and ceramics, Power dissipation by such 
electronic equipment is an important problem and will become more difficult due to future 
miniaturization and increased complexity, as a result, there is further need for more 
experimental and numerical research to improve electronic cooling techniques. As it is 
emphasized in [5], a need for thermal control in electronic 50% increases the component 
lifetime for operating temperatures at least 10 °C below the recommended manufacturer’s 
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maximum operating temperature. In [6], it is emphasized the role of the thermal analysis 
in the design of electronic packaging and the need for experimental heat transfer 
coefficient measurements to validate mathematical and numerical analyses. In [7] 
significant progresses of computational tools used to analyse cooling in electronic systems 
have been reported,  

As it is stated in [2,8], the analytical and experimental study of processes involving natural 
convection much more complicated than those involving forced convection. The governing 
equations of the process are in nonlinear nature therefore; we need to use some 
approximate or numerical methods in order to overcome these difficulties. Consequently, 
here we use an approximate technique which is called Improved Differential Transform 
Method (IDTM) to solve these types of problems. 

2. Preliminaries 

We can denote the Differential Transform Method as shortly by DTM. Let us consider a 
function 𝑤(𝑥), the differential transform of the function is defined as follows, 

𝑊(𝑘) =
1

𝑘!
[

𝑑𝑘

𝑑𝑥𝑘
𝑤(𝑥)]

𝑥=0

                                                                                                                     (1) 

where 𝑤(𝑥) is the original function and 𝑊(𝑘) is the transformed function. Here 
𝑑𝑘

𝑑𝑥𝑘 means 

the 𝑘 th derivative with respect to 𝑥. The differential inverse transform of 𝑊(𝑘) is defined 
as 

𝑤(𝑥) = ∑ 𝑊(𝑘)𝑥𝑘

𝑁

𝑘=0

                                                                                                                                (2) 

where N indicates the upper limit of the sum. Now combining Eqs. (1) and (2), we obtain 

𝑤(𝑥) = ∑
1

𝑘!
[

𝑑𝑘

𝑑𝑥𝑘
𝑤(𝑥)]

𝑥=0

𝑥𝑘

𝑁

𝑘=0

                                                                                                         (3) 

Consequently, Eq. (3) indicates the concept of DTM which overlaps with Taylor series 
expansion. However, this method differs from the way that the evaluation of the series 
coefficients. With this technique we overcome the difficulties due to obtaining higher order 
derivatives of the unknown function in Taylor series [9]. 

2.1. One-Dimensional Differential Transform Method 

One-dimensional DTM has the following main properties [9,10]: 

1. If 𝑤(𝑥) = 𝑢(𝑥) ± 𝑣(𝑥) then 𝑊(𝑘) = 𝑈(𝑘) ± 𝑉(𝑘) 

2. If 𝑤(𝑥) = 𝛼 𝑢(𝑥) then 𝑊(𝑘) = 𝛼 𝑈(𝑘)     (𝛼 ∈ ℝ) 

3. If 𝑤(𝑥) =
𝑑

𝑑𝑥
𝑢(𝑥) then 𝑊(𝑘) = (𝑘 + 1)𝑈(𝑘) 

4. If 𝑤(𝑥) =
𝑑𝑚

𝑑𝑥𝑚 𝑢(𝑥) then 𝑊(𝑘) =
(𝑘+𝑚)!

𝑘!
𝑈(𝑘) 

5. If 𝑤(𝑥) = 𝑥𝑚(𝑚 ∈ ℤ) then 

𝑊(𝑘) = 𝛿(𝑘 − 𝑚) = {
  1      ,     𝑘 = 𝑚
  0     ,      𝑘 ≠ 𝑚

 

6. If 𝑤(𝑥) = 𝑢(𝑥)𝑣(𝑥) then 𝑊(𝑘) = ∑ 𝑈(𝑟)𝑉(𝑘 − 𝑟)𝑘
𝑟=0  
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7. If 𝑤(𝑥) = 𝑢(𝑥)𝑣(𝑥)𝑠(𝑥), 𝑊(𝑘) = ∑ ∑ 𝑈(𝑟)𝑉(𝑡)𝑆(𝑘 − 𝑟 − 𝑡)𝑘−𝑟
𝑡=0

𝑘
𝑟=0   

2.2. Improved DTM by Using Least Square Correction Method 

The first step of the solution technique is to find Taylor series approximation to the 
problem as it is defined in Eq. (2). Therefore, we start to the solution with the initial 
condition and generate the other coefficients in the series solution iteratively by the 
recurrence formula which is obtained from the transformed form of the given differential 
equation or a system of differential equations. Since the problem has also involved 
boundary conditions, in order to embodying these coefficients into the solution, we use 
extra unknowns (as the number of boundary conditions) in the Taylor series. Then, these 
unknowns are solved by substituting the given boundary conditions into the solution. 
However, the solution still may not converge to the exact solution due to using limited 
number of terms in infinite series. Generation of the other coefficients of the series by using 
initial condition(s) may also result in poor approximation for boundary value problems. 
To overcome these difficulties, in this study, we aimed adding some extra correction terms 
in Eq. (2) by using Least square method. Combining the Least Square Method with 
Differential Transform method or in other word, truncated Taylor polynomial which is first 
considered here. As a result, now we are able to solve more complicated problems easily 
without any discretization or linearization. By using these two powerful techniques 
together has built the new powerful method that is mentioned here.   

The Least Square method is simple and straightforward and involves calculation of 
derivate of squares of residuals with respect to unknown coefficients that appears as extra 
terms in the series solution of the differential equation or a system of differential 
equations. 

To apply the Least Square method, we first denote any ordinary differential equation in 
the following form: 

𝐿𝑦(𝑥) + 𝑁𝑦(𝑥) = 𝐹(𝑥)           𝑎 ≤ 𝑥 ≤ 𝑏                                                                                            (4) 

where L, N and F denote the linear, nonlinear and nonhomogeneous parts respectively. Our 
solution is assumed to be in the following form: 

𝑦(𝑥) = ∑ 𝑐𝑖

𝑁

𝑖=0

𝑥𝑖 + 𝑘1𝑥𝑁+1 + 𝑘2𝑥𝑁+2 + ⋯ + 𝑘𝑚𝑥𝑁+𝑚                                                                    (5) 

In this solution, we evaluate 𝑐𝑖 's from the DTM and 𝑘𝑖's are obtained from the Least square 
method. The Least square method aims to minimize the integral of the square of residuals. 
To evaluate the values of 𝑘𝑖's we first need to know residuals, which are obtained from the 
following equation: 

𝑅(𝑥) = 𝐿𝑦(𝑥) + 𝑁𝑦(𝑥) − 𝐹(𝑥)                                                                                                            (6) 

After evaluating the residuals for each 𝑘𝑖 then, we can minimize the error. Therefore, we 
can set the following m equations as: 

 

𝜕

𝜕𝑘1

∫ 𝑅2(𝑥)𝑑𝑥 = 0

𝑏

𝑎
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𝜕

𝜕𝑘2

∫ 𝑅2(𝑥)𝑑𝑥 = 0

𝑏

𝑎

                                                                                                                                 (7) 

⋮ 

𝜕

𝜕𝑘𝑚

∫ 𝑅2(𝑥)𝑑𝑥 = 0

𝑏

𝑎

 

The above m equations altogether constitute a system of m unknowns where the 
unknowns are  𝑘1, 𝑘2, ⋯ , 𝑘𝑚. Solving this system and substituting in  

𝑦(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ + 𝑐𝑁𝑥𝑁 + 𝑘1𝑥𝑁+1 + 𝑘2𝑥𝑁+2 + ⋯ + 𝑘𝑚𝑥𝑁+𝑚                             (8) 

 gives the desired polynomial solution of the problem. 

3. Parallel Plates 

Now, we first consider the completely passive natural convection problem between 
parallel plates. The governing momentum and energy equations, under the well-accepted 
Boussinesq approximation, are  

𝜇
𝑑2𝑤

𝑑𝑦2
+ 𝜌𝑔𝛽(𝑇 − 𝑇𝛼) = 0                                                                                                                     (9) 

𝑘
𝑑2𝑇

𝑑𝑦2
+ 𝜇 (

𝑑𝑤

𝑑𝑦
)

2

= 0                                                                                                                           (10) 

where 𝜇 is the viscosity, 𝜌 is the density of the fluid [8]. The gravitational acceleration is 
denoted by 𝑔 and 𝛽 is the coefficient of thermal expansion, 𝑘 is the thermal diffusivity. 𝑇 
and 𝑇𝛼  are the temperature and the ambient temperature on the walls respectively. If we 
normalize the lateral coordinate 𝑦 which is placed at the symmetry axis by 𝐿 and the axial 
velocity 𝑤 by 𝑘 𝜌𝑔𝛽𝐿2⁄  and we have normalized temperature 𝜃 as, 

𝜃 =
𝑇 − 𝑇𝛼

𝜇𝑘 (𝜌𝑔𝛽𝐿2)2⁄
                                                                                                                                 (11) 

Therefore, Eqs. (9) and (10) become, 

𝜃 +
𝑑2𝑤

𝑑𝑦2
= 0                                                                                                                                           (12) 

𝑑2𝜃

𝑑𝑦2
+ (

𝑑𝑤

𝑑𝑦
)

2

= 0                                                                                                                                  (13) 

Eliminating 𝜃 between Eqs. (12) and (13), we obtain the following nonlinear equation 

 
𝑑4𝑤

𝑑𝑦4
= (

𝑑𝑤

𝑑𝑦
)

2

                                                                                                                                        (14) 

where 𝑤  𝑎𝑛𝑑  𝜃  are zero on the wall, hence  

𝑤(1) = 0   ,
𝑑2𝑤

𝑑𝑦2
(1) = 0                                                                                                             (15) 

Also, symmetry implies 
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𝑑𝑤

𝑑𝑦
(0) = 0   ,   

𝑑3𝑤

𝑑𝑦3
(0) = 0                                                                                                              (16) 

Of course, one solution to Eqs. (14)-(16) is the trivial solution 𝑤 = 0 which means no 
motion [8,11]. However, we will also show that Eqs. (14)-(16) have nontrivial solution. We 
assume that an approximate solution to Eq. (14) is defined in the form 

 𝑤(𝑦) = ∑ 𝑊(𝑘)𝑦𝑘

𝑁

𝑘=0

                                                                                                                            (17) 

and 𝑊(𝑘)’s are obtained from the following recurrence relation by applying the 
differential transform method to Eqs. (14)-(16) and this relation has to be satisfied for 𝑘 ≥
0 as, 

(𝑘 + 4)(𝑘 + 3)(𝑘 + 2)(𝑘 + 1)𝑊(𝑘 + 4) 

      = ∑(𝑖 + 1)(𝑘 − 𝑖 + 1)𝑊(𝑖 + 1)𝑊(𝑘 − 𝑖 + 1)                                                                     (18)

𝑘

𝑖=0

 

Imposing Eq. (16) to Eq. (18) implies that 𝑊(1) = 𝑊(3) = 0.  Eq. (18) also implies that if 
𝑘 > 0 and 𝑊(𝑘) ≠ 0 then 𝑘 = 4𝑛 + 2 for some 𝑛 ≥ 0. If 𝑊(2) = 0 then all 𝑊(𝑘) = 0 for 

𝑘 > 0 which forces 𝑤 = 0. Hence, for nontrivial solution we assume that 𝑊(2) =
𝑠

2
≠ 0 and 

𝑊(0) = 𝑤0 then, we evaluate other unknown coefficients as 

 
𝑊(6) =

1

360
𝑠2                           , 𝑊(10) =

1

151200
𝑠3

𝑊(14) =
31

1816214400
 𝑠4      ,              𝑊(18) =

29

793945152000
𝑠5

                                 (19)  

Substituting these coefficients into Eq. (17) for sufficient N which satisfy the condition 
lim
𝑘→∞

𝑊(𝑘) = 0.  Hence, imposing Eq. (15) into Eq. (17) then we solve s and 𝑊(0) is uniquely 

determined as follow, 

𝑠 = −13.15530552 …         𝑎𝑛𝑑     𝑊(0) = 6.111485425 … 

As a result, we have  

𝑤(𝑦) = 6.111485425 − 6.577652760𝑦2 + 0.4807279536𝑦6                                    

               −0.01505743596𝑦10 + 0.0005112088146𝑦14 + 1,439170306. 10−5𝑦18            (20) 

Plain DTM starts to diverge after N=14 and still it does not give desired solutios to the 
problem. Now, in order to obtain better approximation to the problem we apply least 
square technique to Eq. (20). Hence, assuming that the solution is defined as  

𝑤(𝑦) = 6.111485425 − 6.577652760𝑦2 + 0.4807279536𝑦6 − 0.01505743596𝑦10

              +0.0005112088146𝑦14 + 1,439170306. 10−5𝑦18 + 𝑘1𝑦22 + 𝑘2𝑦26 + 𝑘3𝑦30      (21) 

where 𝑘1, 𝑘2 and 𝑘3 are unknown coefficients of which values need to be evaluated from 
the Least square method. By using the method, as a result, we obtain the following solution 
which gives much better approximation to the problem (three extra terms is enough for 
convergency at the moment). 
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𝑤(𝑦) = 6.111485425 − 6.577652760𝑦2 + 0.4807279536𝑦6 − 0.01505743596𝑦10

               +0.0005112088146𝑦14 + 1,439170306. 10−5𝑦18 + 4,031183281. 10−7𝑦22

−1,078395358. 10−8𝑦26 + 2,577470238. 10−10𝑦30                              

     (22)  

Error calculations for different N and particular y, and comparisons of these errors for 
plain DTM and IDTM are given in Table 1. 

Table 1 Maximal errors for different N and for particular 𝐸𝑁(𝑦)(0 ≤ 𝑦 ≤ 1), and 
comparisons of these errors for plain DTM and IDTM 

N 6 7 8 9 10 

DTM 0.06725 0.003708 0.00018011 7.85 10−6 3.625 10−7 

IDTM 0.00217 0.000347 0.00000244 1.65 10−8 1.794 10−8 

 

Then the total flow rate per width, normalized by 𝑘 (𝜌𝑔𝛽𝐿)⁄  is evaluated as 

𝑞 = ∫ 𝑤(𝑦)𝑑𝑦
1

−1

= 7.972440114 …                                                                                                  (23) 

In [11], the total flow rates have been evaluated as 7.972440121 and there is no difference 
here for up to 7 digits.  

The following figures denote where the solution starts to diverge for DTM and how IDTM 
behaves for the problem. In Fig.1 DTM starts to diverge after 𝑥 = 0.8  however, IDTM gives 
desired values for the entire interval. 

 

 

Fig. 1 Parallel plates error estimate for m=6 

In Fig. 2 and Fig. 3 DTM starts to diverge after 𝑥 = 0.8 however, IDTM gives desired values 
for the entire interval. 
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Fig. 2 Parallel plates error estimate for m=8 

 

 

Fig. 3 Parallel plates error estimate for m=9 

4. Circular Duct 

Now, we consider a circular duct. The governing equation in cylindrical coordinates with 
similar normalization process can be written for parallel plates case such as, 

(
𝑑2

𝑑𝑟2
+

1

𝑟

𝑑

𝑑𝑟
)

2

𝑤 = (
𝑑𝑤

𝑑𝑟
)

2

                                                                                                                 (24) 

The corresponding boundary conditions are 

 
𝑑𝑤

𝑑𝑟
(0) = 0   ,    

𝑑

𝑑𝑟
(

𝑑2

𝑑𝑟2
+

1

𝑟

𝑑

𝑑𝑟
) 𝑤(0) = 0,                                                                                  (25) 

𝑤(1) = 0  ,    (
𝑑2

𝑑𝑟2
+

1

𝑟

𝑑

𝑑𝑟
) 𝑤(1) = 0                                                                                              (26) 

Of course one solution to Eqs. (24)-(26) is again the trivial solution 𝑤 = 0, it means  no 
motion [11]. We will now also show that, similar to the previous section, Eqs. (24)-(26) 
have also nontrivial solution. Approximate solution to Eq. (24) is assumed  to be in the 
form: 

𝑦(𝑟) = ∑ 𝑌(𝑘)𝑟𝑘

𝑁

𝑘=0

                                                                                                                                (27) 

If letting 𝑤′ = 𝑦 in Eq. (24) and taking the differential transform gives the following 
recurrence relation: 
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∑(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)𝛿(𝑘 − 3)𝑌(𝑘 + 3)

𝑘

𝑖=0

+ 2 ∑(𝑘 + 1)(𝑘 + 2)𝛿(𝑘 − 2)𝑌(𝑘 + 2)

𝑘

𝑖=0

− ∑(𝑘 + 1)𝛿(𝑘 − 1)𝑌(𝑘 + 1) + 𝑌(𝑘)      

𝑘

𝑖=0

= ∑ ∑ 𝛿(𝑘 − 3)𝑌(𝑙)𝑌(𝑘 − 𝑖 − 𝑙)

𝑘−𝑖

𝑙=0

𝑘

𝑖=0

                                                              (28) 

where Y(𝑘) is the transformed form of 𝑦. Eq. (25) implies 𝑌(0) = 𝑌(2) = 0 and hence, Eq. 
(28) implies that if 𝑘 > 0 and 𝑌(𝑘) ≠ 0 then 𝑘 = 4𝑛 + 2 for some 𝑛 ≥ 0. If 𝑌(1) = 0 then 
Eq. (28) implies that all 𝑌(𝑘) = 0 for 𝑘 > 0 which forces 𝑤 = 0. Hence,  we  assume that 

𝑌(1) =
𝑠

2
≠0. Hence, we evaluate the other unknown coefficients as 

𝑌(5) =
1

384
𝑠2                          , 𝑌(9) =

1

245760
𝑠3

𝑌(13) =
1

185794560
 𝑠4        ,                𝑌(17) =

79

13698261319680
𝑠5

                              (29) 

Substituting these coefficients into Eq. (27) for sufficient number of terms (when the 
required accuracy is satisfied since  lim

𝑘→∞
𝑌(𝑘) = 0). From here, integrating Eq. (27) and 

applying the conditions in Eq. (26) to the integrated form Eq. (27) then, we can solve s and 
𝑊(0) uniquely. Hence, we have 

𝑠 = −77,34851423     𝑎𝑛𝑑      𝑊(0)
= 16.91496703                                                                  (30) 

As a result, we write 

𝑤(𝑟) = 16,91496703 − 19,33712856𝑟2 + 2,596698201𝑟6 − 0,1882975760𝑟10

+0,01376090111𝑟14                                                                                    
           (31) 

Eq. (31) still has no quick convergency due to limited number of terms. Now, in order to 
obtain better approximation to the problem we apply least square technique. Assuming 
that the solution is defined as  

𝑤(𝑟) = 16,91496703 − 19,33712856𝑟2 + 2,596698201𝑟6                                       

−0,1882975760𝑟10 + 0,01376090111𝑟14 𝑘1𝑟18 + 𝑘2𝑟22 + 𝑘3𝑟26             (32) 

where 𝑘1, 𝑘2 and 𝑘3 are unknown coefficients of which values need to be evaluated from 
the Least square method. By using the method as it is stated before, as a result, we obtain 
the following solution which gives the desired solution to the problem. 

𝑤(𝑟) = 16,91496703 − 19,33712856𝑟2 + 2,596698201𝑟6 − 0,1882975760𝑟10

               +0,01376090111𝑟14 − 8,864471907. 10−4𝑟18 + 5,462628689. 10−5𝑟22

−2,647332437. 10−6𝑟26                                                                             

           (33) 

Error calculations for particular value of N and w and  comparisons of the error between 
plain DTM and IDTM have been given in Table 2. 
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Table 2 Maximal errors for different N and for particular 𝐸𝑁(𝑟)(0 ≤ 𝑟 ≤ 1), and 
comparisons of the error for plain DTM and IDTM 

N 6 7 8 9 10 
DTM 9.915605 1.2270191 0.0298474 0.11698318 0.10267140 
IDTM 0.895310 0.0159970 0.0003045 8.422 10−5 1.307 10−6 

 

Furthermore, the total flow rate per width, normalized by 𝑘 (𝜌𝑔𝛽𝐿)⁄  is evaluated as 

𝑄 = 2𝜋 ∫ 𝑤(𝑟)𝑟𝑑𝑟 = 24.79510453
1

0

                                                                                              (34) 

In [11], the total flow rates have been evaluated as 24.79516051 and there is no difference 
between these two results up to 4 digits.  

The following figures denote where the solution starts to diverge for DTM and how IDTM 
behaves for the problem. After 𝑥 = 0.8 points, the results get far away from the solution 
when DTM is used. It may be seen in Fig. 4-6 that IDTM solution gives better results for 
each point on interval. 

 

Fig. 4 Circular duct error estimate for m=7 

 

 

Fig. 5 Circular duct error estimate for m=8 
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Fig. 6 Circular duct error estimate for m=10 

5. Result and Discussion 

The main aim of this study is to solve the model problems for completely passive natural 
convection by a technique which we called is IDTM. The proposed model can be the cooling 
of a heated body and heating and cooling of rooms and buildings and etc. The model 
equations of momentum and energy are solved by using improved differential transform 
method. For the two model problems, we applied our technique to the equations without 
doing any discretization and linearization and we obtained reliable results for the total 
flow rate by IDTM which are entirely same results with [11] indeed. Hence, this technique 

can easily be applied to many complicated case.  
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