

Finite Element Solver for 2D Linear Elasticity Beam

Sabah Moussaoui and Mourad Belgasmia
Department of Civil Engineering Setif University, Algeria mourad.belgasmia@yahoo.fr

Abstract

The goal of this article is to know how much increases the stiffness matrix conditioning of steel cantilever beam by developing a finite element code for $2 D$ linear elasticity, using a triangular finite element in the beam modeling with MATLAB [1].

Key words: Finite element, Triangular element, Weak formulation, Eigenvalues, Residue of iteration

INTRODUCTION

In this article the project is to study the deformation of a steel cantilever beam ; embedded on one side $\Gamma_{D} \subset \partial \Omega$ and free in another $\Gamma_{N}=\frac{\partial \Omega}{\Gamma_{D}}$ which is subjected to in each point to the action of body forces $x \in \Omega$ in his free end side as represented in Fig. 1.

The external forces and internal forces at each point of Ω requires that for each component. $i=\{1,2\}$ of the vector forces we have:

$$
\begin{align*}
& \sum_{j} \frac{\partial \sigma_{i j}(u)}{\partial x_{j}}+f_{i}=0 \quad \text { in } \Omega \tag{1}\\
& u=0 \tag{2}\\
& \sigma_{i j} n_{j}=g_{i} \tag{3}\\
& \text { on } \Gamma_{\mathrm{D}} \\
& \text { on } \Gamma_{\mathrm{N}}
\end{align*}
$$

where $\sigma_{i j}(u), i, j=\{1,2\}, \sigma_{i j}=\sigma_{j i}$ is the Stress tensor (matrix) which is, proportional to deformation of the solid. According to Hooke's law, we have the following relation between the stress tensor $\sigma_{i j}$ and the deformation tensor $\varepsilon_{i j}$

$$
\begin{equation*}
\sigma_{i j}(u)=\frac{E}{(1+v)}\left(\sum_{k} \frac{v}{(1-2 v)} \varepsilon_{k k} \delta_{i j}+\varepsilon_{i j}\right) \tag{4}
\end{equation*}
$$

where the young's modulus $\mathrm{E}=2.10^{11}[\mathrm{PA}]$, Poisson ratio v for steel is equal to 0.3 . The strain tensor $\varepsilon_{i j}(u)$ is expressed in term of displacement $u(x)$ as following :

$$
\begin{equation*}
\varepsilon_{i j}(u)=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right) \tag{5}
\end{equation*}
$$

Weak Formulation of the Problem

According to the equation (1), we have $\sum_{j} \frac{\partial \sigma_{i j}(u)}{\partial x_{j}}+f_{i}=0$ By multiplying by v (function test), and then summing for each i we obtain[2-4]:

Fig. 1 Geometry of the beam

$$
\begin{align*}
& \sum_{i, j} \frac{\partial \sigma_{i j}(u)}{\partial x_{j}} v_{i}+\sum_{i} f_{i} v_{i}=0 \tag{6}\\
& \sum_{i, j} \frac{\partial \sigma_{i j}(u)}{\partial x_{j}} v_{i}=-\sum_{i} f_{i} v_{i}
\end{align*}
$$

By integrating over Ω

$$
\int_{\Omega} \sum_{i, j} \frac{\partial \sigma_{i j}(u)}{\partial x_{j}} v_{i}=-\int_{\Omega} \sum_{i} f_{i} v_{i}
$$

According to the divergence theorem

$$
\int_{\Omega} \sum_{i, j} \frac{\partial \sigma_{i j}(u)}{\partial x_{j}} v_{i}=-\int_{\Omega} \sum_{i, j} \sigma_{i j}(u) \frac{\partial u_{i}}{\partial x_{j}} d \Omega+\int_{\Gamma} \sum_{i, j} \sigma_{i j}(u) v_{i} n_{j} d \Gamma
$$

knowing that

$$
\int_{\Gamma} \sum_{i, j} \sigma_{i j}(u) v_{i} n_{j} d \Gamma=\int_{\Gamma_{D}} \sum_{i, j} \sigma_{i j}(u) v_{i} n_{j} d \Gamma+\int_{\Gamma_{N}} \sum_{i, j} \sigma_{i j}(u) v_{i} n_{j} d \Gamma
$$

because

$$
v_{i}=0 \text { in } \Gamma_{D} \text { and } \sigma_{i j} n_{i}=g_{i}=0 \text { in } \Gamma_{N}
$$

using symmetry $\quad \sigma_{i j}=\sigma_{j i}$

$$
\begin{aligned}
-\int_{\Omega} \sum_{i, j} \sigma_{i j}(u) \frac{\partial v_{i}}{\partial x_{j}} d \Omega & =-\int_{\Omega}\left(\sum_{i, j} \frac{1}{2} \sigma_{i j}(u) \frac{\partial v_{i}}{\partial x_{j}}+\sum_{i, j} \frac{1}{2} \sigma_{i j}(u) \frac{\partial v_{j}}{\partial x_{i}}\right) d \Omega \\
& =-\int_{\Omega} \sum_{i, j} \sigma_{i j}(u) \varepsilon_{i j}(v) d \Omega
\end{aligned}
$$

with

$$
\varepsilon_{i j}(v)=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)
$$

finally, we get the weak formulation of the problem

$$
\begin{equation*}
\int_{\Omega} \sum_{i, j} \sigma_{i j}(u) \varepsilon_{i j}(v) d \Omega=\int_{\Omega} \sum_{i} f_{i} v_{i} d \Omega \tag{8}
\end{equation*}
$$

DISCRETIZATION OF THE PROBLEM USING FINITE ELEMENT METHOD

The triangular element is used for 2D model of beam structure; assuming an element with three nodes $\mathrm{i}, \mathrm{j}, \mathrm{k}$ in this case each node displacement has two components as follows [2-3-4]:

$$
\begin{equation*}
u_{i}=\left(u_{i 1}, u_{i 2}\right)^{t} \quad u_{j}=\left(u_{j 1}, u_{j 2}\right)^{t} \quad u_{k}=\left(u_{k 1}, u_{k 2}\right)^{t} \tag{9}
\end{equation*}
$$

From the geometry of the triangle, we can define

$$
\left\{\begin{array}{l}
\phi_{i}(x)=a_{i}+b_{i} x_{1}+c_{i} x_{2} \tag{10}\\
\phi_{j}(x)=a_{j}+b_{j} x_{1}+c_{j} x_{2} \\
\phi_{k}(x)=a_{k}+b_{k} x_{1}+c_{k} x_{2}
\end{array}\right.
$$

If l is one of the summits of the triangle, we have by definition

$$
\left\{\begin{array}{lllll}
\phi_{i}\left(x_{l}\right)=1 & \text { if } & l=i & \text { otherwise } & 0 \\
\phi_{j}\left(x_{l}\right)=1 & \text { if } & l=j & \text { otherwise } & 0 \\
\phi_{k}\left(x_{l}\right)=1 & \text { if } & l=k & \text { otherwise } & 0
\end{array}\right.
$$

we obtain the following linear system:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & x_{j 1} & x_{j 2} \\
1 & x_{j 1} & x_{j 2} \\
1 & x_{j 1} & x_{j 2}
\end{array}\right]\left[\begin{array}{lll}
a_{i} & a_{j} & a_{k} \\
b_{i} & b_{j} & b_{k} \\
c_{i} & c_{j} & c_{k}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
a_{i} & a_{j} & a_{k} \\
b_{i} & b_{j} & b_{k} \\
c_{i} & c_{j} & c_{k}
\end{array}\right]=\left[\begin{array}{lll}
1 & x_{j 1} & x_{j 2} \\
1 & x_{j 1} & x_{j 2} \\
1 & x_{j 1} & x_{j 2}
\end{array}\right]}
\end{aligned}
$$

we seek to estimate
so

$$
\begin{aligned}
& \varepsilon_{11}(u), \varepsilon_{12}(u), \varepsilon_{22}(u) \\
& \varepsilon_{11}(u)=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{1}}+\frac{\partial u_{1}}{\partial x_{1}}\right)=\frac{\partial u_{1}}{\partial x_{1}} \\
& u_{1}=u_{i 1} \phi_{i}+u_{j 1} \phi_{j}+u_{k 1} \phi_{k} \\
& \quad \varepsilon_{11}(u)=u_{i 1} \frac{\partial \phi_{i}}{\partial x_{i}}+u_{j 1} \frac{\partial \phi_{j}}{\partial x_{j}}+u_{k 1} \frac{\partial \phi_{k}}{\partial x_{1}}
\end{aligned}
$$

$$
=u_{i 1} b_{i}+u_{j 1} b_{j}+u_{k 1} b_{k}
$$

$$
\varepsilon_{22}(u)=\frac{1}{2}\left(\frac{\partial u_{2}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{2}}\right)=\frac{\partial u_{2}}{\partial x_{2}}
$$

$$
u_{2}=u_{i 2} \phi_{i}+u_{j 2} \phi_{j}+u_{k 2} \phi_{k}
$$

$$
\varepsilon_{22}(u)=u_{i 2} \frac{\partial \phi_{i}}{\partial x_{i}}+u_{j 2} \frac{\partial \phi_{j}}{\partial x_{j}}+u_{k 2} \frac{\partial \phi_{k}}{\partial x_{1}}
$$

$$
=u_{i 2} b_{i}+u_{j 2} b_{j}+u_{k 2} b_{k}
$$

$$
\varepsilon_{12}(u)=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right)
$$

finally

$$
\varepsilon_{12}(u)=\frac{1}{2}\left(u_{i 1} c_{i}+u_{j 1} c_{j}+u_{k 1} c_{k}+u_{i 2} b_{i}+u_{j 2} b_{j}+u_{k 2} b_{k}\right)
$$

Hence the expression of strain matrix:

$$
\left[\begin{array}{l}
\varepsilon_{11}(u) \tag{11}\\
\varepsilon_{12}(u) \\
\varepsilon_{22}(u)
\end{array}\right]=\left[\begin{array}{cccccc}
b_{i} & 0 & b_{j} & 0 & b_{k} & 0 \\
\frac{1}{2} c_{i} & \frac{1}{2} b_{i} & \frac{1}{2} c_{j} & \frac{1}{2} b_{j} & \frac{1}{2} c_{k} & \frac{1}{2} b_{k} \\
0 & c_{i} & 0 & c_{j} & 0 & c_{k}
\end{array}\right]\left[\begin{array}{l}
u_{i 1} \\
u_{i 2} \\
u_{j 1} \\
u_{j 2} \\
u_{k 1} \\
u_{k 2}
\end{array}\right]
$$

Using the relation (4) the constitutive matrix is written

$$
\left[\begin{array}{l}
\sigma_{11}(u) \tag{12}\\
\sigma_{12}(u) \\
\sigma_{22}(u)
\end{array}\right]=\frac{E}{(1+v)}\left[\begin{array}{ccc}
\frac{v}{(1-2 v)}+1 & 0 & \frac{v}{(1-2 v)} \\
0 & 1 & 0 \\
\frac{v}{(1-2 v)} & 0 & \frac{v}{(1-2 v)}+1
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{11}(u) \\
\varepsilon_{12}(u) \\
\varepsilon_{22}(u)
\end{array}\right]
$$

DISCRETIZATION AND APPROXIMATION OF THE SECOND MEMBER

The goal of this section is to compute the stiffness matrix for Laplace, with homogeneous Neumann conditions [5]:

$$
\begin{aligned}
& \int_{\Omega} \sum_{i} f_{i} v_{i} d \Omega=\sum_{K} \int_{K} f_{1}\left|K v_{1}\right| K+f_{2}\left|K v_{2}\right| K d \Omega \\
&=\sum_{K} \int_{K}\left(f_{i 1} \phi_{i}+f_{j 1} \phi_{j}+f_{k 1} \phi_{k}\right) \bullet\left(v_{i 1} \phi_{i}+v_{j 1} \phi_{j}+v_{k 1} \phi_{k}\right) d \Omega \\
&+\sum_{K} \int_{K}\left(f_{i 2} \phi_{i}+f_{j 2} \phi_{j}+f_{k 2} \phi_{k}\right) \bullet\left(v_{i 2} \phi_{i}+v_{j 2} \phi_{j}+v_{k 2} \phi_{k}\right) d \Omega \\
& {\left[\begin{array}{l}
u_{11} \\
u_{12} \\
u_{21} \\
u_{22} \\
\vdots \\
u_{N 1} \\
u_{N 2}
\end{array}\right]=\left[\begin{array}{l}
f_{11} \\
f_{12} \\
f_{21} \\
f_{22} \\
\vdots \\
f_{N 1} \\
f_{N 2}
\end{array}\right] } \\
& f_{i 1}=\int_{\Gamma} f_{1}\left(x_{1}, x_{2}\right) \phi_{i}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Where for a node i

$$
f_{i 1}=\int_{\Gamma} f_{2}\left(x_{1}, x_{2}\right) \phi_{i}\left(x_{1}, x_{2}\right)
$$

In our case f_{1} is zero so we can make the following approximation

$$
\begin{gather*}
\int_{\Omega} f_{2}\left(x_{1}, x_{2}\right) \phi_{i}\left(x_{1}, x_{2}\right)=\sum_{K, i \in K} \int_{K} f_{2}(K) \phi_{i} d \Omega \\
\approx \sum_{K, i \in K} \int_{K} \frac{1}{3}|K| f_{2}\left(x_{i}, y_{i}\right) \tag{14}\\
=f_{2}\left(x_{i}, y_{i}\right) \sum_{K, i \in K} \frac{1}{3}|K|
\end{gather*}
$$

With

$$
\sum_{K, i \in K} \frac{1}{3}|K|=\text { CellArea }
$$

NUMERICAL RESULTS AND ITERATIVE METHODS

The beam considered is 20 times longer than wide see Fig. 2. The stopping criterion of the iterative method is [6-7]:

$$
\left|R_{i}\right| /\left|R_{0}\right|^{\prec 10^{-6}}
$$

R_{i} is the residue at $\mathrm{i}^{\text {th }}$ iteration, R_{0} the residue before the iteration, m represent a number of node in X direction, n represent a number of node in Y direction, $\lambda_{\max }$ represents the maximum eigenvalue and $\lambda_{\min }$ represents the minimum eigenvalue

Fig. 3 Deformation in x direction

Fig. 4 Deformation in y direction

Table -I Eigenvalues Results for Different Meshes

m	10	20	40	80	160
n	4	8	16	32	64
Number of iteration	205	643	1729	3736	7981
$\lambda_{\max } / \lambda_{\min }$	5.2×10^{6}	3.78×10^{7}	1.89×10^{8}	7.98×10^{8}	3.19×10^{9}

RESULTS AND DISCUSSION

We notice that the conditioning increases in $O\left(1 / \mathrm{h}^{2}\right)$ when the discretization step h is small enough. In our example, this corresponds to the m values greater than 40 and n greater than 16 (see table 1). Our global stiffness matrix K is not well conditioned; it is hardly reversible. Many iterations are required to have a sufficiently negligible residue and find an acceptable solution. We also note that the conditioning of global matrix increases as the mesh is refined.

CONCLUSIONS

The appearance of a second degree of freedom required a general reformulation of the problem. The construction of the elementary matrix is based on the construction of the stress and train tensor. A reformulation of the matrix indices I and J was necessary for vectoring the elementary matrix. The discretization of the second member oblige Cell Area calculation per nodes. The mesh should not be too refining in order to solve the system but enough to get a good approximation of the exact solution.

REFERENCES

[1] IFEM, An Innovative Finite Element Methods Package in MATLAB Technique, Report, University of California, 2009.
[2] JN Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, Second Ed., 1993.
[3] OC Zienkiewicz and RL Taylor, The Finite Element Method: Fluid Dynamics, Butterworth-Heinemann, New York, 2000, 5 (3).
[4] R Cook, D Malkus and M Plesha, Concepts and Applications of Finite Element Analysis, John Wiley and Sons, New York, $3^{\text {rd }}$ Ed., 1989.
[5] S Brenner and R Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, 1994.
[6] O Axelsson, Iterative Solution Method, Cambridge University Press, Cambridge, 1994.
[7] D Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge, University Press, Cambridge, United Kingdom, 1997.

