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ABSTRACT  
 

The goal of this article is to know how much increases the stiffness matrix conditioning of steel cantilever beam by 

developing a finite element code for 2D linear elasticity, using a triangular finite element in the beam modeling with 

MATLAB [1]. 
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INTRODUCTION 
 

In this article the project is to study the deformation of a steel cantilever beam ;  embedded on one side D    

and free in another 
N

D


 


 which is subjected to in each point to the action of body forces x  in his free 

end side as represented in Fig. 1.     
 

The external forces and internal forces at each point of Ω requires that for each component.  i = {1, 2} of the vector 

forces we have: 

( )
0

i j
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j j
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 


    in Ω                       (1)  

0u                    on  ГD                (2) 

i j j in g           on  ГN                (3)  

where ( )i j u ,  , 1,2i j  ,
i j j i   is the Stress tensor (matrix) which is, proportional to deformation of the 

solid. According to Hooke's law, we have the following relation between the stress tensor 
i j  and the deformation 

tensor
i j  
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where the young's modulus E = 2.1011 [ PA], Poisson ratio υ for steel is equal to 0.3. The strain tensor ( )i j u is ex-

pressed in term of displacement u(x) as following : 
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             (5) 

 

Weak Formulation of the Problem  

According to the equation (1) , we have   
( )

0
i j

i

j j

u
f

x


 


   By multiplying by v (function test), and then 

summing for each i we obtain[2-4]: 
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Fig. 1 Geometry of the beam 
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By integrating over Ω  
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According to the divergence theorem 
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knowing that  
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because  0iv   in D and 0i j i in g    in N  

using symmetry  
i j ji   

, , ,

,

1 1
( ) ( ) ( )

2 2

( ) ( )

ji i
i j i j i j

i j i j i jj j i

i j i j

i j

vv v
u d u u d

x x x

u v d

  

 

 



  
          

  

   



              (7) 

with  
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finally, we get the weak formulation of the problem  

,

( ) ( )i j i j i i

i j i

u v d f v d 
 

                   (8) 

 

DISCRETIZATION OF THE PROBLEM USING FINITE ELEMENT METHOD 

 

The triangular element is used for 2D model of beam structure; assuming an element with three nodes i,j,k  in this 

case each node displacement has two components as follows [2-3-4]: 

 1 2,
t

i i iu u u
   

 1 2,
t

j j ju u u
  

 1 2,
t

k k ku u u            (9)
 

From the geometry of the triangle, we can define 
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If l   is one of the summits of the triangle, we have by definition
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we obtain the following linear system: 
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we seek to estimate 
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as well      
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Hence the expression of strain matrix: 
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Using the relation (4) the constitutive matrix is written  
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DISCRETIZATION AND APPROXIMATION OF THE SECOND MEMBER 

 

The goal of this section is to compute the stiffness matrix for Laplace, with homogeneous Neumann conditions [5]: 
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Where for a node i  
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In our case 
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 is zero so we can make the following approximation
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With  

 
NUMERICAL RESULTS AND ITERATIVE METHODS 

 

 The beam considered is 20 times longer than wide see Fig. 2. The stopping criterion of the iterative method is [6-7]: 
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Ri is the residue at ith iteration, R0 the residue before the iteration, m represent a number of node in X direction, n 

represent a number of node in Y direction, λmax represents the maximum eigenvalue and λmin  represents the mini-

mum eigenvalue 
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 Fig. 2 Deformation shape of the beam element 

 

 
Fig. 3 Deformation in x direction 

 

 

 
Fig. 4 Deformation in y direction 
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Table -l Eigenvalues Results for Different Meshes 
 

m 10 20 40 80 160 

n 4 8 16 32 64 

Number of iteration 205 643 1729 3736 7981 

λmax / λmin   5.2x106 3.78x107 1.89x108 7.98x108 3.19x109 

 

RESULTS AND DISCUSSION 
 

We notice that the conditioning increases in O(1 / h2) when the discretization step h  is small enough. In our exam-

ple, this corresponds to the m values greater than 40 and n greater than 16 (see table 1). Our global stiffness matrix 

K is not well conditioned; it is hardly reversible. Many iterations are required to have a sufficiently negligible resi-

due and find an acceptable solution. We also note that the conditioning of global matrix increases as the mesh is 

refined.  
 

CONCLUSIONS 
 

The appearance of a second degree of freedom required a general reformulation of the problem. The construction of 

the elementary matrix is based on the construction of the stress and train tensor. A reformulation of the matrix indi-

ces I and J was necessary for vectoring the elementary matrix. The discretization of the second member oblige Cell 

Area calculation per nodes. The mesh should not be too refining in order to solve the system but enough to get a 

good approximation of the exact solution. 
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