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ABSTRACT  
 

In modern scenario the IT industries are investing much capital on software quality testing. Software  testing phase 
of software development life cycle provide the defects details to the software developer. The proposed model is 
capable to predict the defect before going to the software testing phase. It also minimize the time and cost of the 
project. In this paper object oriented defected dataset ANT 1.7 has been used which is provided by the PROMISE 
(Predict or Models in Software Engineering) repository of empirical software engineering data. In these data sets 
the metrics and bug are freely available to the researchers publically. The main objective of this work is to 
calculate the accuracy and performance of the proposed software bug prediction model based on different 
techniques. 
 
The proposed model is based on GDA (Gradient descent with adaptive learning back propagation) techniques. The 
proposed model is providing 98.97 % accuracy which is better as compare to the other existing models for Ant 
dataset.  
 
Key words: Bug prediction, Dataset, Gradient descent with adaptive learning back propagation techniques, 
Metrics 
_____________________________________________________________________________________ 
 

INTRODUCTION 
 
The different types of software metrics like class level, method level, file level, process level are used to find fault 
in the software before the testing the software at early stage of software developments life cycle. There are 
different methods which are used to find the software faults, the methods are statistical method, machine learning 
method, and expert analysis system etc [7]. The number of faults in the software cause to problems in system 
performance and the software containing many faults delivered to the user. So there is need of automated model 
which takes less time and predict the approximate faults existing in the system. Here machine learning method has 
been used which is based on neural network. This provided the approximate result near to the actual result already 
given [16]. 
 
Neural network is the techniques based on the human brains. It is collection of the number of artificial neurons. It 
can be customized according to the need and problems. As each artificial neuron takes a number of inputs and 
provide the single output [5]. An artificial neuron performed the complex calculation on input on the basis of used 
transfer function to produce desired output. As the size of neural network increases the complexity of the system 
also increases. Therefore there is need to use the number of layers, number of neurons, transfer function as less as 
possible. Neural network is capable to perform complex function in many fields like in pattern recognition [5], 
classification, speech recognition, vision and control system. Neural network is capable to solve the problems 
which could not solve by the human brains or by the conventional computer system E.g. data mining [11], image 
processing [12] and diagnostic systems [13]. 
 
At last it has been analyzed that the software industries have a high level of challenging problems to deliver the 
fault free software to clients or users. The delivered software should be reliable; it should be more performable as 
size and complexity of the software increases. Software bug prediction system is cost effective and improving 
software quality [19].  
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REVIEW OF LITERATURE 
 

In this study the number of papers which are published in conferences, journal, book, transaction from 1990 to 
2015 have been analyzed. These published papers have been categorized according to the model based on machine 
learning approach. This literature review excluded the paper which has not experimental results. Perfer and Selby 
used the classification tree on method level metrics and produced 79.3% accuracy of the model [2]. But it not 
supported longer to improve this model. The logistic regression, optimization set reduction (OSR) and 
classification tree used by the Briand et al. This model was not appropriates, it produced accuracy to 90% using 
OSR technique. Khoshgoftar et al [4] used fuzzy logic subtractive clustering methods to classify the data in to 
faulty and non-faulty classes. This model is made for the 10 method level metrics. Refurment used fuzzy rule 
based model for finding number of faults. This model is applied on the 11 method level metrics of a medical image 
system. Wang et al used artificial neural network for software fault prediction used on a large telecommunication 
system developed on c language having product metrics provided by matrix analyzer [2]. Xiang et al used the 
support vector machine (SVM) on the 11 method level metrics of medical image software. The published paper 
evaluate that it was not better for class level public dataset. 
 

Ma et al studied the performance of various machine learning approach on public data set, this is method level 
metrics provided by the NASA. However it was failed to find a software tool which consist this approach. 
Boesticher analyzed the effect of dataset on software engineering and applied Naïve Bayes technique [2]. This 
provides the 94% accuracy for determining same class and nasty neighbor test set in public dataset provided by 
NASA. Bibi et al used regression classification to solve software fault prediction problem with a confidence 
interval. It had provided better regression error than standard regression. Turhan and Bener showed the assumption 
in Naïve Bayes algorithm is not preprocessed with PCA so they used balance parameters [2]. Mende and Kuchke 
focused on lines of codes metrics based software fault prediction model on public dataset of NASA. This model 
performed better in term of area under ROC curve parameter.  Singh and Salaria [15] introduced a model based on 
machine learning approach using neural network which providing the accuracy of the model 88.09% on the class 
level public dataset ANT1.7. Mahajan et al [9] proposed a software fault prediction model using BR technique of 
neural network. It was machine learning approach that provided 92.44% accuracy of the model for class level 
public dataset ANT1.7. 
 

 DATA SET 
 

The input dataset used in this model are object oriented class level public dataset. These dataset are taken from the 
PROMISE repository of empirical software engineering data (http://promisedata.googlecode.com). The dataset are 
available in nonnumeric or textual form so its need to prepare the data to use as input in neural network. It is known 
that neural network trained only with numeric data. Hence there is need to convert non numeric data in to numeric 
form. There are many techniques used for conversion like binary encoding, unary encoding and numbering classes. 
Here MS Excel has been used to convert textual form in to numeric data. The following table provides attribute 
information or metrics used in the public dataset [15]. 
 

Table -1 Attributes Information of Public DATASET 
 

S. No. Attributes / Inputs Explanation Suggested By 
1. WMC Weighted methods per class Chidamber and Kemerer [3] 

2. DIT Depth of Inheritance Tree Chidamber and Kemerer[3] 

3. NOC Number of Children Chidamber and Kemerer[3] 

4. CBO Coupling between object classes Chidamber and Kemerer[3] 

5. RFC Response for a Class Chidamber and Kemerer[3] 

6. LCOM Lack of cohesion in methods Chidamber and Kemerer[3] 

7. LCOM3 Lack of cohesion in methods Henderson-Sellers12 

8. NPM Number of Public Methods Bainsy and Davis[1] 

9. DAM Data Access Metric Bainsy and Davis[1] 

10. MOA Measure of Aggregation Bainsy and Davis[1] 

11. MFA Measure of Functional Abstraction Bainsy and Davis[1] 

12. CAM Cohesion Among Methods of Class Bainsy and Davis[1] 

13. IC Inheritance Coupling Tang et al[16] 

14. CBM Coupling Between Methods Tang et al[16] 

15. AMC Average Method Complexity Tang et al[16] 

16. Ca Afferent couplings Martin[12] 

17. Ce Efferent couplings Martin[12] 

18. CC Cyclomatic complexity McCabe[13] 

19. Max(CC) The greatest value of CC McCabe[13] 

20. Avg(CC) The arithmetic mean of the CC McCabe[13] 
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IMPLEMENTATION TO DESIGN THE PROPOSED MODEL 
 
In this work the neural network model has been created and designed to measure the performance using mean 
squared error (MSE) function which providing the better result in term of accuracy. As neural network works on the 
concept of accepting input, training the network, testing the sample by simulation. The 85% of Ant 1.7 dataset has 
been used for training and testing is done on the 15% 0f Ant dataset [9]. The ANT dataset classified in to two dataset 
training and sample (dataset for testing). The random 15% sample from Ant dataset has been ejected for testing 
dataset using the formula to generate the random index. Rand Array=ceil (1+ (745-1).* rand (100, 1))[9]. The 
remaining 85% of Ant dataset has been used for training.  
 

Preprocessing and Post Processing 
The training input dataset has been preprocessed to scale the input matrix in the range of -1 to 1 using the formula  

                              ( ) ( ) ( ) minminmaxminminmax YXXXXYYY ijij +−÷−∗−=  

This model designed using GDA (Gradient descent with adoptive learning), BR (Baysian Regilation) and LM 
(Levenberg Marquardt) techniques to train the neural network. The transfer function tangent sigmoid and pure linear 
transfer functions have been used at hidden layer and output layer respectively. There are one hidden layer and size 
of hidden layer is 33. 
 
The following Fig. 1 shows the neural network configuration information. The following Fig. 2 providing the 
execution and result in Matlab 2013. 
 

  
 

Fig. 1 Neural Network Training GUI 
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Fig. 2Execution process of the proposed model in MATLAB 
 

 RESULT AND COMPARISON ANALYSIS 
 

For ANTver1.7 Datasets the Actual and Predicted Bug  
Table -2 shows the predicted bug corresponding to the actual bug in the classes of the datasets. Record number is the 
random indices find out from the actual datasets with the help of random indices generator array of size 100 rows of 
1 column. 
 

From the above table it has been analyzed that the result of predicted bug output of GDA. BR and LM algorithm is 
calculated by the testing dataset of Ant1.7. Actual bug is the output which is already given in the Ant1.7 dataset. As 
a testing result the average predicted output using GDA, LM and BR are 0.545513, 0.5649195 and 0.6196424 
respectively. Given that average actual output for testing dataset Ant1.7= 0.5400 
 

General formula for calculating percentage accuracy of GDA, BR and LM algorithm are given below: 
 

Percentage Error= |average predicted output-average actual output|/average actual output*100 [9] 
(i) Accuracy of GDA algorithm: 
Percentage Error = |0.545513 - 0.5400|/0.5400 * 100 = 1.024074% 
Percentage Accuracy= 100 - 1.024074% = 98.97 
(ii)  Accuracy of BR algorithm: 
Percentage Error = |0.5649195 - 0.5400|/0.5400 * 100 = 4.614722% 
Percentage Accuracy= 100 - 4.614722% = 95.38% 
(iii)  Accuracy of LM Algorithm: 
Percentage Error = |0.6196424 - 0.5400|/0.5400 * 100 = 14.748593% 
Percentage Accuracy= 100 - 14.748593% = 85.25% 
 

The following Table -3 shows the comparison result of the proposed model and it is analyzed that the accuracy of 
proposed model using GDA techniques is greater than the other techniques BR and LM for ant datasets.  From the 
table -3 calculations, so it has been observed that designing of software bug prediction model using GDA technique 
provides the higher accuracy than techniques [9] like BR and LM. 
Note: This is shown that the neural network based bug prediction system using GDA techniques is better system 
than BR and LM based models. 
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Table -2 Predicted Bug corresponding Actual Bug 
 

Sr. 
No. 

Record 
No. 

Actual 
Bug 

Predicted 
Bug using 

Predicted 
Bug using 

Predicted 
Bug 

Sr. 
No. 

Record 
No. 

Actual 
Bug 

Predicted 
Bug using 

Predicted 
Bug using 

Predicted 
Bug using 1 608 0 -0.13965 0.207984 0.097988 51 207 0 -0.11941 0.151031 -0.07361 

2 675 0 -1.21596 -0.0495 -2.87044 52 507 0 -0.24676 0.114256 0.068069 

3 96 0 -0.05277 0.247892 0.275674 53 331 0 0.701153 0.228145 -0.21602 

4 681 0 -0.11811 0.285726 -0.17133 54 122 0 -0.09474 0.254947 0.136278 

5 472 0 0.285041 0.212626 0.094878 55 90 0 0.025808 0.310194 0.170748 

6 74 0 -1.53603 0.317994 -0.25844 56 372 4 1.538865 0.562457 1.047118 

7 209 0 -0.22445 0.076408 0.140634 57 716 0 2.434129 0.46279 -0.03102 

8 408 0 0.029051 0.292781 0.167947 58 255 0 0.740494 0.335037 -0.54654 

9 64 6 3.581547 1.397309 1.735874 59 437 1 0.210388 0.745827 0.862717 

10 719 0 -0.28106 -0.10414 -0.60366 60 168 0 0.361601 0.957596 -0.26016 

11 119 0 0.886165 0.292749 0.001648 61 560 6 3.267603 2.06538 0.739828 

12 724 0 -0.31521 0.038991 0.130673 62 191 0 -0.44862 -0.00344 0.259179 

13 714 0 0.181777 0.674014 0.054281 63 378 0 1.085374 0.946486 0.865572 

14 363 0 -0.25176 0.111971 0.067472 64 522 3 0.310988 1.469272 1.874704 

15 597 1 0.104797 3.857747 0.584896 65 664 1 -0.61054 -0.41488 0.206739 

16 107 0 8.776178 0.337989 1.645744 66 -5 1 0.816135 0.428421 -0.01306 

17 315 0 0.113252 0.242712 -0.00369 67 409 0 -0.14028 0.25732 0.336718 

18 683 1 0.348626 1.39504 0.36483 68 105 0 0.549674 0.605076 2.480168 

19 591 0 -0.31736 0.132873 0.001049 69 113 0 -0.34709 0.183026 0.055194 

20 715 0 -0.61349 0.431657 0.148418 70 193 3 1.731835 1.559254 3.182096 

21 489 1 0.734295 1.079813 0.537585 71 627 0 -0.47256 -0.02015 0.950938 

22 28 0 1.105606 1.261218 1.442753 72 110 0 0.656704 0.230562 -0.01864 

23 633 0 0.409662 0.317317 -0.16703 73 607 0 0.452434 0.233531 0.174338 

24 696 0 -0.22445 0.076408 0.140634 74 183 1 -0.41804 0.353103 0.60126 

25 506 0 2.455554 0.011636 -0.1736 75 693 1 1.523191 0.042523 0.684113 

26 565 0 0.650624 0.414242 0.293202 76 262 4 1.512755 0.96698 -1.77521 

27 554 0 1.454326 1.072593 0.838033 77 148 0 -0.08509 0.319187 0.176864 

28 293 1 0.002737 0.617582 15.25707 78 188 0 -0.33207 0.020443 -0.26828 

29 558 0 1.163242 0.557905 0.176552 79 460 0 0.297795 1.147923 0.39675 

30 129 0 -0.32408 0.431525 -0.04377 80 354 1 0.173184 1.438076 1.278197 

31 527 0 0.1587 0.094566 0.235554 81 263 0 0.33324 0.214441 0.084025 

32 25 0 1.892478 0.639642 0.176114 82 620 0 0.25723 0.11507 0.346055 

33 208 3 2.601005 -0.53971 11.61586 83 300 0 0.16683 0.027812 0.345309 

34 36 0 1.428806 0.475444 0.779296 84 410 0 0.296097 0.386845 -0.65296 

35 395 1 1.116454 1.153601 1.259305 85 684 0 0.104498 0.141806 0.027432 

36 614 0 -0.21917 0.078755 0.141554 86 214 1 0.065931 1.479849 0.910492 

37 518 0 2.375533 -0.13306 -0.17967 87 180 0 -0.02454 0.207553 0.081312 

38 237 0 -0.4702 1.004961 -0.10142 88 562 1 -1.19087 0.456473 0.139036 

39 708 0 0.838772 0.136294 0.359103 89 93 0 0.074013 0.157137 0.053273 

40 27 0 -0.63521 0.849762 0.03574 90 424 0 1.433585 0.499563 -0.05633 

41 328 2 -1.43437 0.165375 -0.03463 91 58 3 3.947953 0.679799 3.53968 

42 285 0 0.811302 0.282689 0.101281 92 42 0 -0.17297 0.168506 0.697581 

43 571 0 0.240642 0.787866 0.3722 93 396 0 -0.14783 0.201637 0.091267 

44 593 1 1.299295 1.911706 2.355454 94 581 0 0.113623 0.21556 0.226597 

45 141 1 1.272101 2.376585 2.699214 95 312 1 0.097784 0.719909 1.080108 

46 366 0 0.394207 1.486041 1.139526 96 98 0 1.562014 1.136674 0.454579 

47 333 4 0.595494 1.679585 -0.013 97 425 0 -0.19022 0.16109 -0.55119 

48 482 0 1.455601 0.405238 -0.05881 98 351 0 0.872553 0.262891 0.100087 

49 529 0 1.288392 2.655653 1.862932 99 10 0 0.572335 0.459189 -2.34548 

50 563 0 0.045455 0.745916 0.795299 100 252 0 -0.41827 0.351805 0.601557 

    
   AVG 0.54 0.545513 0.5649195 0.6196424 

 
Table -3 Comparison for Accuracy of Different Bug Prediction Models 

 

Sr. No. Bug Prediction Model using different techniques Input Data set Accuracy (%) 
1 Levenberg Marquardt (LM) Based Model Ant 1.7 85.25 
2 Baysian Regilation (BR) algorithm Based Model Ant 1.7 95.38 
3 Gradient Descent Adoptive Learning Back-propogation Algorithm (GDA) Based Model Ant 1.7 98.97 
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Performance Graph of Neural Network 
The train structure keeps track of several variables during the course of training, such as the value of the 
performance function, the magnitude of the gradient, etc. It can use the training record to plot the performance 
progress by using the plot performance command. 
 

The property training best epoch indicates the iteration at which the validation performance reached a minimum. 
The training continued for 16 more iteration before the training stopped. This Fig. does not indicate any major 
problems with the training. The validation and test curves are very similar. If the test curve had increased 
significantly before the validation curve increased, then it is possible that some over fitting might have occurred. 
 

Validation define as the post analysis of the network means testing on the trained data that the system achieving the 
goal or not if achieving then this is stop the training and show the result of MSE [9]. The values of mean squared 
error for each iteration shown in the Fig. 3. 
 

 
Fig. 3Performance measure v/s number of iteration 

 
CONCLUSION 

 
It is concluded that the proposed software bug prediction model using GDA techniques providing the better result 
than BR and LM techniques based models. It has been seen in the experimental result that the predicted accuracy of 
the model is 98.97% using Gradient Descent Adoptive learning Back-propagation techniques (GDA). As a result, it 
is found that machine learning models based on GDA technique of neural network is providing the superior results. 
It has been analyzed that this techniques is faster techniques than other existing techniques [14] and [8]. It is also 
observed that this providing the simulation result in less number of iteration than other existing models [14] and [8]. 
It provides the result only after 200 iterations which is smaller than the 500 no of iteration used by the existing 
models. 
 

In future, the further study about the other fast and higher performing techniques are required to improve the 
performance of the model. The different techniques may produce better performance in terms of accuracy. By using 
class level metrics, more studies can be conducted on fault prediction models. So that this improved model may 
become capable to simulate the different similar type of wild public datasets and another private datasets. 
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