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ABSTRACT  
 

This  paper  provides  asymptotic  estimates strong result for  real zeros of random  algebraic polynomial for  the  
expected number  of  real  zeros   of  a  random  algebraic polynomial  of  the  form. The strong result for the lower 

bound was obtained in the general case by their lower bound was 
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n loglog/µε    in our present result .This  result  is  better  than  that  of  Dunnage  since  our  constant  is  

(1/√2) Times  his  constant  and  our  error  term  is  smaller . the  proof  is  based  on  the  convergence  of  an  
integral  of  which  an  asymptotic  estimation  is  obtained . 
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INTRODUCTION 
 

We shall suppose that ( )ωξv ’s real-valued random variables defined on the probability space (Ω  , m, P) .The 

random events to be considered in the proof correspond to P-measurable subsets of this space. The probability that 

an event E occurs will be denoted by ( )EP . Let nN  be the number of real roots of ( ) ( )∑
=

n

v

v
v xxf

0
, ωξω . In 

Mishra et al [1] we have shown that for nNnn ,0>  is at least   nn logε  outside an exceptional set of measure at 

most ( )00
log/ nnεµ where { nε  } is any sequence tending to zero such that nn log2ε  tends to infinity as n tends to 

infinity. We have assumed that the vξ ’s have a common characteristics function exp ( )αtC− where 1≥α and C is a 

positive constant. 
 

In the present work we have proved the same result in the general case. We assume that thevξ ’s are any random 

variables with finite variance and third absolute moment. Our previous result holds in the case of a special 
characteristic function which has infinite variance( )21 << α . 
 

The strong result for the lower bound was obtained in the general case by Samal and Mishra [2]. Their lower bound 

was 
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n loglog/µε in our present result, where nn tk ,  

have the same meaning as in our present work. 
 

We claim that our strong result for the lower bound in the general case is the best estimation done so far.  We shall 
use [x] to denote the greatest integer not exceeding x. 
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THEOREM 1 

Let ( ) ( )∑
=

=
n
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v
v xxf

0

, ωξω be a polynomial of degree n whose coefficients are independent random variables 

with expectation zero. Let  2
vσ    be the variance and 3vτ    be the third absolute moment of ( )ωξv .Take { }nε to be 

a sequence tending to zero such that nn log2ε  tends to infinity as n tends to infinity. Let v
nv

nt σ
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0
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max  and v

nv
np τ
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0
max .Then there exists an integer 0n and a set ( )ωA of measure at most 

0log
0

nnεµ such that, for 0nn > and all ω not belonging to ( )ωA , the equations ( ) 0, =ωxf have at least  

nn logε real roots, provided 
n

n

k

p
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n
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t

k
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PRELIMINARY LEMMAS 
LEMMA 1 

Suppose nXXX ,..., 21 are independent random variables with expectation zero and that 2
vA  is the variance and  

3
vB  is the third absolute moment ofvX .  

Let  
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This result is due to Esseen [5] and Berry [4]. 
 
LEEMA 2 
Let ,...,, 321 ηηη     be a sequence of independent random variables identically distributed with ( ) 1<iV η  for all i. 

Then, for each ε >0 
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Where D is a positive constant. This form of the strong law of large number is a consequence of the Hajek-Renyi 
inequality  [3]. 
 
Proof of the Theorem 

Take  
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β where C1 is a constant to be chosen later. 

Let A and B be constants such that 0<B<1 and A >1. Let  
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We define                  ( ) [ ] xxxx += logφ  
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Let k be the integer determined by  

 ( ) ( ) .11878 11878 ++ +<≤+ k
n

k
n MknMk φφ                                              (2) 

Obviously  











≤≤











n

n

n

n

n

t

k

n
k

t

k

n

β

µ

β
µ

log

log

log

log 2
1                                                     (3) 

which implies  ( ) .loglog 2

1

2

1

1 n
C

kn
C

nn εµεµ
≤≤  
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for [ ] [ ] ,,...22,12 kkkm ++=  where  

 ( ) ( ) ( ) ( ) v
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,  

the index ν ranging from   ( ) 114 14 +− −m
nMmφ   to  ( ) 3434 ++ m

nMmφ   in∑
1

, from 0  to ( ) 1414 −− m
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 We define the events mE  as the sets of  ω  for which ( ) mm VU 22 >ω  and ( ) 1212 ++ −< mm VU ω  and the events 

mF  as the sets of ω  for which ( ) mm VU 22 −<ω  and ( ) 1212 ++ > mm VU ω .  Obviously the sets of sv 'ξ in ( )ωmU 2  

and the sets of sv 'ξ  in ( )ω12 +mU  are disjoint.  Thus ( )ωmU 2  and ( )ω12 +mU  are independent random variables. 

Let −+
mm SS ,  be the sets of  ω  in which respectively ( ) ( ) mmmm VUVU −<> ωω , . 

Hence  ( ) ( )+
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+

+ ∩∪∩=∪ 122122 mmmmmm SSSSFE . 
 

Since the two sets within the braces on the right hand side are disjoint and since ( )ωmU 2  and ( )ω12 +mU  are 

independent random variables, 
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If 
2σ  is the variance of  ( )ωmU2   then 
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So mV22=σ . Let ( )tF m2  be the distribution function of  
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Here we shall apply Lemma 1. 
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Similarly the other probabilities can be calculated. 
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Therefore                 ( ) ( ) ( ) ( ) ( )
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It can be easily shown as in [5] that    ( ) ( ) 14
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Therefore ( )mm FEP ∪ is greater than a quantity which tends to ( ) ( ){ }2
1

2
1 12 φφ −−  as n tends to infinity. 

Denote this last expression by δ  . 
 
LEMMA 3 
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Proof of the Theorem 
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Proceeding as in Lemma 2 of [4], we now get that the above probability does not exceed  
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Again, by using the same inequality  

                            ( )
22

2
1

2

2
2

2

1

n

v
m

v
n

v
mv

m
xmxP

β
σβωξ <





















∑>∑ . 

Thus if mΩ∉ω where 

                             ( ) ( ){ }22

2

22
14exp

161
n

n

n

n
m Mm

t

k

B

Ae

m
P +−










+<Ω

β  

we have               ( ) 2
1

2

22
2
1 








∑+< v

mvnmm xmVR σβω   

Now, by using (1) and (5) and following the procedure of Lemma 2 of [4], we have 
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We have shown earlier that   ( ) 0>>=∪ δδ mmm FEP . 

Let mη  be a random variable such that it takes value 1 on mm FE ∪  and zero elsewhere. In other words  

                                                    1         with probability mδ                  

                                  =mη  

                                                    0         with probability  mδ−1  
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The mη ’s are thus independent random variables with ( ) mmE δη =  and ( ) 12 <−= mmmV δδη . 

Let mρ  be defined as follows: 

                      

                               0        if ( ) mm VR 22 <ω   and ( ) 1212 ++ < mm VR ω  

            =mρ  

                               1        otherwise. 
 

Let         mmmm ρηηθ −= . 

The conclusion of [4] gives that the number of roots in ( )122 ,
0 +km xx  must exceed ∑

=

k

mm
m

0

θ  

Where            [ ] 12
1

0 += km  

 
Now we appeal to Lemma 2. 

We have                          ( ){ } ( ){ } ∑+∑ −≤∑ −
===

k

mm
m

k

mm
mm

k

mm
mm EE

000

ρηηηθ . 

 

Let ( )ωA   be the set of ω  for which 

             ( ){ } ,
1

1
sup

00010

εηθ >∑ −
+− =≥+−

k

mm
mm

kmk
E

mk  

 

( )ωB  be the set of ω  for which  

            ( ){ } εηη
2
1

00010 1

1
sup >∑ −

+− =≥+−

k

mm
mm

kmk
E

mk
 

 

and ( )ωC   be the set of ω  for which     

       ( ) ( ) ( ){ } ( ) ( ).
.

1

1
sup

121222121222

0
2
1

0010

++++

=≥+−

≥+≥≤≥∪≥=

∑ >
+−

mmmmmmmmm

k

mm
m

kmk

VRPVRPVRVRPE
mk

ρ

ερ
 

   
 By Lemma 3, 

( ) ( ){ } ( ).exp
161

18exp
16

4

1 22

2

22
22

2

2222 n
n

n

n
n

n

n

n
mm Mm

t

k

B

Ae

m
Mm

t

k

B

Ae

m
VRP −










+<+−










+<≥

ββ  

Similarly 

 ( ) ( ).exp
161 22

2

221212 n
n

n

n
mm Mm

t

k

B

Ae

m
VRP −










+<≥ ++ β  

Hence by using (2.1), we have 

        ( ) ( ) ( ) 22222
22

//exp mmMm
t

k

m
E nn

n

n

n
m µβµµ

β
µρ ′′<′′<−










′+< . 

Therefore  

                     ( )∑ ′′<
+− +

k

mm
m mE

mk 0

2
0

0

/
1

1 µρ  

and so  

( ){ } ∑
′′

<∑








∑ >
+−

<
≥+−≥+− = 010

2
0010 0

2
1

0

12

1

1

kmkkmk

k

mm
m

mmk
PCP

ε
µερω . 
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Since  
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CONCLUSION 

 
 We conclude that random variables with finite variance and third absolute moment with characteristic function  has 

infinite variance( )21 << α .By taking the lower bound was 
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n loglog/µε in our present result, where nn tk , . In the above polynomial  of degree n whose coefficients 

are independent random variables with expectation zero with   2
vσ    be the variance and 3vτ    be the third absolute 

moment of ( )ωξv  Taking { }nε to be a sequence of the polynomial tending to zero,  such that nn log2ε  tends to 

infinity as n tends to infinity. Hence the Asymptotic Estimates for Real Zeros of Random Polynomials nn logε
.
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