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ABSTRACT

The asymptotic estimates of the expected numbeabteros of the polynomidl(6) =T ,(6,@) = ilgj ()cosjd i.e.
2

T(6) =9,co80 +g,co20+.....g,cosnd where ¢j=1,2,.....n) is a sequence of independent normélitributed
random variables is such a number. The expectetbeu of zeros of the above polynomial with coeffits g(w),

j=1,2,.....n in be a sequence of independent randamales defined on probability space .1 ,Pr), each normally
distributed with mean zero and variance one, thmnafl sufficiently large n the variance of the roen of real

zeros of T§) is equal tova{N (0,7} = O(n*?)
Key words. Level crossings, Trigonometric functions Indeperidadentically distributed random variables,

random algebraic polynomial, random algebraic eqoatreal roots, domain of attraction of the nornwab,
slowly varying function

INTRODUCTION
Let T(H) ETO(H,W) = nggj @)COS] ) (1)

where 0,(@),9,(®@),......9,(@) is a sequence of independent random variable;etefon a probability space

@ .A,Pr), each normally distributed with mean zero and armre one. Much has been written concerning

N (0277) | the number of crossings of a fixed level K b@)T(n the interval (0,2) . From the work of Dunnage
[2] we know that, for all sufficiently large n, theathematical expectation of iNg(0.277) = N (0,277) symptotic to

2n/\/§_ In Farahmand [3] and [5] we show that this asytiptnumber of crossings remains invariant for any

K=K,. suchthat K*/n - Oasn - o However, less information is known about the var@of N (027 . The only
attempt so far is ....where an (fairly large) uppeuid is obtained. Indeed this could be justifiettsithe problem
with finding the variance consists of different éés of difficulties with finding the mean. The degrof difficulty
with this challenging problem is reflected in thelidate work of Maslova [8] and Sambandhemnal,[7] with above
obtained the variance of N for the case of randtgataaic ponnomiaIZTOngj; a case involving analysis that is
usually easier to handle. Qualls [9] also studiegl\tariance of the number of real roots of a rantiigonometric
polynomial. However, he studied a different typepofynomial X} 0a;cosjé +b;sin j& which has the property of

being stationary and for which a special theoresibeen developed by Cramer and Leadbetter [1].Wer®ok at
the random trigonometric polynomial (1) as a natishary random process. First we are seeking tergdize
Cramer and Leadbetter's [1] works concerning frawl moments which are mainly for the stationargecal o
evaluate the variance specially, and some othéeicaftipns generally it is important to consider #wvariance of
the number of real zeros @ft) in any two disjoint intervals. To this end, let) be a (non-stationary) real valued

separable normal process possessing continuoudespaths, with probability one, such that for agys, the joint
normal processé(6),£(6,),&'(6)andé'(6,) is non singular. Let (a,b) and (c,d) be any digjontervals on
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which £(t) is defined. The following theorem and the formidathe mean number of zero crossings Cramer and
Leadbetter’s [1] obtain the covariance of N(a,ld alfc,d).

Theorem -1
For any two disjoint intervals, (a,b) and (c,d)wamich the process'(g) is defined, we have

db o o
E{N(ab)N(c.d)} = ] [ [|xy|p6,6,(00.x y)dxdyd,d6, where for a<b<bandc<b,<d,p8,6,(X,X,, X Y)

ca—-co—oco

denotes the four dimensional density function&f(8 ,), € (8 ,), £ '(8 ), £ ' (8 ,).

A modification of the proof of Theorem 1 will yielthe following theorem which, in reality, is onlycarollary of
Theorem 1.

Theorem -2
For P88 ,(X;.X,, X% Y) defined as in Theorem 1 we have

EN ?(a,b) =[] | Txy|p@.6, (0,0, x, y)dxdyd 6,d6,

By applying Theorem 2 to the random trigonometritypomial (1) we will be able to find an upper linfior the
variance of its number of zeros. This becomes ples$iy using a surprising and nontrivial result daéVilkins
[12] which reduces the error term involved fiex (027) to 0(1). We conclude by proving the following.

Theorem -3
If the coefficients gw), j=1,2,.....n in (1.1) be a sequence of indepanhdandom variables defined on probability
space @ .4,Pr), each normally distributed with mean zero andaraé one, then for all sufficiently large n the

variance of the number of real zeros o@)TiatisfiesVa'{N ©, 77)} = O(nglz)

THE COVARIANCE OF THE NUMBER OF CROSSINGS

To obtain the result for the covariance, we shalirye through the analysis for the number of updrass N.
Indeed, the analysis for the number of down cragssimould be similar and therefore, the result figr total number

of crossings will follow. In order to findE{N «(a,b)N u(c,d)} we require refining and extending the proof
presented by Cramer and Leadbetter [1]. However, ppaof follows their method and in the followingye
highlight the generalization required to obtain ouwesult. Let a,=(b-a)k2™™+a and similarly

b;=(d-c)l2”™ +c¢ for k,1=0,1,2,...2™ -1 and we define the random variable Xk,m and XIm as

Xk, m = {1 ANRRRRE S L ifé(b,) <0<&(by)

. Xlm =
0 otherwise And Am {0 otherwise

()

In the following we show that

2M-12M
Y,.= > X Xk,m,XlI,m
I=0 k=0

tends toN,(ab)N, € d )asm - « with probability one. See also Cramer and Leaébgtt], we first note that i

E{Nu(a, b)Nu(C:d)} s finite and thereford N, (ab)N,(c,d)} is finite with probability one. Let v and r be the
number of up crossings of(t) in (a,b) and (c,d), respectively, and writg,t.....t, and ti, t',...t", for the points of

upcrossings of zero by (t) , there can be found two sub intervals for eaghand J., such thaté(t) in one is
strictly positive and in the other, it is stricthegative. Thus it is apparent that, Will count each of . That is,

Y2 vr, for all sufficiently large m. On the other haid £ (ay )& (b 41) < Oand&(b;)&(b;4q) < Othen é(t)

must have a zero i, 2., Jand(b b)) and hencer ,< vr and henceY ,— N,(ab)N,(c,d) asm — oo, with
probability one. Now from (2.1) we can see at ottt

2M_12M_q 2M42Myq
EVp= Y SPrXemx,m=1) =2 2P&m=X,m=])
=0 k=0 =0 k=0

®)
We write /] for the random variabld"{¢(a.) - €@} and simitarly 7 for 2"{€(be) - &by}, then we
have Pr(X,,m=X,,m=1)
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=Pr0>¢(a,)>2"n, and0>¢(b)) >27"7,)

2™Mx oMy

T j .[ Pm k1 I(Z]_122|X’ Y)dzleZdXdy
0 0 0

o—38

4
For kI, (z,2,x,y) denotes the four dimensional normal densiycfion for /7« and M. A simple calculation
shows see Farahmand [6], tha®if and 6, are the fixed interval (a,b) and (c,d), respecyivaid k, and }, are such

that akm<51<akm+1 and b|m<‘92<b|m+1 for each m, then all members of the covarianceairaft pm (21,22,X,Y)
will tend to the corresponding members of the ciawere matrix of pelﬂz (21,25,x,y). This co-variance matrix is,

indeed, nonsingular. Now Idt= 2", andr = 2", then from (3) and (4) we have

E(Y,) =5y 272" [T][Pm k,1(2°™t27" r, x, y)dtdrdxdy (5)
1=0 k=0 0000
bdowow x
= (1171 ]w . .06,0,(2 ™t2""r, x,y)ddrdxdyd 6 ,d6,
ac0O0O00O0

in which W ,80,68, (t,1,xy)= Pmk,I({t,r,xYy) for a,<f<a,,, and b;<8,<b,, . It follows, similar to Cramer
and Leadbetter [1], thalfl —
W .0,0,27"t27"r,xy) — pé,8,(00, % y) which together with dominated convergence provesofém 1.

THE VARIANCE OF THE NUMBER OF REAL ZEROS

It will be convenient to evaluate the EN(N-1) rathiean the variance itself since N(N-1) can be egped much
more simply. The proof is similar to that estabdidhabove for covariance, therefore we only point e

generalization required to obtain the result. Toicddegeneration of the joint normal dengi§,0,(2,Z,, X Y) , we
should omit those zeros in the squares of sileBtained from equal points in the axes (and tloeeefo evaluate
EN(N-1)). To this and for any g=(g@p) lying in the unit square and c>0, le},£denote the set of all points g in the

unit square that for all s belonging to the squafeside 2" set containing g we havlasl—sz| >¢ . Let A,

denote the characteristic function of the get,. . Finally, similar to the covariance case, let

X = 1 ifé(ay) <0<é(ay.)
kM0 otherwise

for k=0,1,2,....2-1, wherea,= (b — a)k2™™ + a. Now let

2M_1 2M m m
M = 2 > Xk,mX I,m/1 m£(2 k,27"1)
k=0 (1=0,1£k) (6)

Similar to Cramer and Leadbetter [1] we show thai. M a non decreasing function of m for any fixedtds
obvious that M. is a non decreasing function of e for fixed to and then by two applications of monotone

convergence it would be justified to change theeowf limits in lim . olim m . « lim me- To this end, we
note that each term of the sumsmaf ,,, corresponds to a square of sid& For fixed ¢ > 0 , the typical term is

one if both of the followings statements are sitif(i) every point s=(ss;) in the square is such th$ﬁ1—82| >&

and (ii) X m=X;m=1. When m is increase by one unit, the squardvidetl into four subsquares, in each of which
property (i) still holds. Correspondingly, the tgpi term of sum is divided into four terms, formagreplacing m
by m+1 and each k or | by 2k and 2I, fer;aand @4. Since % =X, =1 we must, with probability one, have at least
one of these four terms equal one. Hengg i8la non decreasing function of m.

In the following, we show thatlim m_. . lim oS =N (N ,~1).
We first note that if the typical term in the sufn M e is nonzero it follows theisl—82| > &, since it is impossible
to have &(a,) <0< &(ay,, Jandé(a,,;) <0< £&(a.,) . Therefore, the characteristic function appeaitinthe formula

for M, in in (6) is one and hence
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m_; om

Ilm £ - O'\/I mg: Z Z X k,mx I,m (7)

k=0 (1=0,1%k)
is clearly in the form of ¥, defined in Section 2 except that the summation&)jrcover all the k and | such that
K #1 . Hence from (7), we can writém m . « lim ¢ oM =N (N ,—1)
Therefore the same pattern as for the covariaree yields

E[N ,(a,b){N ,(a,b) - 1}] =lim. .ol [ []|%].ps, .8, (00 x y)dxdydd,d8,
D(e)00 (8)

where D(£) denotes the domain in the two dimensional spatke edordinatess .6, such thata <6,0,<b and

|91—92| >& . Now notice that foro=6,=0 the pP&,8,(00,XYy) degenerates to just, (0. X) , the two dimensional

joint density function ofé(6) .and £'(6) . Hence from (8), we have

- E[N,(a,b}{N,(a,b) - 1] bb°°°°|xy| Do, 0, (00, , y)dxdyd8.de, - [ [|X, p, (O, x)dxd@ o
aa ao 9

Now since?of|x|, p, (0,x)dxd 8 iS EN,(ab) the result of Theorem 2 follows.
a0

RANDOM TRIGONOMETRIC POLYNOMIAL
To evaluate the variance of the number of realsrof(t) (1) in the interval 0,77) we use Theorem 2 to consider the
mterval(f nm-& ) The variance for the intervals ar(d = E) are obtained using an application of Jenson’s

theorem Rudin [10] and Titchmarsh, [11]. We cho8e n” Y2 \which as we will see later, yields the smallest

possible error term. First, for ang, andd, in (8',77—8‘) such that|e,-6,|> ¢ where £=n , we

evaluate the joint density function of the randoamiable T (8,),T(6,),T '€,)and T'(8,) . Since for any8 we
have

3 cos j& = [sin{(n +1/2)6} /sin( 6 12) - 1]/2 and also since for the above choice &fandd,, 6,+6,< 2(r-£')
=1
we can show

A(6,,6,) = cov {T(Hl) T(92)} z cos j@, cosj 6,

_ | sin ( +1/2)8, /sm ( /2
= |+ sin ?(n +1/2)6 )}/sm f(e + 92)/2}— 2
=0@1/e)y+0@/e) (10)

Similarly, we can obtain the following two estimsite
C(6,8,) =codT (8), T(8,)}=-3 jsin |6, cosif, = (9190 }{A8,0,} =0l e+ +n/e+e?)
j=1

11)
and
B(6,6) =co{T(6),TG)} = 3.jsini6,sing, = (5/96)(CA,6,} = APl +1/ & +17/ e-+n/ £2+6°)
= (12)
Also in the lemma in Farahmand [3], we obtain
var(T(6,0)) =n/2+0(e'™"),var(T'(8,0)) =n’/6+0(n°/e'+n/e?+&'?)
and
coT(8)T(8,)} = O(n/ e'+£'2)
These together with (10-12) give the covarianceiméir the joint density function
n/2+0E™)  AG,8) c6,6) C(6,9)
. . AG,B) nl2+0Ee™)  C6,8) C(6,6)
T©).T(6,).T'(6)andT'(8,) as 2 c6.9) CO,6) PIe+Qitle)  BO)
C(6,8) C(6,8) B(6,5,) i /6+Qr/e) (13)
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This covariance matrix for alh = 40<68,,0,< 7T such thatd,# 8 , is positive definite. Hencg |>0 and, if3; is
cofactor of the (ij)th element of , then ¥,,>0,%,,> Gandy,,=Y,; . From [1] we have

06,6,(00,y) = WA IS [V ext-{5uol + 5y H5u s o2y |

1/2

Nowlet d = (Zss/JT |+ *xands = (Tu/z [+)"y.
Then from (14) we can write
© o0 B -1 o
T T)% p6,6, 00, % Yxdy= 47) S 5 "Sea [ [|aslexdf-(a® +5 +2pag /2Jdqds a5
— —oo —o — 15
where p = (Z st 23 )/2(2 33044 )”2 and 0< p? <1. The value of the integral in (15) can be obtaibgé similar

(14)

2y1/2 2y1/2
) )

method to Cramer and Leadbetter [1]. luet (1- p°)"“gandv = (1-p°)"“s then we have

| = TTGXF{-(qZ +%+ 2pqs)/2}dqu =(1- pz)*ﬁex;{—(u2 +V2 +2puv) /20— pz)}dudv

P
=nml-p?)*? {1/2 - (n)'l}j L-x3)"2dx = (1- p?) ™ arccosp = pcscy

° (16)
where 0 = COS¢ . Use has been made of the fact that (see for plea®namer and Leadbetter [1])

ofofex;{— (u? +v? +2puv)/2(1- pz)}du dv = 77(1- ,02)'1’2{1/2— () ‘1}f(1— x?)"M2dx
00 0
Therefore from (16) by differentiation we can obhtai

ojo quexp{— (q> +s* +2pq9)/ 2}dq ds =-(dl)/(dp) = csC¢@(1- groty)

We can easily show that
T ooqsexp{— (q% +s? + 2pqs)/2}dq ds = Csc2g0{1+ (rr— ¢Cotqo)}

0-

Which together with (17) evaluates the integrgllib) as

}o of|qﬁ exd— (9® +s° + 2pqs)/2}dq ds = &s@df1+(/2- p)cotd
Now from (13) we can show 9
> 4=n°/24+0(N*/e)=Y4y and Ly =0(n"/1e") =3 4 (19-20)
Also from (19) and (20) and with the above choiwarf (18) we can obtain
,0=(Z34+ 233 )/2(234233 )1/2 =0@/ne") - Gasn -
Therefore@ — 71/2 for all sufficiently large n and hence from (18) wan see

(17)

T T|q5|9Xp{— (9% +s®+ 2pqs)/2}dq ds=4+0(@/ne")

(21)
Also from (10)-(11) we can write

£ |={n/2+Qe * }Hn® 16+ O +£ 7)Y
Therefore from this (15) and (21) the integrand tipears in (8) is asymptotically independenié@ndd, and

since by the definition of D(e), the area of theeguation is (77— 28")? (7T~ 2¢') + &2 = > +O(£ + £') we
have

E[N(e,m-e){N (', m- ') -1 = n? 13+ O(n/ '+ne +ne') (22)
We now denote the mathematical expectation dfirNthe interval (0,e). Similar to Farahmand [2v83 apply
Jensen’s theorem on a random integral functioh®tbmplex variable z,

T(z,w) = jzijlg ;(w)cos jz

Let N(r) denote the number of real zeros of T(azmg<r. For any integer j from Farahmand [3], vevé
PIN(e') > 3ne'+j] < (2/4/n)e™ 1 +exp(j /2 -ne'j 12) <3e71/2 23)
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Let n'= [Sné‘] be the smallest integer greater than or equa@® then sinceN(£') < 2n is a non negative integer,
from (23) and by dominated convergence, for effitielarge n we have

EN?(e') = J_20(21 -DPr(N(e") 2 j)

2 @2j-DPr(N(e") 2 )+ i (2n*=1+ 2])Pr(N(£") 2 n'+j)
j=1

0<Ijsn' N _

<3 (2n-1)+3+ 3 (@n-1+1+2j)e 1’2 = n+O(n')
j=1 i=1

- O(n2£|2)

(24)
The interval (7-¢',m) can also be treated in exactly the same way te tig same result. Now we can use delicate
result due to Wilkins [12] which states thai(0, 77) = n/+/2 + 0@). From this and (22 & 24) and sinee-¢', we obtain

vafN(©, m} =E{N(0,&') + N(¢', 7~ &) + N(it- &', )} -{EN(O, )}*
=n2 /3+0(n%e2+n/ £+n’e') -{n/ 3 +O(1;T2

22 ' 2
O(n“e“+n/ g'+n-e") (25)

Use has been made of the fact th&N(s'.,77-£")~EN(0£')=0O(ne"), see Farahmand [5] and therefore
EINQ.&)N(E, 7-¢)]=nON(0,£))=On°,£') and also from (24)EN’ (0,') ~ EN*(77— &', m) = O(n° ,£?).
Finally from (25) and since'=n"?

CONCLUSION

After proving all theorem and lemmas we concluuk tonsidering a polynomial (1) where the coeffits are a
sequence of independent random variables definepraipability spacdQ .A,Pr), each normally distributed with
mean zero and variance one, then for all suffitydatge n the variance of the number of real zexfo5(0) satisfies

vaN (0, 77} = O(n*?)
Hence the theorem proved.
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