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ABSTRACT  
 

The asymptotic estimates of the expected number of real zeros of the polynomial ∑=≡
=

n

j
j jgTT

1
0 cos)(),()( θϖϖθθ  i.e. 

θθθθ ngggT ncos......2coscos)( 21 ++=  where gj(j=1,2,…..n) is a sequence of independent normally distributed 

random variables is such a number. The  expected number of zeros of the above polynomial with coefficients gj(w), 
j=1,2,…..n in be a sequence of independent random variables defined on probability space Pr),,( λΩ , each normally 
distributed with mean zero and variance one, then for all sufficiently large n the variance of the number of real 

zeros of T(θ)  is equal to { } )(),0(var 2/3nON =π  
 

Key words: Level crossings, Trigonometric functions Independent, identically distributed random variables, 
random algebraic polynomial, random algebraic equation, real roots, domain of attraction of the normal law, 
slowly varying function 
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INTRODUCTION 

Let    ∑=≡
=

n

j
j jgTT

1
0 cos)(),()( θϖϖθθ                  (1) 

where )(),.......(),( 21 ϖϖϖ nggg  is a sequence of independent random variables defined on a probability space

Pr),,( λΩ , each normally distributed with mean zero and variance one. Much has been written concerning

)2,0( πKN , the number of crossings of a fixed level K by T(θ), in the interval (0,2)π . From the work of Dunnage 

[2] we know that, for all sufficiently large n, the mathematical expectation of  is a )2,0()2,0(0 ππ NN ≡ symptotic to 

3/2n . In Farahmand [3] and [5] we show that this asymptotic number of crossings remains invariant for any 

. nKK ≡  such that ∞→→ n as 0/nK 2 However, less information is known about the variance of )2,0( πN . The only 

attempt so far is ….where an (fairly large) upper bound is obtained. Indeed this could be justified since the problem 
with finding the variance consists of different levels of difficulties with finding the mean. The degree of difficulty 
with this challenging problem is reflected in the delicate work of Maslova [8] and Sambandham et al, [7] with above 

obtained the variance of N for the case of random algebraic polynomial ;0∑n
j

j
jxg  a case involving analysis that is 

usually easier to handle. Qualls [9] also studied the variance of the number of real roots of a random trigonometric 

polynomial. However, he studied a different type of polynomial θθ jbja j
n
j j sincos0 +∑  which has the property of 

being stationary and for which a special theorem has been developed by Cramer and Leadbetter [1].Here we look at 
the random trigonometric polynomial (1) as a non-stationary random process. First we are seeking to generalize 
Cramer and Leadbetter’s [1] works concerning fractional moments which are mainly for the stationary case. To 
evaluate the variance specially, and some other applications generally it is important to consider the covariance of 
the number of real zeros of )(tξ  in any two disjoint intervals. To this end, let )(tξ  be a (non-stationary) real valued 
separable normal process possessing continuous sample paths, with probability one, such that for any 21 θθ ≠  the joint 

normal process )('  )('),(),( 2121 θξθξθξθξ and  is non singular. Let (a,b) and (c,d) be any disjoint intervals on 
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which )(tξ  is defined. The following theorem and the formula for the mean number of zero crossings Cramer and 
Leadbetter’s [1] obtain the covariance of N(a,b) and N(c,d). 
 

Theorem -1 
 For any two disjoint intervals, (a,b) and (c,d) on which the process )(' 1θξ  is defined, we have  

{ } ( )∫ ∫ ∫ ∫=
∞

∞−

∞

∞−

d

c

b

a

ddxdydyxpxydcNbaNE 2121 ,,0,0),(),( θθθθ where for ),,,(.p , c and 212121 yxxxdba θθθθ ≤≤≤≤  

denotes the four dimensional density function of  ).('),('),(),( 2121 θξθξθξθξ      
A modification of the proof of Theorem 1 will yield the following theorem which, in reality, is only a corollary of 
Theorem 1.  
 

Theorem -2  

For ),,,(.p 2121 yxxxθθ   defined as in Theorem 1 we have  

( )∫ ∫ ∫ ∫=
∞

∞−

∞

∞−

d

c

b

a

ddxdydyxpxybaEN 2121
2 ,,0,0),( θθθθ  

By applying Theorem 2 to the random trigonometric polynomial (1) we will be able to find an upper limit for the 
variance of its number of zeros. This becomes possible by using a surprising and nontrivial result due to Wilkins 
[12] which reduces the error term involved for )2,0( πEN  to 0(1). We conclude by proving the following. 
 

Theorem -3 
 If the coefficients gj(w), j=1,2,…..n in (1.1) be a sequence of independent random variables defined on probability 
space Pr),,( λΩ , each normally distributed with mean zero and variance one, then for all sufficiently large n the 

variance of the number of real zeros of T(θ) satisfies { } )(),0(var 2/3nON =π   
 

THE COVARIANCE OF THE NUMBER OF CROSSINGS 
 

To obtain the result for the covariance, we shall carry through the analysis for the number of upcrossings, Nu. 
Indeed, the analysis for the number of down crossings would be similar and therefore, the result for the total number 
of crossings will follow. In order to find { }),(),( dcNbaNE uu   we require refining and extending the proof 

presented by Cramer and Leadbetter [1]. However, our proof follows their method and in the following, we 
highlight the generalization required to obtain our result. Let akaba m

k +−= −2)(  and similarly 

 2)( clcdb m
j +−= −

for 1-20,1,2,....lk, m= and we define the random variable Xk,m and Xlm as  



 <<

= +

otherwise

aaif
mXk kk

0

)(0)(1
, 1ξξ

And     
0

)(0)(1 1



 <<

= +

otherwise

bbif
Xlm ll ξξ

             (2)
 

In the following we show that  

∑ ∑=
−

=

−

=

12

0

12

0
,,,

m

l

m

k
m mXlmXkY  

tends to ∞→m as ),(),( dcNbaN uu  with probability one. See also Cramer and Leadbetter [1], we first note that i

{ }),(),( dcNbaNE uu s finite and therefore { }),(),( dcNbaN uu  is finite with probability one. Let v and r be the 

number of up crossings of )(tξ in (a,b) and (c,d), respectively, and write t1,t2,…..tv and t’1, t’2…t’ r for the points of 

upcrossings of zero by )(tξ , there can be found two sub intervals for each Is,m and Js’m such that )(tξ  in one is 
strictly positive and in the other, it is strictly negative. Thus it is apparent that Ym will count each of tsts’. That is, 

vrYm≥ , for all sufficiently large m. On the other hand, if 0)()( and 0)()( 11 << ++ ttkk bbba ξξξξ then  )(tξ  

must have a zero in ),( and ),( 11 ++ llkk bbaa  and hence vrY m≤  and hence ),(),( dcNbaNY uum→  as ∞→m , with  

probability one. Now from (2.1) we can see at once that  

)1,,Pr()(
12

0

12

0
∑ ∑

−

=

−

=
==

m m

l k
lkm mmXXYE

            (3)

 

We write kη for the random variable ( ) ( ){ }kk
m aa ξξ −+12  and similarly 1'η  for ( ) ( ){ }kk

m bb ξξ −+12 , then we 

have )1,,Pr( == mXmX lk  

          )1,,Pr(
12

0

12

0
∑ ∑

−

=

−

=
===

m m

l k
lk mXmX
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= )2)(0 and ,2)(0Pr( l
m

lk
m

k ba ηξηξ −− >>>>  

= ∫ ∫ ∫ ∫
∞∞ − −

0 0

2

0

2

0
2121                   ),,,(,,

xm ym

dxdydzdzyxzzlkPm
            (4)

 

For k,l, (z1,z2,x,y) denotes the four dimensional normal density function for kη  and k'η . A simple calculation 

shows see Farahmand [6], that if 1θ  and 2θ are the fixed interval (a,b) and (c,d), respectively and km and lm are such 

that 11 +
<<

mkmk aa θ and 12 +
<<

mlml
bb θ for  each m, then all members of the covariance matrix of pm,k,l (z1,z2,x,y) 

will tend to the corresponding members of the covariance matrix of 21
,θθp  (z1,z2,x,y). This co-variance matrix is, 

indeed, nonsingular. Now let 21
2r and 2 z

m
z

mt == then from (3) and (4) we have  

∑ ∫ ∫ ∫ ∫∑=
−

=

∞ ∞
−−−

=

−12

0 0 0 0 0

12

0

2     ),,22(,,2)(
m

l

x y
mm

m

k

m
m dtdrdxdyyxrtlkPmYE             (5) 

∫ ∫ ∫ ∫ ∫ ∫ Ψ=
∞ ∞

−−
b

a

d

c

mm
x y

m ddtdrdxdydyxrt      ),,22(,,
0 0

21
0 0

21 θθθθ             

in which 21,, θθmΨ   =),,,( yxrt ),,,(,, yxrtlkPm  for 11 +<< kk aa θ  and 12 +<< ll bb θ  . It follows, similar to Cramer 

and Leadbetter [1], that ∞→m  

),,0,0(),,22(,, 2121 yxpyxrt mm
m θθθθ →Ψ −−

which together with dominated convergence proves Theorem 1.  
 

THE VARIANCE OF THE NUMBER OF REAL ZEROS 
 

It will be convenient to evaluate the EN(N-1) rather than the variance itself since N(N-1) can be expressed much 
more simply. The proof is similar to that established above for covariance, therefore we only point out the 

generalization required to obtain the result. To avoid degeneration of the joint normal density ),,,(, 2121 yxzzp θθ , we 
should omit those zeros in the squares of side 2-m obtained from equal points in the axes (and therefore to evaluate 
EN(N-1)). To this and for any g=(g1,g2) lying in the unit square and c>0, let Ame denote the set of all points g in the 

unit square that for all s belonging to the squares of side 2-m set containing g we have ε>− 21 ss . Let ελ m  

denote the characteristic function of the set ελ m . Finally, similar to the covariance case, let 

                         
0

)(0)(1 1
,



 <<

= +

otherwise

aaif
X kk

mk

ξξ
  

for k=0,1,2,….2m-1, where .2)( akaba m
k +−= −

 Now let 

∑ ∑=
−

=

−

≠=

−−12

0

12

),0(
,,            )2,2(

m

k

m

kll

mm
mmlmkm lkXXM εε λ

            (6)
 

Similar to Cramer and Leadbetter [1] we show that Mme is a non decreasing function of m for any fixed e. It is 
obvious that Mme is a non decreasing function of e for fixed to m, and then by two applications of monotone 

convergence it would be justified to change the order of limits in .limlimlim 0 εε mm ∞→→  To this end, we 

note that each term of the sums of εmM corresponds to a square of side 2-m. For fixed 0>ε , the typical term is 

one if both of the followings statements are satisfied; (i) every point s=(s1,s2) in the square is such that ε>− 21 ss  

and (ii) Xk,m=Xl,m=1. When m is increase by one unit, the square is divided into four subsquares, in each of which 
property (i) still holds. Correspondingly, the typical term of sum is divided into four terms, formed by replacing m 
by m+1 and each k or l by 2k and 2l, for ak+1 and al+1. Since Xk,m=Xl,m=1 we must, with probability one, have at least 
one of these four terms equal one. Hence Mme is a non decreasing function of m.  

In the following, we show that  ).1(limlim 0 −=→∞→ uum NNsε  

We first note that if the typical term in the sum of εmM  is nonzero it follows that ε>− 21 ss , since it is impossible 

to have )(0)( and )(0)( 211 +++ <<<< kkkk aaaa ξξξξ . Therefore, the characteristic function appearing in the formula 

for  εmM
 in  in (6) is one and hence 
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∑ ∑=
−

=

−

≠=
→

12

0

12

),0(
,,0                lim

m

k

m

kll
mlmkm XXM εε               (7) 

is clearly in the form of Ym defined in Section 2 except that the summations in (7) cover all the k and l such that 

lk ≠ . Hence from (7), we can write )1(limlim 0 −=→∞→ uumm NNM εε  

Therefore the same pattern as for the covariance case yields 

 { }[ ]1),(),( −baNbaNE uu  
∫ ∫∫ ∫=
∞ ∞

→
0 0

2121
)(

0       ),,0,0(,,lim θθθθ
ε

ε ddxdydyxpxy
D           (8)

 

where )(εD  denotes the domain in the two dimensional space with coordinates 21,θθ  such that ba << 21,θθ  and 

εθθ >− 21 . Now notice that for 021 ==θθ  the ),,0,0(. 21 yxp θθ  degenerates to just ),0( xpθ , the two dimensional 

joint density function of )(θξ .and )(' θξ . Hence from (8), we have  

= { }[ ]1),(),( −baNbaNE uu ∫ ∫ ∫ ∫ ∫∫
∞ ∞∞b

a

b

a

b

a

dxdxpxddxdydyxpxy
0 00

2121
     ),0(,-),,0,0(,, θθθ θθθ

          (9)
   

Now since ∫ ∫
∞b

a

dxdxpx
0

),0(, θθ  is ),( baENu  the result of Theorem 2 follows.  

 

RANDOM TRIGONOMETRIC POLYNOMIAL 
 

To evaluate the variance of the number of real roots of(!) (1)  in the interval ( ),0 π we use Theorem 2 to consider the 

interval( )',' επε − . The variance for the intervals and ( )',' επε −  are obtained using an application of Jenson’s 

theorem Rudin [10] and Titchmarsh, [11]. We chose 2/1' −= nε  which as we will see later, yields the smallest 

possible error term. First, for any   and 21 θθ in ( )',' επε −  such that εθθ >− 21 where 
2/1' −= nε , we 

evaluate the joint density function of the random variable )(' and )('),(),( 2121 θθθθ TTTT . Since for any θ  we 
have  

{ }[ ]∑ −+=
=

n

j
nj

1
2/1)2/sin(/)2/1(sincos θθθ and also since for the above choice of )'(2 , and 2121 επθθθθ −<+  

we can show         

      

{ }
{ } { }

{ } { }
        )'/1()/1(

4/22/) (sin/) )(2/1(sin
2/) -(sin/) - )(2/1(sin

cosj cos)T( ),(cov),(

2121

2121

1
212121

εε
θθθθ

θθθθ

θθθθθθ

OO
n

n

jTA
n

j

+=






−++++
+=

∑==
=

                       (10)

 

Similarly, we can obtain the following two estimates 

{ } { } )''//(,)/(cosj sin)T( ),(cov),( 22
211

1
212121

−−

=
+++==∑−== εεεεθθϑθϑθθθθθθ nnOAjjTC

n

j

        (11)

 
and 

{ } { }  )''////(,)/(sinj sin)T( ),(cov),( 32222
212

1
212121 εεεεεθθϑθϑθθθθθθ ++++==∑==

=
nnnnOCjjTB

n

j
         (12)

 

Also in the lemma in Farahmand [3], we obtain 

)''/'/(6/))0('var(),'(2/))0(var( 3223
1

1
1

−− +++=+= εεεθεθ nnOnTOnT  
and  

{ } )''/()()(cov 2
21

−+= εεθθ nOTT  
These together with (10-12) give the covariance matrix for the joint density function  
 

)('  )('),(),( 2121 θθθθ TandTTT as    

)'/(6/),(),(),(

),()'/(6/),(),(

),(),()'(2/),(

),(),(),()'(2/

23
212212

21
23

2111

2221
1

21

121121
1

∑





















+
+

+
+

−

−

εθθθθθθ
θθεθθθθ
θθθθεθθ
θθθθθθε

nOnBCC

BnOnCC

CCOnA

CCAOn

         (13)
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This covariance matrix for all πθθ <<≥ 21,0,4n  such that 21 θθ ≠ is positive definite. Hence 0>∑  and, if ∑ij is 

cofactor of the (ij)th element of ∑ , then ∑ ∑=∑ >∑ > 34 434433  and 0,0 . From [1] we have  

),,0,0(. 21 yxp θθ = ( ){ }[ ]   2/exp)4( 433444
2

33
22/112 ∑∑∑ +∑ ++∑−∑

−− xyyxπ
        (14)

 
Now let ( ) ( ) ./s and /=q

2/1
44

2/1
33 yx +∑ ∑=+∑ ∑   

Then from (14) we can write  

      
{ }   2/)2(exp,)4( ),,0,0(., 22

44
11

33
12

21 dsdqpqssqsqdydxyxpyx ∫ ++−∫∑∑=∫ ∫
∞

∞−

∞

∞−

−−−
∞

∞−

∞

∞−
πθθ

             (15)
 

where ( ) ( ) 2/1
44334334 2/ ∑∑∑+∑=ρ  and 10 2 <≤ p . The value of the integral in (15) can be obtained by a similar 

method to Cramer and Leadbetter [1]. Let squ 2/122/12 )1( vand )1( ρρ −=−=  then we have  

{ } { } dvdupuvvudsdqpqssqI  )1(2/)2(exp)-(1    2/)2(exp
0 0

222-12

0 0

22
∫ ∫ −++−=∫ ∫ ++−=
∞∞∞∞

ρρ   

{ }    cscarccos)-(1)1()(2/1)-(1 -1/22

0

2/121-1/22 φφρρπρπ
ρ

==∫ −−= −− dxx
         (16)

 

where φρ cos=  . Use has been made of the fact that (see for example Cramer and Leadbetter [1]) 

{ } dvdupuvvu  )1(2/)2(exp
0 0

222
∫ ∫ −++−
∞∞

ρ { }∫ −−= −−
ρ

πρπ
0

2/121-1/22 )1()(2/1)-(1 dxx

 Therefore from (16) by differentiation we can obtain  

{ } )cot-(1csc)-(dI)/(d   2/)2(exp 2

0

22 φφφρ ==∫ ∫ ++−
∞ ∞

∞−
dsdqpqssqqs

          (17)
 

We can easily show that  

{ } ( ){ }φφπφ cot1csc   2/)2(exp 2

0

22 −+=∫ ∫ ++−
∞ ∞

∞−
dsdqpqssqqs  

Which together with (17) evaluates the integral in (15) as 

{ } ( ){ }  cot2/1csc4   2/)2(exp 222 φφπφ −+=∫ ∫ ++−
∞

∞−

∞

∞−
dsdqpqssqqs

         (18)
 

Now from (13) we can show 

∑ ∑=+=44 33
45 )'/(24/ εnOn and  ∑ ∑==34 43

4 )'/( εnO          (19-20) 

Also from (19) and (20) and with the above choice from (18) we can obtain 

( ) ( ) ∞→→=∑ ∑∑ ∑+= n as 0)'/1(2/ 2/1
34 3334 33 ερ nO  

Therefore 2/πφ → for all sufficiently large n and hence from (18), we can see  

{ }  )'/1(4 2/)2(exp 22 εnOdsdqpqssqqs +=∫ ∫ ++−
∞

∞−

∞

∞−
           (21)

 Also from (10)-(11) we can write  

 )}'(6/{)}'(2/{ 21321 −− +++=∑ εεε OnOn  

Therefore from this (15) and (21) the integrand that appears in (8) is asymptotically independent of 21  and θθ  and 

since by the definition of D(e), the area of the integration is )'()'2()'2( 222 εεπεεπεεπ ++=+−− O  we 
have  

{ }[ ] )''/(3/1)','()','( 2 εεεεπεεπε nnnOnNNE +++=−−−                         (22) 
We now denote the mathematical expectation of N2 in the interval (0,e). Similar to Farahmand [2-3] we apply 
Jensen’s theorem on a random integral function of the complex variable z,  

 ∑=
=

n

j
j jzwgwzT

1
cos)(),(  

Let N(r) denote the number of real zeros of  T(z,w) in z<r. For any integer j from Farahmand [3], we have  

[ ] 2/22/ '3)2/'2/exp(')/2('3)'(Pr jj jnjnjnN −− <−−+<+> εεεεε                (23) 
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Let [ ]'3' εnn =  be the smallest integer greater than or equal to '3 εn  then since nN 2)'( ≤ε is a non negative integer, 
from (23) and by dominated convergence, for efficiently large n we have  

         ∑ ≥−=
=0

2 ))'(Pr()12()'(
j

jNjEN εε   

          )'(

)'(')211'2(3)1'2(

)')'(Pr()21'2())'(Pr()12(

22
1

2/
'

1

1'0

ε

ε

εε

nO

nOnjnn

jnNjnjNj

n

j

j
n

j

n

jnj

=

∑ +=++−+∑ +−≤

∑ +≥+−+∑ ≥−=

=

−

=

=≤<

         (24)

 

The interval ),'( πεπ −  can also be treated in exactly the same way to give the same result. Now we can use delicate 

result due to Wilkins [12] which states that ).1(2/),0( OnEN +=π From this and (22 & 24) and since ,'εε =  we obtain 

{ } { } { }
{ }

)''/'(
)1(3/)''/'(3/

),0(),'()','()',0(),0(var

222

2
2222

22

εεε
εεε

ππεπεπεεπ

nnnO
OnnnnOn

ENNNNEN

++
+−+++=

−−+−+=

          (25)

 

Use has been made of the fact that ),'()',0(~)','( εεεπε nOENEN =−  see Farahmand [5] and therefore 

)',())',0(()]','()',0([ 2 εεεπεε nONnONNE ==− and also from (24)  ).',(),'(~)',0( 2222 επεπε nOENEN =−
 

Finally from (25) and since 2/1' −= nε  
 

CONCLUSION 
 

 After proving all theorem and lemmas we conclude that considering a polynomial (1) where the coefficients are a 
sequence of independent random variables defined on probability space Pr),,( λΩ , each normally distributed with 
mean zero and variance one, then for all sufficiently large n the variance of the number of real zeros of T(θ) satisfies  

 { } )(),0(var 2/3nON =π   
 Hence the theorem proved. 
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