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ABSTRACT

In this paper one present an asymptotic outputkirag algorithm based on direct model reference ddap
control procedure (DMRAC). The new algorithm is kb to control the level of the blood glucose whic
represents a nonlinear system and its regulatioa kg challenge for decades. The regulation issalding the
virtual linearization concept. Simulations exampdes given to demonstrate the usefulness of therigthgn.
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INTRODUCTION

The simple MRAC of MIMO plants was first proposed $obel et al [1]. This class of algorithms reqgsireither
full state access nor satisfaction of the perfecideh following conditions. Asymptotic stability isnsured
provided that the plant is almost strictly positireal (ASPR). Barkana [2] extended the originaloathm to a
class of plants which violates this condition. Tapproach involved designing a supplementary feeddrd filter
to be included in parallel with the original plassulting in a new augmented plant which had tsfyathe same
strictly positive real condition, unfortunately ethracking error was not the true difference betwn plant and
the model outputs since it included the contributaf the supplementary feed forward filter whiclads to an
asymptotically stable error [3-6].

One of the major diseases in the Western worldytaslaiabetes. Several million people suffer fram tisease
and the number is increasing. Culture is mainly tlu¢he lifestyle in the western world, with lot§ unhealthy
food. Because it's a big problem, many researcherstrying to find ways to diagnose and treat dise@ne
approach is to design a mathematical model desgrithie glucose-insulin system. Diabetes is a matfan of

this system. These mathematical models can betos#idgnose, but also to create simulators tovasbus types
of treatment. One of the mathematical models deisayithe glucose-insulin system with a small numbér
parameters is called minimal model of Bergman,aswntroduced in the eighties [7]. This is the mdHat will be

described and analyzed in this paper.

The Adaptive control is a robust approach useduiocertain linear and nonlinear systems. It takeslaze
increasingly important among the methods of colgradynthesis. In this paper one synthesize a obhatrthat is
able to regulate the blood glucose by injectingadequate quantity of insulin which represents timuti to our
system. One must also test it's robustness withrbggto disturbance rejection.

DIRECT MODEL REFERENCE ADAPTIVE CONTROL

The model reference adaptive control is considérethe non-linear plant

Xp(t)iélc)(t)xf(t)+ Bp(t)up(t)+ f(Xp)
yp()— po()

where X,(t) is the (nx1) state vectoru,(t) is the (mx1) control vector,y,(t)is the (qx1) plant output vector,

(1)

f(x)is an (nx1)vector of nonlinearities and\,, B, are matrices with appropriate dimensions. We assiinate

the parameters of the linear part of the plant rhadeuncertain, i.e., only known within certainife bounds. The
range of the plant parameters is assumed to berkaod bounded with
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a <ay j)<aji,j=1.n & b <by(,j)<bij.i,j=1..n (2 -3)
—ij —ij

Assumption 1

The non-linear functionf (x) is Lipschitz that mean{sf(xl) - f(X2)| < L|X1 - X2| where L > 0is the constant of

Lipschitz, |(.)| is the Euclidean norm andy, X, belongs to a compact €21R".
The objective of this paper is to find, without égip knowledge ofA,, B,and the non-linearityf(x,) , the

control u,(t) such that the plant output vectyy (t) follows the reference model given by:

Xn(t) = AX,()+B,(u,  and y,()=C.x,(®) @)
The outputy,, is the desired response to the set point command he model incorporates the desired behaviour

of the plant, but its choice is not restrictedphrticular, the order of the plant may be muchdatpan the order of
the reference model. The ideal control law thategates perfect output tracking and ideal stateedtajies is
assumed to be a linear combination of the mod&stnd model input, i.e [8].

O
Xp | _ [311('[) Si2(t) } |:Xm(t)}
S21(t) Spa(t) || um(t)
SllAm + 81.1 = Ap811+ BPSZZL
Where theS; (t) matrices satisfy S)1Bm* Sy, =ApS;5+BpS,, (6)
C psll =Cm

Cp512 =0

Then the adaptive control law based on the comngenérator tracker (CGT) approach is given as [9-10]

up () = Ke(tey () + Ky () xm(t) + Ky (um(t) (@)
Note that adaptive law (7) has been applied fadinsystem and one try to extend it to non-lingatesn described
by (1). The tracking error is given bgy(t) = ym(t) - yp(t)and K(t), K, (t) and K, (t) are adaptive gains and

O
Up

(®)

concatenated into the matri(t) as

K(1) = [Ke(®) Kx®) Ky®] (8)
Defining the vectorr (t)(n, x1) as: r(t) = [(ym(t) =Y ) Xn(®) u;(t)Ir (9)
The controlu, (t) is written in a compact form as
up(t) =K ()r(t) (20)
where K(t) =K, (1) +K; (t) (11)
Ko ® = [Ym(®) -y, O T O, T, 20 (12)
Ki(®) =[ym® -y, O OT, T >0 (13)

STUDY OF THE STABILITY

The first step of the demonstration is to desigrositive definite quadratic form in the state vhlés e, (t) and

K, (t) of the adaptive system. Before doing this, it isuased that'l'i‘1 is a symmetric positive definite matrix.
Then an appropriate choice of the Lyapunov funcison

V =e! A(t)e, +T{S(KI -K)T YK, -K)TST (14)
where Tr . represents the trace of a matrix
T ) B
It's time derivative isV = ex Pe,+e}f Pex+e] P(t)e, + ZT{S(K| -K)T ik, ST (15)

Where P(t) is a symmetric positive definite matrix of sizexn, K is a matrix of dimensionmxn, and S
is a non-singular matrix of dimensiomxm .
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Since the matrixKk appears only in the functio and not in the control algorithm, it is calledtiious gain
matrix, it has the same dimensionldswhere

kr:kecpexﬂzuumﬂzxxm (16)
And the three gairigx, ku andlzeare asf( fictitious. Then we take the equation of the emrsing the fact that for
&, =X, =X, to find
ex = A X, +Bu, + f(x,))—Ax, -Bu, = f(x,)
=AP[XP_XD]+BP[UD_UP]+f(xp)_f(xp) (17)
= Al +B,Jun —u |+ T () - F(x,)
If we set df = f(x,) - f(x,)
Substitutingu; from (5) andu, from (7), one gets:
= ApeX+Bpl821xm+Szzum—K|r—CpeXrTT prJ+df (18.b)
Then the adaptive system is described by:
ex=Ag + Bp[821xm +S,u, K ;r=Cer'T pr] + df (19)
Ki =Ce T, (20)

Introducing (19) and (20) in (15), one gets:
V= [Apex + Bp(521xm + Syoum — K 1 —CpeXrTTlorIr Pe,
+eI F{Apex + Bp(Slem + Syouy — K r —CpeXrTTpr

+e) P(t)e, + ZT{S(K| —K)TH(Cper )T ST } +df
(21)
We can write it as:

T T TT T T T T T, ,T.T T T
p p

) T . T,T T T
V = ey ApPey + (XxmSp1Bp +UmSyBp —1 KB rex CpBp)Pex + ey PApey + ey PB(Syqxm +

. ~ (22)
Soom — K r —CpeXrTTpr) +e;|(— P(ey +2Tr| S(K| - K)Ti_ iTre;I(—C-IF—,ST}+ df

Knowing that for two vectotd (,1) andV (1) then Tr[U.\/] =V U therefore

LT T T T T T T TT,T
V =ey (PAp + Ap Pey +ey PBp321xm +ey PBpS?_Zum — ey PBpKI r—ey PBpCpexr Tpr + xms?_prPeX
TT T T, T,T T T T T,T T . T.T -~ T |
+Um5228ppex_r Ky BpPeX—r Tp reXCpoPeX+2eXCpS S(Ky =K)r +ey P(t)ey +df
(23.3)
That means

V = ey (PAy + Al Pley + 28} PBpy (SyyXm * Syolim)

_ (23.b)
T T T|-TT T T T .
— 26y PBpCpexr Tpr+2ey [CpS S—-PBp K 1 -264CnS SKr+ey P(Dey +df
By setting: C, =GB{P [0A,,B 0t G=(S"9)™
The derivative of the Lyapunov function becomes:
V = ey (PA, + Ap)ex + 26, PBy (Sy1xXim + Spali) o

T Ty 1pTpa T TAToTapw
—2e,PB,(S' S) "ByPer Tpr —26,C,S SKr +df
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Substituting  Kr = Ke Cpg, + Ku Uy, +Kx X, in the previous equation, one get:
v =eI{P(Ap ~BpKeCp)+ (A, -ByKeCp)' P}ex

—2e; PB,(S'S) By Pe,r T,r +

2ey PB{(SH ~K)%m *(Spp - Ku)um} +ey P(e, +df (25)

Thus, if we set{(sﬂ—kx)xmﬂszz—liu)um}:0 orkx =S,; and ku =S,, (none of which is required for

implementation), the derivative & becomes:

V= el[m P(Ap ~Bp KeCp) +(Ap ~BpKeCp)' P}ex - 2ey PBy(S' S) B Peyr  Tpr+df (26)

This derivative consists of three terms. T, is a positive semi-definite matrix, then the®t term is negative
semi-definite ineI . In the same manner, if the first quadratic tesmegative definite ireI that means there exist
amatrixQ=Q" >0 so that {P+ P(A, - Bp kecp) +(Ap —Bp }Eecp)T P} =-Q

And taking into account that the third terdf verifies the assumption (1), so, the derivativetted Lyapunov

V < -el Qe +|df|< —e; Qe + |-‘X‘ X*‘ =-exQeg, + ey
function verifies 2
< ~Amin(Q)ley]“ + Ljey|< 0= |e| =

L
/]min(Q)
Where A, stands for the lowest eigenvalue @which is a positive number sin|«a§|2 L/ Anin(Q), the vector
e (t) and the matrixK, (t) are bounded. We summarize the stability concetiterfollowing theorem -

Theorem
The adaptive control given by (10) applied to tba-finear uncertain system (1) that verifies theuasption 1 leads

to a ultimately stable error between the systemthadnodel if and only if there exist two matrit) = P(t)T >0
[I5+P(Ap -BpKeCp)+(Ap-ByKeCp)' P}:—Q
and Q=Q" > 05so that PBp:(GC)T Tp20, T.>0,G=G' >0
- _ 2
‘f(xl) f(xz)‘ < L‘x1 XZ" L>0 X)X OR
In the following session we introduce the matheozdtinodel of the Bergman Minimal Model.
DYNAMICSOF THE GLUCOSE INSULUN SYTEM

Bergman Minimal M odel
There are many model of the glucose insulin systim,simple one is called minimal model of Bergnj@h
described by the following equations

G(t) = - Py(G(t) ~Gp) — X(YG(t) + D(t) (29)
X(t) ==X (t) + pa(l (€)= 1) (30)
L(t) =-n(1 (t) - 1) + ¥{G() - h] t+u(t) (31)

D(t)is a disturbance that can be modeled by a deceasikponential function of the following form:
D(t) = Aexp(Bt), B >0, which represents

(1) The meals Fisher standards [1B]= 005 (2) The effects of exercise [12P = 011
The description of the parameters and terms intensa(29-31) are given in the table -1.
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Table-1Parameter Description and Terms of the Bergman Minimal Model

Parameter Unit Description
t min The time
G(t) mg/dI concentration of glucose in the blood
Gy mg/d| steady state concentration of glucose in the blood.
X(t) 1/min the effect of active insulin.
I(t) wUiml The concentration of insulin in the blood.
Iy wU/ml steady state concentration of insulin in the blood.
15 () wU/ml active concentration of insulin
Py 1/min independent glucose disposal Speed insulin.
P, 1/min release rate of active insulin.
Ps3 (min?) (U/ml)? The increase in the ability to absorb caused bylin
n 1/min rate of prime insulin decrease in plasma
% (LU/ml)min? release rate of insulin from pancrediicells after glucose injection to the glucose
(mg/dl)* concentration above the threshold
h mg/d| glucose threshold value which the pancrefticcells release insulin
u(t) pUiml defines the injection of insulin and replacesrbamal regulation of insulin of the body

This model can be used to simulate the glucosdiimsystem for a type 1 diabetic on treatment.ah e used to
test the predictive controller's models [13]. Angl @ tool in the search for an artificial pancrédss model also
adopts the problem with the minimal model of gleos

Virtual Linearization of the Glucose Insulin System
In order to write the state space description atgbe insulin system in the form given by (1), ase the virtual
linearization procedure [14] which is describedopel The equation of the glucose insulin systemhlmamritten as

- _AK
= A f = ( +B; f :
K= A9+ B+ 109 +p==2 T + B QU+ i+ 2

=AMX +B{Mu+ fi(x)+p, i=1.3
Where Ai(t)=%with XiDIﬁfﬁ]ﬁoAéX)<°°

Which is in the same form as in (1) without peratin. Note that this way of rewriting the systdoes nothing
but rearrange the terms in each equation so thahwhand U are specified, the systems appears to be linear.

Simulation

In the simulation, it is required that the glucaesacentration tracks its basal referefgg=70 mg/dlby injecting

the sufficient amount of insulin. Fig.ure 1 shows evolution of the glucose concentration of agrdtperson with
and without correction and one see that the cdatrid able to lead the glucose to its normal valbigy.ure 2 shows
the evolution of the insulin with and without cartien which decreases and reach its equilibriurmtpdtig.ure 3

shows controlled input which decreases and reachizesteady state.
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Fig. 1 Glucose concentration for a patient person with and without Fig. 2 Concentration of insulin in the blood
correction
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Fig. 3 Command (insulin injection) to the blood glucose insulin system

CONCLUSION

This paper presents the adaptive command whichbwithpplied for a perturbed system. The Lyapuneworth has
been addressed in order to achieve a robust comangaidst the uncertainty which is inherent in elilrsystem.
The adaptive command has been applied to contelctncentration of the glucose of a patient perJdre
simulation results confirm the robustness of theettgped controller.
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