
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2015, 2(6): 98-102

Research Article ISSN: 2394 - 658X

98

VHDL Implementation of DIT-FFT using CORDIC

M Paavani1, A Naga Malli1 and Kiranmayi2

1 Department of Electronics and Communication,
Gayatri Vidya Parishad College of Engineering, Visakhapatnam, India

2Senior IT Engineer, CMC Limited, Hyderabad
mugadapavani113@gmail.com

ABSTRACT

Evaluating trigonometric functions, used in Digital Signal Processing applications like Discrete Fourier
Transform (DFT), Discrete Hartley Transform (DHT) is a complicated task involving large area, high complexity
and time issues. To reduce the delay at the expense of area constraints an optimized hardware efficient technique
called Coordinate Rotation Digital Computer (CORDIC) is used. CORDIC technique is implemented, without use
of multiplier, which eases the process. This journal presents how CORDIC technique is implemented in pipelined
mode for different applications such as computing trigonometric functions to determine FFT, data conversion.

Key words: Coordinate Rotation Digital Computer (CORDIC), Discrete Fourier Transform (DFT), Discrete
Hartley Transform (DHT), FFT

INTRODUCTION

CORDIC (CO-ordinate Rotation Digital Computer) is a unique reason computerized PC for calculations
progressively. CORDIC calculation was initially presented by Jack E Volder in the year 1959 [1-4]. CORDIC is
very proficient, low unpredictability and hearty procedure for figuring basic capacities. CORDIC calculation has
its applications in pocket adding machines, sign handling (DFT, DCT, DHT and DST). Unlike general methods
which make use of multiplier, CORDIC makes use of only Adders/ Subtractor and Look-Up tables. The main
principle of CORDIC algorithm is to rotate the vector through a fixed angle to get new vectors. This technique is
often useful in applications like data conversions, DFT implementation etc. CORDIC uses two modes for rotation
of a vector [1-3]. They are

(i) Rotation Mode and (ii) Vectoring Mode

In Rotation mode, the co-ordinate part of the vector and angle of rotation are given. For a number of iterations the
vector is rotated until the angle initialized converges to zero resulting in new vector.

In vectoring mode, the co-ordinate parts of a vector are given and the magnitude and angle are registered. For this
situation the second co-ordinate component focalizes to zero. Generally CORDIC structure is composed of only
Adder/Subtractor and lookup table.

CORDIC ARCHITECTURES

There are three architectures in which CORDIC Algorithm can be implemented. Each architecture has its own
advantages and disadvantages.

Sequential /Iterative CORDIC
Fig. 1 shows the Iterative CORDIC or Sequential CORDIC as the iterations are done sequentially one after the other.
The outputs/inputs are stored in the registers as shown in the figure Fig.1. The registers are initialized with input
vectors and input angle. The input vectors are shifted based on the number of rotations by comparing the input angle
with angle in the look up table and finally added or subtracted [2].

Parallel / Cascaded CORDIC
Parallel/Cascaded CORDIC is shown in figure Fig.2. The iterations are done in parallel; the outputs are immediately
transferred to the next stage .The shift registers are increased by one bit for every stage. The input vectors are shifted
based on the number of rotations and finally added or subtracted. The input vectors are shifted based on the number
of rotations by comparing the input angle with angle in the look up table and finally added or subtracted.

Paavani et al
__

Pipelined CORDIC
It is the most efficient of the CORDIC algorithms in which the iterations take place in multiple clock cycles.
However, different processes take place concurre
pipelined architecture is as shown in the following figure Fig. 3 [1

CORDIC

Vector rotation finds its application in data conversions such as Polar to Rectangular and Rectangular to Polar,
computing Trigonometric thereby computing DFT. CORDIC uses two modes for computing the trigonometric
functions.
All the vector rotations are derived from the following equations

�1	 � 	�	���		

By eliminating cos Φ and by substituting tan (
�1 � 	
����	
	����2

��� and

 Euro. J. Adv. Engg. Tech., 201
__

99

It is the most efficient of the CORDIC algorithms in which the iterations take place in multiple clock cycles.
However, different processes take place concurrently such that the execution time is reduced. The structure of a
pipelined architecture is as shown in the following figure Fig. 3 [1-3].

Fig.1 Sequential / Iterative CORDIC [2]

Fig.2 Parallel / Cascaded CORDIC [5]

Fig.3 Pipelined CORDIC

CORDIC ALGORITHM FOR VECTOR ROTATION

Vector rotation finds its application in data conversions such as Polar to Rectangular and Rectangular to Polar,
computing Trigonometric thereby computing DFT. CORDIC uses two modes for computing the trigonometric

All the vector rotations are derived from the following equations
		– 	�	���		 and �1 � 	�	���			 � 	�	���	

 and by substituting tan (Φ) = 2-i, we get
and �1 � 	
����	 �	����2

��� where
� � 	���	�����

Euro. J. Adv. Engg. Tech., 2015, 2(6):98-102
__

It is the most efficient of the CORDIC algorithms in which the iterations take place in multiple clock cycles.
ntly such that the execution time is reduced. The structure of a

Vector rotation finds its application in data conversions such as Polar to Rectangular and Rectangular to Polar,
computing Trigonometric thereby computing DFT. CORDIC uses two modes for computing the trigonometric

		 [2]

���2�� 	�� and �� = ±1

Paavani et al Euro. J. Adv. Engg. Tech., 2015, 2(6):98-102
__

100

This process of removing the cos Φ term is called pseudo rotation. To rotate the vector originally, we need to include
the cos Φ term, this can be done by just multiplying the 0.60725 to the final result, as the cos Φ term on an average
yields to 0.60725 from the below equation.

 K = ∏
�
���
��� where ∏
�

���
��� = Cos (Φ0). Cos (Φ1). Cos (Φ2) ………… Cos (Φn)

For recording the angles used for number of rotations, a lookup table is used in which the tan (Φ) = 2-i is loaded. A
better conversion method uses an adder/ subtractor that accumulate the elementary rotating angles at each iteration.
The angle accumulator adds a third difference equation to the CORDIC algorithm.

Rotation Mode
In the rotation mode, the angle accumulator is initialized with the desired rotation angle (zo = Ө). The rotation
decision at each iteration is made to diminish the magnitude of the residual angle in the angle accumulator. The
decision at each iteration is therefore based on the sign of the residual angle after each step.
For rotation mode, the CORDIC equations are

���� �	 ���	
	����2���, ���� =	 ���	 +	����2��� and 	 ��� =	 ! �	–	��������2��	�"
��= ±1 (di is the direction of angle of rotation) �� =#+1,					�%	&� ≥ 0		

−1,					�%	&� ≤ 0 *
Vectoring Mode
In the vectoring mode, the CORDIC rotator rotates the input vector through whatever angle is necessary to align the
result vector with the x-axis. The result of the vectoring operation is a rotation angle and the scaled magnitude of the
original vector (the x component of the result). The vectoring function works by seeking to minimize the y
component of the residual vector at each rotation. The sign of the residual y component is used to determine which
direction to rotate next. If the angle accumulator is initialized with zero, it will contain the transverse angle at the end
of the iteration.
In vectoring mode, the CORDIC equations are

���� =	 ���	 −	����2���, ���� =	 ���	 +	����2��� and ��� =	 ! �	–	��������2�� 	�"
�� = ±1 (�� is the direction of angle of rotation) �� =#+1,					�%	�� < 0		

−1,					�%	�� ≥ 0 *
In vectoring mode, y converges to zero.

Polar To Rectangular Conversion
Polar to rectangular conversion using CORDIC algorithm is implemented in Rotation mode. The equations are
defined b � = 	,�cos		� and � = 	,�sin		�
By rotating an input vector through an angle we get a resultant vector, the input vectors are rotated until the angle
converges to zero. The polar input is transformed to the rectangular coordinates. To eliminate the pseudo rotation,
the output must me multiplied by the gain obtained.

Rectangular To Polar Conversion
Rectangular to Polar conversion using CORDIC is done in the vectoring mode. The inputs are applied in the
rectangular transformation and the output is resulted in the polar coordinates. The outputs are the radius and the
angle. Where the radius is obtained as

��	 =	2�3�4 +	�4, ��	 = 	0 and 										&� =	5& +	������67�8

Sine and Cosine
It is also done in the rotation mode. The inputs are rotated through the fixed angle until the converges to zero by
adding/subtracting the angle initialized with the angles in the lookup table. Then all the output vectors are together
resulted as cos Φ and sin Φ [3]. The elementary functions sine and cosine can be computed using rotation mode of
the CORDIC algorithm if the initial vector is of unit length and is aligned with abscissa (x-axis).

�� = 	1, �� = 	0, &� = 	Ө

Fig.4 2-Point DIT-FFT Implementation

Paavani et al
__

Fast Fourier change (FFT) is a proficient calculation for processing the Discrete Fourier change (DFT). FFT requires
less augmentation than a basic methodology of figuring DFT. The Decimation in time (DIT) calculation is utilized
for FFT calculation.

Fig.5 2-Point DIT

Simulation result for the sine and rectified cosine is shown in the Fig.6. The Sine and Rectified Cosine is
implemented in rotation mode of the CORDIC algorithm. The sim
+900. The simulation result for 2-Point FFT using CORDIC is shown in Fig.7. The result is obtained after 16 clock
cycles as the CORDIC algorithm executes in 16 clock cycles. The simulation result for the
the Fig.8. The final result is obtained after 16 clock cycles as CORDIC needs 16 clock cycles to execute.

The comparison of different parameters such as delay, multiplier, adder/subtractor with and without CORDIC for 2
Point FFT is shown in the Table-1. The delay for 2
Point FFT without using CORDIC.
adder/subtractor with and without CORDIC for 4
using CORDIC is decreased compared to delay for 4

Table -1 Comparison of 2

S.No Parameters
1 Delay

2 Multipliers

3 Adders/Subtractors

Table -2 Comparison of Parameters of 4

S.No Parameters

1 Delay

2 Multipliers

3 Adders/Subtractors

Fig.6 Sine and Rectified Cosine Implementation using CORDIC Algorithm

 Euro. J. Adv. Engg. Tech., 201
__

101

FFT IMPLEMENTATION

Fast Fourier change (FFT) is a proficient calculation for processing the Discrete Fourier change (DFT). FFT requires
less augmentation than a basic methodology of figuring DFT. The Decimation in time (DIT) calculation is utilized

Point DIT-FFT Implementation using CORDIC Algorithm [5]

RESULTS AND DISCUSSION

Simulation result for the sine and rectified cosine is shown in the Fig.6. The Sine and Rectified Cosine is
implemented in rotation mode of the CORDIC algorithm. The simulation result is for the angle between

Point FFT using CORDIC is shown in Fig.7. The result is obtained after 16 clock
cycles as the CORDIC algorithm executes in 16 clock cycles. The simulation result for the
the Fig.8. The final result is obtained after 16 clock cycles as CORDIC needs 16 clock cycles to execute.

The comparison of different parameters such as delay, multiplier, adder/subtractor with and without CORDIC for 2
1. The delay for 2-Point FFT using CORDIC is decreased compared to delay for 2

Point FFT without using CORDIC. The comparison of different parameters such as delay, multiplier,
adder/subtractor with and without CORDIC for 4-Point FFT is shown in the Table-2. The delay for 4
using CORDIC is decreased compared to delay for 4-Point FFT without using CORDIC.

1 Comparison of 2-Point DIT FFT with and Without CORDIC

2-Point FFT Without CORDIC 2-Point FFT With CORDIC
14.374ns 10.459 ns

4 0

6(3 Adders,3 Subtractors) 37(2 Adders,2 Subtractors, 33 Add/Sub)

2 Comparison of Parameters of 4-Point DIT FFT with and without CORDIC

4-Point FFT Without CORDIC 4-Point FFT With CORDIC

17.739 ns 10.459 ns

8 0

12(6 Adders,6 Subtractors) 98(4 Adders,4 Subtractors, 90 Add/Sub)

Fig.6 Sine and Rectified Cosine Implementation using CORDIC Algorithm

Euro. J. Adv. Engg. Tech., 2015, 2(6):98-102
__

Fast Fourier change (FFT) is a proficient calculation for processing the Discrete Fourier change (DFT). FFT requires
less augmentation than a basic methodology of figuring DFT. The Decimation in time (DIT) calculation is utilized

Simulation result for the sine and rectified cosine is shown in the Fig.6. The Sine and Rectified Cosine is
ulation result is for the angle between -900 to

Point FFT using CORDIC is shown in Fig.7. The result is obtained after 16 clock
cycles as the CORDIC algorithm executes in 16 clock cycles. The simulation result for the 4-Point FFT is shown in
the Fig.8. The final result is obtained after 16 clock cycles as CORDIC needs 16 clock cycles to execute.

The comparison of different parameters such as delay, multiplier, adder/subtractor with and without CORDIC for 2-
Point FFT using CORDIC is decreased compared to delay for 2-

The comparison of different parameters such as delay, multiplier,
2. The delay for 4-Point FFT

With CORDIC
10.459 ns

0

37(2 Adders,2 Subtractors, 33 Add/Sub)

Point DIT FFT with and without CORDIC

Point FFT With CORDIC

10.459 ns

0

98(4 Adders,4 Subtractors, 90 Add/Sub)

Fig.6 Sine and Rectified Cosine Implementation using CORDIC Algorithm

Paavani et al
__

This section illustrated different results obtained by writing the VHDL code, synthesized and simulated in XILINX
and MODELSIM respectively. The first simulation result shows the Sine and Cosine
CORDIC Algorithm in rotation mode. The next simulation result is obtained for Rectangular to polar conversion
using CORDIC algorithm in Vectoring mode. In this result the polar coordinates are obtained from rectangular
coordinates. The next simulation result is obtained for Polar to Rectangular conversion using CORDIC algorithm in
Rotation mode. In this result the Rectangular coordinates are obtained from Polar coordinates. The final tables are
the synthesized results obtained from Xili
and 4-point DIT-FFT with and without CORDIC for different parameters like delay and the components used.

This proposed journal reduces the area and time
proposed circuits. The main application DIT
architecture which reduces the latency. Using CORDIC as a replacement of multiplier in 2
delay by 37.4% as compared to 2-
69.6% when used CORDIC in place of multipliers.

[1] Pramod K Meher, Javier Valls, Tso Bing Juang, K Sridharan and Koushik Maharatna, 50 Years of CORDIC:
Algorithms, Architectures, and Applications,
[2] Esteban O Garcia, Rene Cumplido and Miguel Arias
Cosine Waves Generator, 3rd International Conference on Electrical and Electronics Engineering
[3] B Lakshmi and AS Dhar, Parallel CORDIC
Conference on Electrical and Electronics Engineering
[4] B Lakshmi and AS Dhar, High Speed Architectural Implementation of CORDIC Algorithm,
(International Technical Conference
[5] Roberto Sarmiento, Felix Tobajas, Valentin de Armas, Roberto Esper
Nelson and Antonio Nunez, A CORDIC Processor for FFT Computation and its Implementation using Gallium
Arsenide Technology, IEEE Transact

 Euro. J. Adv. Engg. Tech., 201
__

102

Fig.7 2-Point FFT using CORDIC

Fig.8 4-Point FFT using CORDIC

This section illustrated different results obtained by writing the VHDL code, synthesized and simulated in XILINX
and MODELSIM respectively. The first simulation result shows the Sine and Cosine
CORDIC Algorithm in rotation mode. The next simulation result is obtained for Rectangular to polar conversion
using CORDIC algorithm in Vectoring mode. In this result the polar coordinates are obtained from rectangular

next simulation result is obtained for Polar to Rectangular conversion using CORDIC algorithm in
Rotation mode. In this result the Rectangular coordinates are obtained from Polar coordinates. The final tables are
the synthesized results obtained from Xilinx. The table shows the comparison results between the 2

FFT with and without CORDIC for different parameters like delay and the components used.

CONCLUSION

This proposed journal reduces the area and time-complexities hardwired pre-shifting scheme in barrel
proposed circuits. The main application DIT-FFT is implemented using CORDIC adopting the pipelined
architecture which reduces the latency. Using CORDIC as a replacement of multiplier in 2

-point DIT-FFT using multipliers. In 4-point DIT-FFT the delay is reduced by
69.6% when used CORDIC in place of multipliers.

REFERENCES

Pramod K Meher, Javier Valls, Tso Bing Juang, K Sridharan and Koushik Maharatna, 50 Years of CORDIC:
Algorithms, Architectures, and Applications, IEEE Transactions on Circuits and Systems,

Esteban O Garcia, Rene Cumplido and Miguel Arias, Pipelined CORDIC Design on FPGA for a Digital Sine and
International Conference on Electrical and Electronics Engineering

B Lakshmi and AS Dhar, Parallel CORDIC-Like Architecture: for Fast Rotation Implementat
Conference on Electrical and Electronics Engineering, Bali, 2011.

B Lakshmi and AS Dhar, High Speed Architectural Implementation of CORDIC Algorithm,
International Technical Conference of IEEE), IEEE Region 10 Conference, Hyderabad, 2008

Roberto Sarmiento, Felix Tobajas, Valentin de Armas, Roberto Esper-Chain, Jose F Lopez, Juan A Montiel
Nelson and Antonio Nunez, A CORDIC Processor for FFT Computation and its Implementation using Gallium

IEEE Transactions on Very Large Scale Integration (VLSI) Systems

Euro. J. Adv. Engg. Tech., 2015, 2(6):98-102
__

This section illustrated different results obtained by writing the VHDL code, synthesized and simulated in XILINX
and MODELSIM respectively. The first simulation result shows the Sine and Cosine implementation using
CORDIC Algorithm in rotation mode. The next simulation result is obtained for Rectangular to polar conversion
using CORDIC algorithm in Vectoring mode. In this result the polar coordinates are obtained from rectangular

next simulation result is obtained for Polar to Rectangular conversion using CORDIC algorithm in
Rotation mode. In this result the Rectangular coordinates are obtained from Polar coordinates. The final tables are

nx. The table shows the comparison results between the 2-point DIT-FFT
FFT with and without CORDIC for different parameters like delay and the components used.

shifting scheme in barrel-shifters of the
FFT is implemented using CORDIC adopting the pipelined

architecture which reduces the latency. Using CORDIC as a replacement of multiplier in 2-point DIT FFT reduces
FFT the delay is reduced by

Pramod K Meher, Javier Valls, Tso Bing Juang, K Sridharan and Koushik Maharatna, 50 Years of CORDIC:
, 2009, 56(9), 1893.

, Pipelined CORDIC Design on FPGA for a Digital Sine and
International Conference on Electrical and Electronics Engineering, Veracruz, 2006.

Like Architecture: for Fast Rotation Implementation, International

B Lakshmi and AS Dhar, High Speed Architectural Implementation of CORDIC Algorithm, TENCON 2008,
2008.

Chain, Jose F Lopez, Juan A Montiel
Nelson and Antonio Nunez, A CORDIC Processor for FFT Computation and its Implementation using Gallium

ions on Very Large Scale Integration (VLSI) Systems, 1998, 6 (1), 18.

