Characteristic Polynomial for Detecting Isomorphism among 12-Link, 1-Freedom Simple Jointed Kinematic Chains (SJKCs)

Vijayananda Kaup
Department of Mechanical Engineering, CMR Institute of Technology, Bengaluru, India vijayananda.k@cmrit.co.in

Abstract

In this paper the complete collection of 12 link, 1-degree of freedom category of simple jointed kinematic chains (SJKCs) consisting of 6856 distinct chains are studied with an attempt to assess the efficacy of the characteristic polynomial based approaches using the link-adjacency, degree and structural matrix representations of kinematic chains for the detection of structural isomorphism amongst chains. All the cospectral pairs and triplets of kinematic chains where the isomorphism test failed to distinguish are reported in the form of a concise notation developed by the author for the purpose of documentation.

Key words: Isomorphism test, kinematic chain, cospectral chain, characteristic polynomial

INTRODUCTION

The problem of isomorphism in kinematics arises in the number synthesis of linkages. This problem usually involves generation of some kind of a unique identifier for every kinematic chain so that the task of comparing the structures of two chains for structural similarity is akin to comparing their respective unique identifiers.

In the area of number synthesis, a number of researchers have developed methodologies for enumerating the complete collection of SJKCs, mechanisms, multiple jointed chains, cam-modulated linkages, linkages possessing various types of kinematic links and pairs, and epicyclical gear transmission systems [1]. There are quite a few papers that have attempted synthesis of chains with more than 11 links. The author of this paper also has developed a method of synthesis in his doctoral thesis [2] and has derived chains with greater than 11 links. One of the results of the work is the complete collection of chain having 12 -links and several degrees of freedom. In his work [2], the author has also developed a new isomorphism test based on representation-set of chain and has used it to derive all of the above categories of chains. In this paper, the author applies the characteristic polynomial based isomorphism tests on the entire collection of 12 -link, 1 -freedom chains to check the robustness of the tests.

The need for a reliable and computationally efficient isomorphism test arises in the structural synthesis of kinematic chains - the reason being, most synthesis methodologies available in the literature generate a large number of duplicate chains which have to be subsequently eliminated in order to tabulate the total number distinct chains possible in the given category. Many attempts [2-20] have been made in literature to develop reliable and computationally efficient tests for detecting structural isomorphism. These tests fall under four groups namely: 1) Characteristic polynomial based approaches, 2) Code-based approaches, 3) Hamming-number based approaches, and 4) Distance or Path based approaches.

Uicker and Raicu [3] were the first to investigate the properties of the characteristic polynomial of the adjacency matrix of a kinematic chain. Murthyunjaya and Raghavan [7] applied Bocher's formula for the determination of the characteristic coefficients and presented a counter example for the uniqueness of the characteristic polynomial and showed that polynomial is unique for closed and connected kinematic graphs. Yan and Hall [8] presented rules and theorems by which characteristic polynomial of kinematic chain and its coefficients are determined. Mruthyunjaya and Balasubramanian [4] worked on characteristic polynomial of a vertex-vertex degree matrix, and detected counter examples in the 10 -link category of chains. Dubey and Rao [9] considered characteristic polynomial of distance matrix. Ambekar and Agrawal [10] proposed max-code and min-code methods for the detection of isomorphism. Kim and Kawk [12] proposed heuristic algorithm that uniquely labels the links of a chain which leads to a unique code. Shin and Krishnamurthy [13] presented the standard code theory for the detection of
isomorphism. Rao [14] introduced the concept of Hamming distances from information and communication theory to the study of kinematic structure. Rao and Varadaraju [15] defined link hamming string as an index for testing isomorphism. Rao [16] illustrated a method by using chain Hamming matrix by which reliability of isomorphism test based on primary Hamming string is increased. Yan and Hwang [17] defined the linkage path code of a kinematic chain. Yadav et al [18] presented a sequential three-step test for isomorphism. Shende and Rao [19] proposed a method based on summation polynomials. Patil, et al [20] have proposed the Eigen values and Eigen vectors to identify isomorphic chains. They applied the technique to several isomorphic cases of chains to show that the effectiveness of the method in identifying kinematic chains.

CONTRIBUTIONS OF THIS WORK

In this paper, with an intention to check the effectiveness of characteristic polynomial based approaches to the isomorphism test, the complete collection of 6856 chains in the 12 -link, 1 -freedom category was employed to run the three popular tests based on the link adjacency matrix (Uicker, et al [3]), the degree matrix (Mruthyunjaya et al [4]) and finally the structural matrix (Yan et al [5]). A number of cospectral cases were detected during the exercise.
When characteristic polynomial of the link adjacency matrix was employed as the isomorphism test it is found that there were 15 triplets of cospectral SJKCs from among the 6856, 12 link, 1-freedom category. The 15 triplets are tabulated in Table-1. For the purpose of reporting the cospectral chains, a concise notation specifically developed for the purpose is used in this paper. The notation and the way to decode them are also explained in the paper. It is also found that there are 183 pairs of cospectral SJKCs among the 12 link, 1-freedom category. These are tabulated in Table-2. These findings show that the test is not effective in capturing all the possible chain variants for categories having more than 9 links.

Table -1 Cospectral Triplets among 12-Link, 1-Freedom Chains

1	GKWe 4252 b 81	J+oI+G9+5+Z	J+o2+G8GA40
2	aG8ae58+4+U	$5+\mathrm{K} 1 \mathrm{GK1Gj} 81$	$6 \mathrm{GOWuD}++++\mathrm{p}$
3	OHW1+e804GX	$\mathrm{SHe}+\mathrm{Y}+\mathrm{A}+5+\mathrm{f}$	SHe+W+g844X
4	OHW1+e8041X	OHW1+e804+f	OHW1+e8Ia1X
5	OHW12e82a+Z	O1W1Ge8n2K1	O1W1Ge8n251
6	O1W1+g824af	O1W1+ef25+Z	SLe+W+A+44Z
7	O1W1+e9I51X	O1W1+e92KKX	, SHe+W+AG4KX
8	O1W1+e9I44Z	O1W1+e92K4Z	O1W1+e8352f
9	$3+\mathrm{C} 2 \mathrm{Wg} 22 \mathrm{WWZ}$, 5+K1WO2I24f	, 5+K1GK2KA4X
10	MGu+G4W4D+X	, MGu+G4+4L+f	, M4u+O4+4a+Z
11	MGu+G4W45GX	MGu+G4+45Wf	, MGu+G4W44KX
12	XG2YgLGX++1	, +K1JW4I+9OX	248 I WQ424i
13	H8YWG83L+GX	, mWa+C253GG5	, CXC+I8X8e+K
14	$44 \mathrm{GH} 2 \mathrm{GaABC}+$	4GH18I42+pa	, GKXI $4 \mathrm{H}+8 \mathrm{Cu}+$
15:	$6408 \circ \mathrm{CG}+++\mathrm{U}$	2KGn9XM6+++	+K+m91HXWp+

Table -2 Cospectral Pairs of 12-Link, 1-Freedom Chains

1	QHmWI8K2++X	+I+m52f+c4X	62:	SHe+W+g+44f	M+u+G414aWZ	123:	C+m3W4+Ia8Z	1W622Wg1Y49
2	G2WG429+aXp	+K1G51P+c4X	63 :	$S 1 f+Y+A+5+Z$	$\mathrm{SHe}+\mathrm{Y}+\mathrm{A}+4 \mathrm{Gc}$	124:	822 S611+f	4GH1CIaA5+1
3	JGo2+H8+42f	L+i+G4f+44f	64 :	S1f+W+A+5Wf	i5849+44a8X	125:	I182+S6112f	4GH1CIa25+3
4	JGo2+GeW4GX	J+o2AG8+a1X	65 :	$S 1 f+W+A+4 a f$	S1eGW+A15+Z	126:	C+m3W4W35+f	248JW3H+CO4
5	JGo2+Ge+aGX	J+o2AG8W41X	66 :	S1e+e+AG5+f	$\mathrm{T} 1 \mathrm{e}+\mathrm{A}+8+\mathrm{C} 9$	127:	L4q1GK1+W+Z	M8u+Y8+1496
6	JGoI+G8+5+Z	+m31Gma44Gc	67	S1e+W+A15Wf	$\mathrm{T} 1 \mathrm{e}+8+8 \mathrm{G} 4 \mathrm{CD}$	128:	$3+C 2 a 612 G 4 f$, 1W6+A2gXA14
7	JGo2+G8G5+f	C+m3Y4+2a8f	68 :	SleGW+A144f	T1e+8+8WKC3	129:	T1e+8+8W4i9	, i18K8+K4a8X
8	JGo2+G8+52f	C4m3W4+2a8f	69:	S1eGW+A144Z	S1e+Y+A144Z	130	O1W12e9+aD1	O1W12e984C6
9	JGo22GO+44X	KCf+e58+4GX	70 :	S1e+Y+A144f	S1e+e+A+KGc	131.	KWo+8284a+p	K+m+3+nXca+
10	JGo2+Ge+4KX	J+o2AG8+51X	$71:$	Sle+W+g+64f	S1e+8+C252Z	132:	H8ac+G114e9	, G2WE+G221iJ
11	4I8f3Wm+2c+	H8aWG455+f1	72	S1e+W+AG64Z	T1e+8+884i5	13	+e2cW61LW11	, 84WJW31+j81
12	J+oI8G8+5+Z	Z+I62G8+A8c	73 :	O1W1+Wj244f	2WA2WeX+b83	134:	+e2cW61LW+3	, 84WJW318b81
13	J+o28G8+5WZ	i184A+K4aC1	74:	$4 \mathrm{eAWoC882+X}$	MGu+I4+a4+Z	1	i5848+44aC9	+i2aeX1B4+1
14	J4028G8+44Z	L+i+I4114Gc	75	$1 \mathrm{~W} 61 \mathrm{~Kb} 8 \mathrm{G} 2+\mathrm{f}$, MGu+G4Wa4+Z	136:	i5848+44aC3	, +e2aeX1J4G1
15	J+oI8G8+44Z	J+o2AG8+44Z	76 :	58AY6H11411	, J+o2+GeW28Z	137:	i1848+a4aD1	, n8Y28I4AG+5
16	J+o28G8G44Z	J+o2+G9+52f	77	58AY4H114W9	, J+o2+GeW2OX	138:	i1848+aaC8X	, i1848+c4WS1
17	J+o28G8+46Z	L+i+G41H4Gc	78 :	$34 \mathrm{C} 2 \mathrm{Wg} 2 \mathrm{Y}++\mathrm{f}$, 3+C2Wg2Y+2f	139:	i1848+aa49X	, i1848+64Wi9
18	J+o2+G9+5WZ	XG2YgL $+\mathrm{X}++9$	$79:$	$3+\mathrm{C} 2 \mathrm{Wg} 2 \mathrm{YG}+\mathrm{Z}$, +C+p8H441C9	140:	i5848+64WC9	, 05W1+Y44a8Z
19	$\mathrm{J} 402+\mathrm{G8}+64 \mathrm{Z}$	Z+G62G9+4CE	80:	$34 \mathrm{C} 2 \mathrm{Wg} 22 \mathrm{~W}+\mathrm{f}$, L4i+G41144Z	141	i5848+64WC3	, 01W1+Y4Ka8Z
20	J+o2+G8G64Z	, +A+h8Ga4Wg8	81:	$3+C 2 W g 2 I W+Z$, +6+RW4Y+Hee	142	i184A+64WC3	, i9841+53425
21	KGf+a58G4+f	OHWH+eA+a1X	8	$3+\mathrm{C} 2 \mathrm{Wg} 22 \mathrm{~W} 2 \mathrm{f}$	L4i+G411C4X	143:	XG2YeL+n+11	, XG2YeL+X+X1
22	L+i+O48+a2Z	L+i+G49+K4Z	$83:$	$34 \mathrm{C} 2 \mathrm{Wg} 22+4 \mathrm{Z}$, Z+I64G8+I8Z	144:	S1e+G81114p	, 4C8mf6H114+
23	L+i+G4f+5+f	OHWH+eA+44Z	84:	+I19AYa2146	, +O1We64YWY9	145 :	H8aWG455+A3	, 4I98b5GGGY+
24	ZGG6+GA+4af	Z4H6+GA $+5+\mathrm{Z}$	85:	$3+C 2 Y g 22+4 \mathrm{Z}$, Z+I64G8+I9X	146:	+e2YeK2DH+1	, $\mathrm{HKb}+\mathrm{G} 42 \mathrm{gX}+1$
25	$\mathrm{Z}+\mathrm{H} 6+\mathrm{GA}+\mathrm{L}+\mathrm{f}$	J+o22G8WA8X	86:	44 GH 2 GaAA 4 K	, +I1851KQQ4+	147:	Iaq+W48X249	, Iaq+W48X243
26:	Z+H6+GAG44Z	$Z+G 6+G B+52 f$	87:	$3+\mathrm{C} 2 \mathrm{WeZ} 2+4 \mathrm{Z}$, +q31Gm4aC+X	148:	IWq+W48X2b1	, aYCKe51+W+I
$27:$	$\mathrm{Z}+\mathrm{G} 68 \mathrm{Gg}+5+\mathrm{Z}$	$Z+G 6+I A+4 a f$	88:	$5+\mathrm{K} 1 \mathrm{YO} 32+4 \mathrm{Z}$, +m31Gm4aK+Z	149:	IWq+W48X2a3	, J+o2+G1X42D
28:	$\mathrm{Z}+\mathrm{G} 6+\mathrm{IA}+\mathrm{L}+\mathrm{f}$	Z+G6+IA+K1c	89:	$5+\mathrm{K} 1 \mathrm{WO} 22 \mathrm{G} 4 \mathrm{f}$, +m3+I4aag41	150:	GGX2WO2I1S1	, GGX2WO2I1C9
29:	$\mathrm{Z}+\mathrm{G} 62 \mathrm{IA}+44 \mathrm{f}$	Z+I64Ge828X	$90:$	$5+\mathrm{K} 1 \mathrm{WO} 32+\mathrm{af}$,$+a 2 \mathrm{GmC}+$ eg1K	151:	GGX2WO2I1C3	, 3GKYOL+G++f

$30:$	+O1YKI14aW9	5+GL	1:	4	5X	152:	G1	9H326H42411
31:	KGeWa 68+4+U	3GK	92 :	L8iW828G489	T5e+8+8+CC6	153:	+X	YW
32	XG24W46c+Wf	1W61Ie25+4Z	93	MGu+K4W44+Z	$1 \mathrm{G} 52 \mathrm{mn}+6+2 \mathrm{Z}$	154	CYWG8358+X	¢ 51
$33:$	K8ma2+A5981	05W	94	MGu+K4+K4+Z	$1 \mathrm{~K} 52 \mathrm{mn}+6+1 \mathrm{X}$	15	35+GX	L8i+82884A5
34	OHW1+egW4+Z	$01 W 1+g A G a+f$	95	MGu+I5+44+Z	Kao+8284a+Z	15	H8YWG835++p	L+g1+W1XWY9
35	G6WQ+G225Ie	G6WQ+G115Ie	96	MGu+G5+K4+Z	Kao	15	K1J8GK4+P6	+I192mK4WgW
36	OHW1+eA+q+Z	$1 \mathrm{e}+\mathrm{+}$ +AGD+X	97	MGu+G5+442f	M4u+G41444Z	15	A+h8Ga4+gC	Z+G62G9+4S6
37	OHW12eA +44 Z	, 01W18eA+52f	98	Gu+G5+442Z	Kao	159	+K1GK1+WYU	LK
38	01W18eA+4af	1W12eA15+Z	99	MGu+I4G45+X	MGu+I4+45+	160	8AY4H11+Y9	-
39	OHWH+e8Y41X	, OHWH+e8Y4+f	100	MGu+I4+45GX	MGu	16	+	K8eW8242+pm
40	OHW12e8Y41X	WW12e8Y	101	MGu+G4WC5+X	MG	16	W6+510XI28	b
41	OHW1+eeY41X	OHW1+eeY4+f	10	8aYAI8+491	i18K8+44a8z	16	6WQ4H66++e	+
42	OHW1+e8Ia+Z	$\mathrm{K}+\mathrm{m}+\mathrm{Y} 81 \mathrm{Xc} 51$	10	$4 u+04+a 4+Z$	Cn	16	+	b
43	OHW1+ee25+f	$5 \mathrm{e}+8+8 \mathrm{WCC} 1$	104	M+u+04+a4XX	$\mathrm{M}+\mathrm{u}+\mathrm{I} 4+464 \mathrm{Z}$	165	+w+C3+++Y3	+01Wg6aYWH+
	OHW1+e8I5GX	, T1e+A+8W4S1	105	+u+04W4a+f	T1e+8+e+aC3	16	+	+6+U+8eIa8Y
45	OHW1+e82L+Z	S1f+Y+A+41c	106:	+u+04+Ka+f	T1e+8+e+aC9	167	O9Wa542+Y9	GOXWY4aYWH+
46	OHW12e8244Z	, O1W18e8252f	10	+u+04+4aXX	, M+u+04+45XX	16	A5	i9848+64+OL
4	OHW1+e8I4KX	, SHe+W+g+4KX	10	228 e	GOXY+G4IGHO		CWW	$+\mathrm{C}+\mathrm{qXX}+\mathrm{BC} 2 \mathrm{~W}$
48	O1W1Ge8n249	O1W1+ef25+f	109	$\mathrm{M}+\mathrm{u}+04 \mathrm{~W} 45+\mathrm{f}$, H8ac+G1H483	17	+IK8e	C+64+OL
4	01W1Ge8X24J	, S5e8W41+Y4X	11	M+u+04+K5GX	, M+u+04+K51X		A5	OL
50 :	05W18e8244f	8iWA288481	111	+u+04+K5+f	8ac+G114A3	172:	481444 Q	+Y
5	01W18ee244f	, O1W18ee24Gc	11	$\mathrm{M}+\mathrm{u}+04+45 \mathrm{Wf}$, M+u+04+452f	17	481444AD	i1848+6419L
52:	O1W18e8I4KX	, SHeGW+A+4KX	113:	+u+04W444f	81	174:	+	cA
5	O1W18e8I45X	O1W1+ef+aC9	114	$\mathrm{M}+\mathrm{u}+04+\mathrm{K} 44 \mathrm{f}$, 2G96W5+qW91	175	4G924H+89x+	1G4WO51GmYA
54	O1W18e82K4f	01W12e98aC1	115:	M+u+G414aXX	M $+u+G 4+46 \mathrm{aZ}$	176	O1Y8I4IGH6	O1YeM+GGH5
55	O1W1+g8I4KX	, SLe+W+A+51X	116:	M+u+14145+£	KWo+A284aGX	17	5+C2GK1XWY9	+
56	05W1+e925+Z	, SHe+W+g+44Z	117	M+u+G4145XX	M+u+G4+4M4Z	178	M8u+X8+14A5	+O1YeM+GSG4
57	01W12e925+Z	SHeGW+A+44Z	118:	M+u+I41444f	KWo +A284i+X	179	3KIoeL++++A	92 j8Y+
58	O1W1+e9I5+Z	SHe+W+AG44Z	119:	M+u+G414KKX	M+u+G4+552f	180	M8u+W8+14AD	+C+pW4o+90W
59	O1W1+e9252Z	SHe $+\mathrm{W}+\mathrm{A}+4 \mathrm{aZ}$	120:	2WA2WeY424Z	1G52aK2Cm81	181	01W14Y4IIL+	5+K1GK+WYPK
60 :	SHe+Y+A+5+f	, SHe+W+g844X	121:	5+K1GK2K24f	1G52aK24m89	182:	2KGn9XM6+++	+K+m91HXWp+
61:	SHe+W+g+5+Z	, M+u+G414aWf	122:	C+m3W4W2a8Z	44GGmCQ1Y41	183:	54CIHKH114+	5GKXOL+GGH+

As the next step, characteristic polynomial of the degree matrix proposed in [4] and that of the structural matrix proposed in [5] was examined by applying it to the 12 link, 1 -freedom chains. The intent was to check for existence of counter examples. It was found that there existed two pairs of chains wherein both the tests failed to distinguish the structural distinctiveness. The two chains are illustrated in Fig. 1. A very surprising discovery from this exercise is that both of the above two tests produced exactly identical results, in every sense. The two cases of counterexamples shown in Fig. 1 were common to both isomorphism tests. It may be noted that the size of structural matrix (which is equal to the sum of number of links and joints in the chain) is larger than that of the degree matrix for the same chain (which is the size of the link adjacency matrix). That is, for a 12 -link, 1-freedom category the structural matrix is a square matrix of size 28 while it is 12 in the case of degree matrix. Although the degree matrix of a chain is easily derivable from its link adjacency matrix, the former contain some additional information in it. The latter, loaded with extra information, serves as the better starting point for the computation of the characteristic coefficients. It is due to this that the characteristic polynomial of degree matrix has been found to have fewer counter-examples.

In the same manner the structural matrix of the chain, although derivable from link-adjacency matrix, contains a lot more information about the chain in its initial form itself. The method, in fact, generates a matrix which is larger in size than what the representation requires. The objective was to pack as much information about the chain as possible into the matrix representation from which characteristic polynomial of the matrix is computed. The test based on this matrix is believed to have no counter-examples. The findings of the present work in the 12 -link, 1freedom category reveals that the degree matrix, despite its smaller size, is computationally as efficient as the method of characteristic polynomial suggested in [3], and as robust as that of structural matrix based method [5].

Fig. 1 Counter-examples for the degree matrix [3] and structural matrix [2] based approaches

A PROPOSAL - CONCISE NOTATION FOR REPORTING SJKCs

A compact notation is proposed in this paper to represent SJKCs. The notation helps in greatly reducing the space requirements for reporting the results. To illustrate the notation we consider the example of the 12 -link, 3 -d.o.f chain shown in Fig. 2 along with its link adjacency matrix. The compact notation for this chain is $\mathbf{+ A + i A m 4 K + A 4}$. The letters included in the notation are evaluated by the following procedure.
Commencing from row-1 of the upper triangular link adjacency matrix (diagonal elements excluded), the matrix elements are first written row by row as a single binary string as follows:

000000001010000000101100001010110000000100010100000000001010000100
The above binary string is then divided into units containing six binary digits. A $12-\operatorname{link}$ KC represented by 12×12 matrix will have 66 binary digits $(=11 \times 12 \div 2)$ leading to eleven six-bit-units as shown below.
[000000][001010][000000][101100][001010][110000][000100][010100][000000][001010][000100]

$\left(\begin{array}{llllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Fig. 2 10-Link, 3-DOF SJKC and its Link-Adjacency Matrix
Let $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}$ represent a six-bit-unit where $x_{i}(i=1,2, \ldots, 6)$ are the six binary digits. From the x_{i} 's we can generate an integer d_{j} as follows.

$$
\begin{equation*}
d_{j}=\sum_{i=1}^{6} x_{i} \times 2^{6-i} \tag{1}
\end{equation*}
$$

Depending upon the six-bit-units x_{i} 's, d_{j} can take any integer value from 0 (zero) through $63\left(2^{6}-1\right)$. Knowing d_{j} the following substitution is carried out.

- If $d_{j}=0$, substitute with the ' + ' character. This is done to avoid confusion between ' 0 ' (zero) with the alphabet ' O '.
- If $d_{j}=1,2,3, \ldots, 9$, no substitution need be made.
- If $d_{j}=10,11,12, \ldots, 35$, substitute it with the upper case alphabets $\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots, \mathrm{Z}$ respectively.
- If $d_{j}=36,37,38 \ldots, 61$, substitute it with the lower case alphabets $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{y}, \mathrm{z}$ respectively.
- If $d_{j}=62,63$, substitute them with the characters '*', ' $=$ ' respectively.

After the above substitutions, concatenate $d_{j}(j=1,2, \ldots, 11)$ obtained from the eleven six-bit-units. The sequence of occurrence of d_{j} 's is to be retained. The string consisting of eleven characters given above ($\mathbf{+} \mathbf{A + i A m 4 K} \mathbf{+ A 4}$) provides information about the structure of kinematic chain in the condensed notation.

FORTRAN PROGRAM FOR DECODING THE NOTATION

```
THIS PROGRAM READS THE STRING (FOr example: +A+iAm4K+A4) AND
OUTPUTS THE LINK LABELS THAT ARE ADJACENT TO EACH OTHER
INTEGER*4 M
CHARACTER KCN*11, MATRIX*66, BINUM*6
OPEN (UNIT=5,FILE='12LINK.INP',STATUS='OLD', ACCESS='SEQUENTIAL ')
READ (5,*) KCN ! THE STRING IS READ HERE
DO I = 1,11
    M = ICHAR(KCN(I:I))
        IF(M == 43) THEN
            M}=
        ELSEIF(M > 48 . AND. M < 58) THEN
            M = M - 48
        ELSEIF(M > 64 . AND. M < 91) THEN
                M = M - 55
            ELSEIF(M > 96 . AND. M < 123) THEN
                M = M - 61
            ELSEIF(M == 42) THEN !if `*' set to 62
                M = 62
            ELSEIF(M == 61) THEN
                M=63
            ENDIF
            BINUM = '000000'
            CALL TOMATRIX(M,BINUM)
            MATRIX(6*(I-1)+1:6*I) = BINUM(1:6)
ENDDO
```

```
    IENT = 0
    DO I = 1,11
    DO J=I+1,12
        IENT = IENT + 1
            IF (MATRIX(IENT:IENT) == '1') THEN
                WRITE(*,*) I,J ! OUTPUTS ADJACENT LINKS
            ENDIF
        ENDDO
ENDDO
STOP
END
!$$$$$$
SUBROUTINE TOMATRIX(M,BINUM)
INTEGER*4 M, IDIV, IREM
CHARACTER BINUM*6
DO J = 1,6
    IDIV = M/2
    IREM = MOD (M, 2)
    IF(IREM == 1) THEN
        BINUM(7-J:7-J)= '1'
    ELSE
        BINUM(7-J:7-J)= '0'
    ENDIF
    IF(IDIV /= O) THEN
        M = IDIV
    ELSE
    RETURN
    ENDIF
    ENDDO
    END
```

It is found that there are altogether $228(=45+183)$ instances of counter-examples in the 12 -link, 1 -freedom category of chains where characteristic polynomial of link adjacency matrix based test fail to distinguish. This makes the test unsuitable for cases wherein the chain contains more than 10 links - since in these cases a large number of chain variants exist. However, the degree matrix and structural matrix based tests perform better in distinguishing chain structures probably due to the fact that they contain extra structural information about the chain. Only two pairs of isomorphic chains were detected in this category of chains, and the two counter-examples happen to be the same for both the tests!! This is a surprise finding from this exercise.
If the two chain structures (counter-examples) are compared through visual inspection, it is clearly evident that they are non-isomorphic. The disposition of polygonal links within the chain is different in both the cases. Isomorphism methods that rely on such techniques to differentiate between chains will quickly rule out any similarities in the chain pairs. The results of this work, reported in the form of a concise notation that can be decoded and sketched easily, can be employed as the cases to check against for any new isomorphism methods proposed in future.

Acknowledgements

The author is thankful to CMR Institute of Technology for motivating and providing an opportunity to conduct the research work.

REFERENCES

[1] TS Mruthyunjaya, Kinematic Structure of Mechanisms Revisited, Mechanism and Machine Theory, 2003, 38, 279-320.
[2] K Vijayananda, Computer-Aided Structural Synthesis of Linkages and Epicyclic Gear Transmissions, Indian Institute of Science (IISc), India, 1994.
[3] JJ Uicker and A Raicu, A Method for the Recognition of Equivalence of Kinematic Chains, Mechanism and Machine Theory, 1975, 10, 375-383.
[4] TS Mruthyunjaya and HR Balasubramanian, In Quest of a Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains, Mechanism and Machine Theory, 1987, 22(2), 131-139.
[5] HS Yan and WM Hwang, A Method for the Identification of Planar Linkage Chains, ASME Journal of Mechanisms, Transmissions and Automation in Design, 1983, 105, 658-662.
[6] ER Tuttle, Generation of Planar Kinematic Chains, Mechanism and Machine Theory, 1996, 31(19), 729-748.
[7] TS Mruthyunjaya and MR Raghavan, Structural Analysis of Kinematic Chains and Mechanisms based on Matrix Representation, ASME, J.Mech. Design, 1979, 101(3), 488-494.
[8] HS Yan and AS Hall, Linkage Characteristic Polynomials Assembly Theorems Uniqueness, J. Mech. Design, ASME Tarns, 1982, 104, 11-20.
[9] R K Dubey and AC Rao, New Characteristic Polynomial a Reliable Index to Detect Isomorphism between Kinematic Chains in: Proceedings of the National Conference on Machine and Mechanism, IISc, Bangalore, India, 1985, 36-40.
[10] AG Ambekar and VP Agrawal, On Canonical Numbering of Kinematic Chains and Isomorphism Problem: Max code, ASME Paper No 86-DET-169, 1986.
[11] AG Ambekar and VP Agrawal, On Canonical Numbering of Kinematic Chains and Isomorphism Problem: Min code, Mechanism and Machine Theory, 1987, 22, 453-461.
[12] JK Kim and BM Kwak, An Algorithm for Topological Ordering for Unique Representation of Graphs, J. Mech. Design, ASME Trans, 1992, 114, 103-108.
[13] JK Shin and S Krishnamurthy, On Identification and Canonical Numbering of Pin Jointed Kinematic Chains, J. Mech. Design, ASME Trans, 1994, 116, 182-188.
[14] AC Rao, Comparison of Plane and Spatial Kinematic Chains for Structural Error Performance using PseudoHamming Distances, Indian J. Tech, 1988, 26, 155-160.
[15] AC Rao and D Varadaraju, Application of the Hamming Number Technique to Detect Isomorphism among Kinematic Chains and Inversions, Mechanism and Machine Theory, 1991, 26, 55-75.
[16] AC Rao, Hamming Number Technique 1: Further Applications, Mechanism and Machine Theory, 1997, 32, 477-488.
[17] HS Van and WM Hwang, Linkage Path Code, Mechanism and Machine Theory, 1984, 19, 425-429.
[18] JN Yadav, CR Pratap and VP Agrawal, Detection of Isomorphism among Kinematic Chains using the Distance Concept, J. Mech. Design, ASME Trans, 1995, 117, 607-611.
[19] S Shende and AC Rao, Isomorphism in Kinematic Chains, Mechanism and Machine Theory, 1994, 29, 10651070.
[20] SF Patil, SC Pilli and K Vijayananda, Detection of Isomorphism using Eigen values and Eigenvectors, $12^{\text {th }}$ National Conference on Machines and Mechanisms (NaCoMM-2005), IIT Guwahati, India, 2005.

