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ABSTRACT  
 

The objective of this paper is to investigate unsteady flows of a low concentrated aqueous polymer solution 
through a planar channel under Navier-type slip boundary conditions. We obtain analytical formulas for the 
calculation of the time-dependent velocity field. We also show the existence of a unique solution for the 
corresponding initial-boundary value problem in the generalized formulation.  
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INTRODUCTION  
 

Polymers and their solutions are widely used in many technological applications. The calculation of the velocity 
field of polymeric fluids is a complex and important problem. Due to diversity the nature of polymeric fluids, 
several models have been suggested in the literature. We investigate unsteady flows of low concentrated aqueous 
polymer solutions [1–3].  Among all motions used, the flow between two fixed parallel plates plays a fundamental 
role. This is one of the few situations in which analytic expressions for the flow field are available. The exact 
solutions of hydrodynamic equations are very important in practise. They make it possible to estimate the 
applicability area of hydrodynamic models. Exact solutions are also indispensable for testing the relevant 
numerical and approximation methods.  
 

We are looking for analytical solutions of the initial-boundary value problem that describe unsteady flows of low 
concentrated aqueous polymer solutions through a plane channel. For the best of our knowledge, this problem has 
not been solved. The exact solution for the steady flows of polymeric fluids was given by Hron, Le Roux, Málek, 
and Rajagopal [4]. Some other results were obtained in [5–7].  
 

It is well known that boundary conditions play a key role in the solution determination (see е.g. [8]). The 
assumption that a fluid adheres to a solid boundary is one of the central tenets of fluid dynamics. However, that 
conception is not satisfactory for all types of media. It has been widely accepted that a large class of polymeric 
fluids slip or stick-slip on solid boundaries [9, 10]. In order to construct solutions, we use Navier’s slip boundary 
conditions (see [11] for the original reference) which imply that the slip velocity depends on the shear stress. Due 
to the special properties of the equations for aqueous polymer solutions motion – the solvability for the initial-
boundary value problem in the classical formulation cannot be guaranteed, for any initial condition. In that case, 
the concept of a generalized solution is useful (see [12]). We provide the generalized formulation and prove the 
existence and uniqueness of generalized solutions. We also obtain analytical expressions for the time-dependent 
solutions. 
 

PROBLEM FORMULATION  
 

We consider a low concentrated aqueous polymers solution filling a region between two parallel (infinite) plates 
z=0 and z=h. Flow is driven by constant pressure gradient. This flow is described by a velocity field with only one 
nonzero component, v(z,t), directed along the channel and depending only on the coordinates z and on time t. In 
this case, the motion equation for the aqueous polymer solutions is reduced to 
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where ν is the coefficient of viscosity, κ/ν is the time of strain relaxation, and -ξ0 is the pressure gradient. 
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We use the Navier’s slip boundary condition that in our case can be written as  
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where the slip coefficient k is a given constant, k>0. 
We assume that the velocity field is given at time t=0 

hzzuz ≤≤0),(=,0)(v 0  (4) 

and the function ],0[2
0 hСu ∈  satisfies the compatibility conditions 

).('=)(

(0),'=(0)

00

00

huhku

uku

ν
ν

−  
The aim of this paper is to investigate analytical solutions of initial-boundary value problem (1)–(4). 
 

RESULTS 
 

We begin with the following proposition. 
Proposition 1 
Problem (1-4) cannot have two different classical solutions. 
Proof 
Suppose v1 and v2 are classical solutions of problem (1-4), and u= v1-v2. Show that u=0. It is easy to see that 

,0,<<0,=
2

3

2

2

Tthz
zt

u

z

u

t

u <<
∂∂

∂+
∂
∂

∂
∂ κν  (5) 

0,== zon
z

u
ku

∂
∂ν  (6) 

,== hzon
z

u
ku

∂
∂− ν  (7) 

.00,=,0)( hzzu ≤≤  (8) 
Multiply equality (5) by u(z,t). By integrating the obtained equality with respect to z from 0 to h, we obtain 
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Using the formula fff ′2=)'( 2  and the rule of integration by parts, we get 
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Taking into account (6), (7), we obtain 
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Integrating the obtained equality with respect to t from 0 to τ, we obtain  
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This yields that u≡0. 
The solvability for initial-boundary value problem (1-4) in the classical formulation cannot be guaranteed. We 
provide the generalized formulation and construct the generalized solutions. 
First, we describe the concept of a generalized solution. 
 
Definition 
We shall say that the function v is a generalized solution to (1-4) if there exists a sequence {vm} such that 

(i) the sequence {vm}  is uniformly convergent with limit v, 
(ii) the function vm is a classical solution to (1-3) and vm(·,0)=u0m(·) for every natural number m, 
(iii) the sequence {u0m}  is uniformly convergent with limit u0, 
(iv) (u0m)' → (u0)' in the Hilbert space L2 (0, h) 
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Remark 1 
If a function v is a classical solution to (1-4), then v is a generalized solution to (1-4). 
 
Remark 2 
Generalized solution has a clear physical meaning. It provides the limit for a sequence of classical solutions for the 
system with small perturbations in the initial moment when the perturbations uniformly converge to zero. 
 
Proposition 2 
Problem (1-4) has a unique generalized solution. The following formula can be used to calculate the generalized 
solution 
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the numbers µm are positive roots of the equation 
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Proof 
To find the generalized solution we use the Fourier method. We introduce a new unknown  

                         ),(v),(v~=),(v 0 ztztz −  

where the function v0 is a solution of the corresponding stationary boundary value problem. As a result, we get the 
following initial-boundary value problem 
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First, we will find nontrivial solutions of problem (9)–(11) in the form 
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From equation (9) it follows that 
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Furthermore, in order to satisfy the boundary conditions (10) and (11) the conditions 
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must be satisfied.  
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The problem (15-17) is one of the simplest cases of the Sturm–Liouville problem (see e. g. [13]). In our case, the 
eigen values are the numbers (µm/h)2 (m=1,2, …), where the numbers µm are positive roots of the equation 
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Normalized in the Hilbert space L2(0, h) the eigenfunctions are  
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We substitute the values λ in (14) and find the appropriate solutions: 
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Thus, we have the sequence of solutions of (9-11) 
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Using the functionsmv~ , we construct the generalized solution of problem (9-12). 

Consider a uniformly convergent series 
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Let us show that the function v~ is a generalized solution of problem (9-12). 
Set 
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It is clear that )(v~ m  is a classical solution of problem (9)–(11). By the Steklov theorem (see e. g. [13]), the sequence 
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)v( 00 ′+u  in space L2(0, h) as m→∞. Thus all the conditions of the definition of a generalized solution are valid. 

The uniqueness of the generalized solution is proved by an argument similar to the proof of Proposition 1. This 
concludes the proof. 
 

CONCLUSIONS 
 

We have considered unsteady flows of a low concentrated aqueous polymer solution through a planar channel under 
Navier-type slip boundary conditions. We have defined a generalized solution for the corresponding initial-boundary 
value problem. Using the theory of Sturm-Liouville problem, we obtain the analytic generalized solutions for the 
time-dependent velocity field. The results can be used for further study of complex unsteady flows of aqueous 
polymer solutions, including a pulsating planar flow, which is important in practise. 
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