
Available online www.ejaet.com

European Journal of Advances in Engineering and Technology, 2014, 1(2): 80-84

Research Article ISSN: 2394 - 658X

80

Deadline - Cost Constraint Task Scheduling for Soft - Real Time

Systems

Himani and Kamaljit Kaur

Department of CSE, Guru Nanak Dev University, India

er.himani26@rediffmail.com

ABSTRACT

Cloud computing is a nascent technology which widely spreads among researchers. It provides users with

infrastructure, platform and software as amenity which is effortlessly accessible via Internet. In cloud computing,

there are numerous tasks needs to be executed by the existing resources to attain best performance, shortest

response time, minimal total time for completion, utilization of resources etc. Due to these dissimilar objectives,

we need to design, develop a noble scheduling strategy to outperform proper division of tasks on virtual machines.

Recently existing scheduling algorithm may work proficiently in some perspective. But they are unable to achieve

deadline of task and attain maximum profit. Based on the concept of space-shared scheduling policy, this paper

presents cost-deadline based scheduling to schedule tasks with Cloud-sim by taking into account several

parameters including task profit, task penalty, and throughput.

Key words: Cloud computing, scheduling, cloud-sim, space-shared, virtual machine.

INTRODUCTION

Cloud computing directed to an advanced way in which IT infrastructure, applications, services are developed,

designed and delivered. In this, the utility of IT possessions can be consumed on the basis of pay-per-use model like

electricity etc. Many computing service providers like Google, Microsoft, IBM, Yahoo etc provide data centers in

various locations around the world to deliver Cloud computing services. A recent Berkeley report [1] stated: „„Cloud

computing, the long-held dream of computing as a utility, has the potential to transform a large part of the IT

industry, making software even more attractive as a service‟‟. Three major services which are contributing in

defining cloud computing are Infrastructure-as-a-service (IaaS), Platform-as-a-service (PaaS), Software-as-a-service

(SaaS).

So, we firstly present the deadline and cost-oriented scheduling work existing in the background Section II, and we

focus on the problems related to the implementation of these algorithms in cloud computing. Further to this, section

III describes our proposal methodology and its requirements and assumptions. The rest of the paper is planned as

follows, section IV, presents the experiment scenario and we analyze the performances of our work by comparing

the ability of our algorithm to meet deadlines to the Space Shared scheduling algorithm implemented in Cloud Sim

[2]. We show that the deadline meeting approach of our work allows to minimize the extra-cost implied by the

lateness of a task. Finally, section V illustrates the concluding annotations and the further research guidelines of our

work.

DEADLINE SCHEDULING LITERATURE

Dr. M. Dakshayini [3] proposed a new scheduling algorithm based on priority and admission control scheme. The

priority is assigned to each admitted queue. Admission of each queue is absolute by calculating acceptable delay and

service cost. Benefit of proposed policy with the proposed cloud architecture has attained very high (99%) service

completion rate with sure QoS. As this policy provides the highest preference for very much paid user service-

Himani and Kamaljit Kaur Euro. J. Adv. Engg. Tech., 2014, 1(2): 80-84

__

 81

requests, overall examining cost for the cloud also increases. Amit Nathani [4] the proposed algorithm finds number

of slots in addition to finding one slot while scheduling a deadline sensitive lease. It also applies two concepts; one

is swapping and other is backfilling, while rescheduling already accommodated leases to make space for a newly

arrived lease. Backfilling has a disadvantage of requiring more preemption, which increases overall overhead of the

system. The results show that by applying swapping and multiple slots concepts, the number of accepted leases

increases compared to the existing algorithm. It also shows that the proposed algorithm requires rescheduling of

fewer leases compared to the existing algorithm of Haizea. R. Santhosh [5] focus on providing a solution for online

scheduling problem of real-time tasks using “Infrastructure as a Service” model offered by cloud computing. The

real time tasks are scheduled preemptively with the intent of maximizing the total utility and efficiency. It also

minimize the response time and to improve the efficiency of the tasks. The tasks are migrated to another virtual

machine whenever a task misses its deadline. This improves the overall system performance and maximizes the total

utility. The proposed algorithm can significantly outperform the EDF and Non Preemptive scheduling algorithm.

Florin Pop, Ciprian Dobre [6] addresses the problem of remote scheduling of a periodic and sporadic tasks with

deadline constrains in Cloud computing. Beginning from traditional addressed scheduling techniques and

considering asynchronous mechanism to handle tasks, they analyze the possibility of decoupling event listening

from task creation and scheduling, activities that can be placed into a peer-peer relation over a network or to client-

server in Cloud. They consider multiple independent tasks sources that follow with a specific distribution. They

created a simulation experiment in MONARC that highlights the capability of tasks migration in order to respect the

deadlines. Nitish Chopra [7] developed a level based scheduling algorithm which executes tasks level wise and it

uses the concept of sub-deadline which is helpful in finding best resources on public cloud for cost saving and also

completes workflow execution within deadlines. Dr. V. Vaithiyanathan [8] the incoming tasks can choice their

method on the basis of task requirement like minimum execution time or cost and then it is prioritized. The

algorithm is named as TPD Scheduling Algorithm in which T represents Task Selection, P is used for Priority (in

terms of cost) and D is for Deadline. The proposed model is experimented and evaluated on cloud-sim toolkit.

Outcomes validate the accuracy of the framework and show a momentous improvement over other scheduling

methods.

The diverse types of deadlines and extant three prevalent deadline-conscious scheduling algorithms which are

directly related with our work. A task has two basic characteristics: its vilest execution time and a deadline. Then we

can categorize deadline based tasks in three types:

• Hard deadline task: in any case missing deadline is not allowed.

• Soft deadline task: the task has a penalty in function of its lateness, i.e. Lateness= task execution time-deadline.

• Firm deadline task: the task gains reward if Task execution time < Deadline.

The reward of the task is function its aheadness= Deadline-task execution time.

1. Earlier Deadline First (EDF)

EDF algorithm gives the highest priority to those tasks which has the earliest deadline.

The algorithm is pre-emptive in nature which means tasks may be sporadic in directive to process other tasks with a

higher priority. The EDF algorithm is driven by “dynamic priority in the sense that the priority of a request is

assigned as the request arrives” [9]. The norms made for the EDF algorithm, the periodicity of tasks.

2. Least Laxity First (LLF)

The LLF algorithm is one more optimum scheduling algorithm obsessed by lively priorities. It is work on the

concept of laxity. The laxity of a task is demarcated as the deadline minus the remaining computation time required

to complete the task [11]. Therefore, the laxity is the supreme time that a task can wait before it becomes impossible

to encounter its deadline. LLF provides highest priority to the process which has the lowest laxity. LLF is also pre-

emptive and the norms are similar to EDF. LLF also have a well provision than EDF of non-periodic tasks [9].

3. Cloud Least Laxity First (CLLF)

CLLF, minimizes the extra-cost implicit from tasks that are executed over a cloud setting by ordering using its laxity

and locality. By using CLLF, deadlines are minimized while the total execution time of the job remains in

acceptable levels. CLLF is non-optimal distributed scheduler for soft deadline task. It is almost similar to the LLF

algorithm but only basic difference is CLLF is non-pre-emptive in nature. It also manages the locality of task [10].

COST-DEADLINE BASED SCHEDULING APPROACH

In this section, we present Cost-Deadline Based Scheduling (CDBS) approach towards scheduling of task which

resolves the matters tinted above. We firstly converse the norms made during the scheme of the approach and then

discuss the approach to schedule the task on virtual machines (VM).

Assumptions

CDBS approach is used for soft deadline task as defined in above section. The user should have to define the cost

and deadline of the task. We are assuming all tasks having same configuration. We consider a cloud having number

Himani and Kamaljit Kaur Euro. J. Adv. Engg. Tech., 2014, 1(2): 80-84

__

 82

of virtual machines (VM). Each virtual machine has number of processing elements (PEs) which all are demarcated

by number of millions of instruction that can completed in one second (MIPS). Each virtual machine has its memory

(RAM), Bandwidth (BW). We are assuming 20 VMs having millions instruction per second (MIPS). The set of

VMs {0, 1, 2 ……..19} having {500, 1000, 400, 500, 600, 700 ……, 500, 700}.

Approach

The CDBS approach is discussed in following steps:-

Step 1: Sort the incoming tasks according to the deadline (means give priority earliest deadline first) and maintain a

queue.

Step 2: If two tasks devising similar deadline, then sort it according to cost (means highest paying user first) and

again maintain queue.

Step 3: Schedule virtual machines according to Time-shared policy.

Step 4: Schedule task on virtual machines according to Space-shared policy.

Step 5: Introduce four parameters on behalf of which this approach is compared with Simple Space-shared policy.

The parameters used in this approach are Task profit, Task Penalty, Throughput and Net Gain.

On the bases of these parameters our approach outperform than the space-shared policy and time-shared policy.

SIMULATION RESULTS

In this section, we examine the practical abilities of CDBS approach. We firstly extant the experimental situation

and then compare the performances of CDBS with Space-shared and Time-shared scheduling algorithm of cloud-

sim.

Scenario

The performance measurement has been gathered by using the CloudSim [2] framework. The goal of this study is to

show the ability of CDBS approach to meet deadlines in conditions where the other algorithms (Time Shared and

Space Shared) could not able to meet deadlines. To accomplish this, we recommend the following situation. We

label identical data centre composed of hosts. Each Processing element has a speed of 1000 MIPS, an available

bandwidth of 10 Gbit/s, a storage capacity of 1 TB and a Random Access Memory (RAM) of 2048 MB.

We process 5000 cloudlets on the earlier demarcated data centre using three policies - CDBS, Space-Shared and

Time- Shared approach. The lengths of cloudlets are equal and each cloudlet is given a randomly generated deadline

where minimum value is half the number of cloudlets and maximum value is equal to number of cloudlets. Cost of

each cloudlet is also depending upon the number of cloudlets and it is also randomly generated.

Task Profit

The number of tasks which have been completed successfully before they meet the deadline. CDBS approach is

more efficient to finish tasks before the deadline arrives than Time-shared and Space-shared scheduling algorithm.

We compare number of tasks completed by each approach for the given set of cloudlets. In figure 1, one can see the

results of experiment.

On the x-axis it shows the number of cloudlets and y-axis indicates number of tasks completed successfully before

deadline reaches. By examining the figure we can say that Time-shared algorithm inefficient to meet deadline before

it comes. Table 1shows results of the extracted data from experiment that uses 3000 cloudlets.

Fig. 1 Comparison of task profit

Himani and Kamaljit Kaur Euro. J. Adv. Engg. Tech., 2014, 1(2): 80-84

__

 83

We can notice that, in this case all approaches seems to be quiet indistinguishable but CDBS completes almost all

tasks before it meets the deadline. By increasing the number of cloudlets and virtual machines we can observe the

more difference and conclude that our approach is better than Space-shared and Time-shared approach.

Table -1 Result for 3000 Cloudlets

Approach Completed task before deadline Ratio

CDBS 2997 99.9%

Space-Shared 2710 90.3%

Time-Shared 2464 82.1%

Task Penalty

We can analyze result of another experiment from Figure 2. In this parameter, we annoyed to find task penalty of

cloudlets i.e. number of cloudlets misses their deadline. The x-axis represents the number of cloudlets and y-axis

defines missed deadline. Once again, it is notice that CDBS outperforms than other approaches. CDBS approach

missed negligible number of deadline as compared to Space and Time-shared polices. Table 2 shows the mined

results for 4500 cloudlets. From this table, we can analyze that Time-shared approach misses deadlines nearly

double than space-shared and 16% more than CDBS approach. In this, proposed work is far better than default

approaches for soft deadline cloudlets.

Fig.2 Comparison of task penalty

Table - 2 Missed Deadline for 4500 Cloudlets

Approach Missed Deadline Ratio

CDBS 1 0.1%

Space-shared 373 8.3%

Time-shared 759 16.9%

Fig.3 Comparison of throughput

Himani and Kamaljit Kaur Euro. J. Adv. Engg. Tech., 2014, 1(2): 80-84

__

 84

Throughput

Another parameter which shows CDBS approach is best among the other two polices i.e. Space-shared and Time-

shared polices. Throughput of tasks is the difference between earlier defined parameters. Figure 3 shows

experimental results of all approaches in which x -axis indicates the throughput and y - axis represents the total

number of cloudlets.

CONCLUSION

This work represents a soft real-time scheduling approach with deadline and cost constraints. It has been planned to

take the concrete problems related to cloud computing. We determine that earlier approaches are not able to meet the

deadline efficiently. However, we illustrate that a deadline-meeting methodology to schedule tasks over a cloud

allows reducing the number of missed deadline. We compare the CDBS with Space-shared and Time-shared polices

and shows that the given approach is more effective in defined parameters as Task Profit, Task Penalty, Throughput

and Net Gain. The future step of our research includes for cost optimization we can develop a prediction model for

estimating the initial value of MaxUserPay (Initial Cost of Task) based on the length of the task, number of

processing elements required, output file size, etc. This prediction model can be valuable for enhancing the profit

and saving the money for users as well.

REFERENCES

[1] M Armbrust, A Fox, R Griffith, AD Joseph, R Katz, A Konwinski, G Lee, D Patterson, A Rabkin, I Stoica and

M Zaharia, A View of Cloud Computing, Communications of the ACM , 2009, 53 (4), 50-58.

[2] R N Calheiros, R Ranjan, C A F de Rose, and R Buyya, CloudSim: a Tool Kit for Modeling and Simulation of

Cloud Computing Environments and Evaluation of Resource Provisioning Algorithm, Software: Practice and

Experience, 2011, vol 41, no 1, pp 23-50.

[3] M Dakshayini and H S Guruprasad, An Optimal Model for Priority Based Service Scheduling Policy for Cloud

Computing Environment, International Journal of Computer Applications, 2011, Vol.32, No. 9.

[4] Amit Nathani, Sanjay Chaudhary and Gaurav Somani, Policy Based Resource Allocation in IaaS cloud, Future

Generation Computer Systems, Elsevier, 2011, 28, 94 -103.

[5] R Santhosh and T Ravichandran, Pre-emptive Scheduling of On-line Real Time Services with Task Migration for

Cloud Computing, IEEE International Conference on Pattern Recognition, 2013.

[6] Florin Pop, Ciprian Dobre, Valentin Cristea and Nik Bessis, Scheduling of Sporadic Tasks with Deadline

Constrains in Cloud Environments, 27th IEEE International Conference on Advanced Information Networking and

Applications, 2013.

[7] Nitish Chopra and Sarbjeet Singh, Deadline and Cost based Workflow Scheduling in Hybrid Cloud, IEEE

International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013.

[8] V Vaithiyanathan, R Arvindh Kumar, S Vignesh, B Thamotharan and B Karthikeyan, An Efficient TPD

Scheduling Algorithm for Cloud Environment, International Journal of Engineering and Technology (IJET), 2013,

Vol. 5 No. 3.

[9] Apache, Capacity Scheduler Guide, 2010, Available: http://hadoopapacheorg/

[10] Quentin Perret, Gabriel Charlemagne, Stelios Sotiriadis and Nik Bessis, A Deadline Scheduler for Jobs in

Distributed Systems, 27th IEEE International Conference on Advanced Information Networking and Applications

Workshops, 2013, pp 757-764.

