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I.     INTRODUCTION 

The human brain is a highly complex system and 

consists of billons of neurons and these are 

responsible for maintaining brains electrical charge. 

EEG is an electrophysiological monitoring method 

that contains the information about the human brain 

activity. The EEG signal can be obtained by placing 

the sensors on the scalp or using the intracranial 

electrodes. The EEG signals can be used for various 

purposes like emotion recognition [1], brain–

computer interfaces [2], etc. Seizure is an 

neurological disorder of the brain and this occurs 

when the human brain cell fires electrical impulses 

three times more than that of normal one, a pattern 

of repeated seizure is called epilepsy. Epilepsy can 

be caused by alcohol, drugs, brain injury and can 

also be genetically. During seizure period some of 

the symptoms like  rapid eye blinking, shaking of 

body, clenching of teeth are observed [3]. There are 

lots of method developed in the literature for EEG 

signal analysis and classification are based on time 

domain, frequency domain and time-frequency 

domain. The  spikes   detection methods   for   EEG  

 

 

 

 

 

 

 

 

signal   analysis have been   proposed     in [4], time   

domain and frequency domain features along with 

artificial neural network (ANN) have been used for 

normal and epileptic EEG signal analysis [5]. EMD 

is a technique now researchers are using widely, 

The measure namely, area of analytic IMF in the 

complex plane has been used in order to 

discriminate between seizure and normal EEG 

signals [6]. Computation of amplitude modulation 

and frequency modulation bandwidths have been 

used for the classification of seizure and normal 

EEG signals [7]. 

     Here firstly we will perform EMD on the EEG 

signals to get the IMFs, after that we will perform 

higher order statistical moments like variance, 

skewness and kurtosis as well as some of the 

features like fractal dimension and sample entropy  

on the IMFs and these will be used as a input to the 

support vector machine for classification. The paper 

is organised as follows: The EEG dataset in section 

II, methods in section III, which includes EMD, 

fractal dimension, sample entropy, higher order 

statistical moments and support vector machine. 

The results and discussion is in section IV and 

finally section V concludes the paper. 

 

II.     DATASET 
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    In this paper the dataset we have used is available 

online in [7],[8]. The dataset consists of five subsets 

(namely Z, O, N, F, and S), each containing 100 

single-channel EEG signals, each of having 23.6 s 

duration. These signals have been taken out from 

continuous multichannel EEG recording after visual 

inspection of artefacts. The subsets Z and O have 

been recorded extracranially, whereas the subsets 

N, F, and S have been recorded intracranial. The 

subsets Z and O have been acquired from surface 

EEG recordings of five healthy volunteers with 

eyes open and closed, respectively. Subsets N and F 

consist of EEG recorded during seizure free 

intervals from epileptogenic zone and hippocampal 

formation of the opposite hemisphere, respectively. 

subset E contains signals with seizure activity. The 

signals are recorded in a digital format at a 

sampling rate of 173.61 Hz. Out  of five  subsets we 

have taken three subsets named Z, F and S forming 

normal, interictal and ictal states respectively. Here 

we have considered two cases first case is 

consisting of normal and ictal states and second 

case is consisting of interictal and ictal states. 

 

III. METHODS 

A. EMPIRICAL MODE DECOMPOSITION (EMD) 

It is a signal processing technique that 

decomposes a signal so called intrinsic mode 

functions. The EMD method does not require any 

condition about whether a signal is stationary or 

not. The main aim of the EMD method is to 

decompose a signal x(t) into a numbers of intrinsic 

mode functions (IMFs). Each IMF satisfies two 

basic conditions: 1) the number of maxima-minima 

and the number of zero crossings must be the same 

or differ at most by one; 2) at any instant, the mean 

value of the envelope formed by the local maxima 

and the envelope formed by the local minima is 

zero. 

The EMD algorithm of the signal x(t) can be 

explained as follows [7],[9]. 

1) Detect the extrema (maxima and minima) of the 

dataset x(t). 

2)  Formation of upper and lower envelopes        

and           respectively, by connecting the    maxima 

and minima with cubic spline interpolation. 

3) Calculate the local mean as  

4) Extract the detail  

5) Decide whether          is an IMF or not by 

checking the two basic conditions as described 

above. 

6) Repeat steps (1) to (4) and end when an IMF 

 is obtained. 

As soon as the first IMF is derived, 

define                   , which  is the smallest temporal 

scale in x(t). To determine the rest of the IMFs, 

generate the residue                      . The residue can 

be treated as the new signal and we can repeat the 

above explained process until the final residue is a 

constant or a function from which no more IMFs 

can be derived. At the end of the decomposition, the 

original signal x(t) is represented as 

 

                                                                               (1) 

 

where M  is the number of IMFs, ( )mc t   is the mth  

IMF and ( )Mr t  is the final residue. Each IMF in (1) 

is assumed to yield a meaningful local frequency, 

and different IMFs do not exhibit the same 

frequency at the same time. Then, (1) can be written 

as 

 

                                                                               (2) 

 

The plot of subsets Z, F and S are shown in figure 

1. and their empirical mode decomposition are 

shown in fig. 2, 3 and in 4. 

B. FRACTAL DIMENSION (FD) 

   The term “fractal dimension” is given by 

Mandelbrot, on the basis of fractal geometry. It has 

been found that fractal dimension is a promising 

parameter in distinguishing the non linear and non 

stationary property of EEG signal [16]. In this 

paper, the most used Higuchi’s algorithm [17] is 

used for the fractal dimension calculation of EEG 

sequences.  

Let us consider a discrete time sequence X 

containing N data points, X = {x(1), x(2), . . . , ( )me t
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x(N)}, the reformed time series n

r
x with n discrete 

time interval between points is given as [17]: 

{ ( ) ( ) ( 2 ) ... ( )}n

r

N r
x x r x r n x r n x r n

n

− 
= + + + + + + +   

   (3) 

Here, symbol y    represents the greatest integer 

which is less than or equal to y; r = 1, 2, . . . ,n and 

it means the initial time value. 

The average length ( )mJ n  of each subsequence n

r
x  

is defined as 

1

( ) ( ( 1) ) ( 1)
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i
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where b is computed as 

 

( ) /b N r n= −                                                        (5) 

Therefore, the fractal dimension of any  time 

sequence X  can be calculated as 

log( ( )) / log(1/ )mFD J n n=                                   (6) 

In this paper we have taken n=5. 

 
Fig. 1. Plot of two normal (Z), interictal (F) and 

ictal (S) EEG signals. 

C. SAMPLE ENTROPY (SaEn) 

   Sample entropy is an alteration of the 

approximate entropy used for measuring the 

complexity of a time-series data. Sample Entropy is 

given by the negative natural logarithm of the 

conditional probability means any two sequences 

which are same for m points will remain same at 

the next point where r is identified as similarity 

criterion and m is the length of data segment 

[11],[13]. Compared to Approximate entropy, 

Sample Entropy is more immune to noise and does 

not depend on the data series length. A lower value 

of Sample Entropy means an increased matching in 

the time series data. Sample Entropy can be given 

by the following equation 
1 ( )( , , ) ln[ ( ) / ]m m r

SaEn m r k B r B
+= −                     (7) 

 
Fig. 2. Empirical Mode Decomposition of two ictal 

EEG signals. 

 
Fig. 3. Empirical Mode Decomposition of two 

interictal EEG signals. 
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where ( )m r
B  is  the probability of matching two 

sequences  for m points and 1 ( )m
B r

+ is the 

probability that two sequence will match in the next 

point i.e. for m+1 points. 

 
Fig. 4. Empirical Mode Decomposition of two 

normal EEG signals. 

D. HIGHER ORDER STATISTICS OF IMFS 

   Here we have used higher order statistical 

moments like variance, skewness and kurtosis. 

Generally variance is a measure of how far a set of 

numbers are spread out from their mean, Skewness 

tells us about asymmetry of a probability 

distribution function and Kurtosis tells us about the 

thickness or weight of the tails of a distribution 

[14]. 

  Let us consider a random variable X has the mean, 

µ = A(X), then the variance Var(X) of X is given by: 
2( ) [( ) ]Var X A X µ= −                     (8) 

Skewness is given by the following formula: 

3
1 3

µ
δ

σ
=                                                                  (9) 

where σ  is the standard deviation and 3µ is a 

moment of third order around the mean. 

Kurtosis is given by the following formula: 

4
2 4

µ
δ

σ
=           (10) 

where 
4µ is a moment of fourth order around the 

mean.  

E. SUPPORT VECTOR MACHINE (SVM) 

   In order to classify the normal and ictal as well as 

interictal and ictal EEG signals, all the parameter 

values  obtained are given as a input to a support 

vector machine.  Suppose we have two classes and 

an unknown feature vector which is to be classified, 

then our goal is to design a hyperplane that 

classifies all the training vectors in two classes, but 

we may have different hyperplane so best choice 

will be the hyperplane that leaves the maximum 

margin for both classes [12]. The decision function 

of a SVM is given by 

1

( ) sgn( ( , ) )
k

i i i

j

l x r x x bα
=

= Ψ +∑       (11) 

where Ψ defines the kernel type, k is the number of 

support vectors, ix is the input data, ir  is the target 

class of training dataset and b is the bias term. In 

this paper we have used radial basis function kernel. 

IV. RESULTS AND DISCUSSION 

   Here we have calculated variance, skewness, 

kurtosis, fractal dimension and sample entropy for 

different IMFs obtained as a result of EMD and 

before that we have segmented each IMF into 8 

parts. Here we have considered two cases first one 

is consisting of normal and ictal EEG signals and 

the second one is consisting of interictal and ictal 

EEG signals. The class of discrimination ability of 

above mentioned parameters for both the cases are 

performed using Kruskal-Wallis statistical test and 

the p-values obtained as a result of this test are 

shown in table I and II. 
TABLE I 

p-values obtained as a result of Kruskal-Wallis statistical test 

for normal and ictal signal 

       
IMF SaEn Kurtosis Skewness Variance FD 

IMF1 8.6e-19 2.1e-38 0.0606 1.5e-77 4.3e-39 

IMF2 2.7e-15 3.9e-25 0.0783 1.7e-78 1.1e-45 

IMF3 0.0811 9.0e-05 0.0349 4.0e-80 1.7e-39 

IMF4 0.0342 0.0156 0.0140 9.1e-80 3.9e-51 

 

The calculation of the sample entropy is done by 

keeping pattern length parameter m as 1 and 

tolerance parameter r as .2, after that we have 
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designed a classifier in order to classify the ictal 

and normal signal as well as interictal and ictal 

signal and  to get the classification accuracy we 

need the training and the test data, for that we have 

selected 60% of the dataset for training and 

remaining data are for testing and the results are 

shown in table III. 
TABLE II 

p-values obtained as a result of Kruskal-Wallis statistical test 

for interictal and ictal signal 

 

IMF SaEn Kurtosis Skewness Variance FD 

IMF1 7.5e-35 1.3e-61 0.0357 4.1e-79 5.0e-28 

IMF2 1.8e-21 1.6e-67 0.0378 8.0e-78 2.8e-54 

IMF3 0.0811 2.3e-37 0.0973 1.9e-77 1.2e-17 

IMF4 0.2642 4.6e-04 0.4603 5.9e-60 4.8e-12 

 
TABLE III 

Classification performances of different cases of EEG signals 

for the first four IMFs 
IMF Ictal (S) vs Normal 

(Z) 

Accuracy(%) 

Ictal (S) vs Int. ictal 

(F) 

Accuracy(%) 

IMF1 100% 100% 

IMF2 100% 100% 

IMF3 100% 100% 

IMF4 100% 99.88% 

 

 
Fig. 5. Box-plot for the comparison of normal and 

ictal signals using sample entropy values.   

 

Fig. 6. Box-plot for the comparison of normal and 

ictal signals using kurtosis values.   

 

 
Fig. 7. Box-plot for the comparison of normal and 

ictal signals using skewness values.   

 
Fig. 8. Box-plot for the comparison of normal and 

ictal signals using variance values.   

 
Fig. 9. Box-plot for the comparison of normal and 

ictal signals using fractal dimension values.   
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Fig. 10. Box-plot for the comparison of interictal 

and ictal signals using sample entropy values.   

 
Fig. 11. Box-plot for the comparison of interictal 

and ictal signals using kurtosis values. 

 
Fig. 12. Box-plot for the comparison of interictal 

and ictal signals using skewness values. 

 
Fig. 13. Box-plot for the comparison of interictal 

and ictal signals using variance values. 

 

Fig. 14. Box-plot for the comparison of interictal 

and ictal signals using fractal dimension values. 

V. CONCLUSION 

In this paper, at the beginning we have applied 

empirical mode decomposition on the EEG signals 

to obtain IMFs, the parameters extracted from the 

IMFs have been used in order to distinguish 

between normal (Z) and ictal (S) as well as 

interictal (F) and ictal (S). Here we have calculated 

above mentioned parameters up to fourth IMF, and 

got an average accuracy of 100% in order to 

discriminate between  normal and ictal, also got an 

average accuracy of 99.97% in order to 

discriminate between interictal and ictal EEG 

signals. 
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