RESEARCH ARTICLE OPEN ACCESS # E-Health Care Smart Networked System Manjunath Aski¹, Prathibha P² ¹ PG Student ²Asst.Professor Dept of E&C, Sapthagiri College of Engineering # **Abstract:** This is particularly the case on e Health monitoring applications for chronic patients, Where Patients monitoring refers to a continuous observation of patient's condition (physiological and physical) traditionally performed by one or several body sensors. The architecture for this system is based on medical sensors which measure patients' physical parameters by using wireless sensor networks (WSNs). These sensors transfer data from patients' bodies over the wireless network to the cloud environment. The system is aimed to prevent delays in the arrival of patients' medical information to the healthcare providers, Therefore, patients will have a high quality services because the e heath smart system supports medical staff by providing real-time data gathering, eliminating manual data collection, enabling the monitoring of huge numbers of patients. We underline the necessity of the analysis of data quality on e-Health applications, especially concerning remote monitoring and assistance of patients with chronic diseases. Keywords — - #### I. INTRODUCTION Wireless Sensor Networks (WSNs) have facilitated the way for development of various aspects of sensing. WSNs have been applied in different applications such as military applications, climate monitoring applications, underwater networks applications, and structural health monitoring applications. WSN are facing many challenges such as limited computing power, memory capacity and data transmission capabilities. Thus, using cloud computing would be an appropriate solution to improve sensors efficiency. Cloud Computing is a general expression for any technological services provide through the Internet [1]. Cloud computing provides compatible and on-demand network access for numerous computing resources such as networks, systems, applications, and services. Moreover, cloud computing are using modern and flexible methods to provide, manage, and pay for information technology services with minimal management effort and cost. Cloud computing technology has several advantages such as flexibility, highly auto-mated, low cost, fast services providing, and a huge storage capacity. The Cloud's features enable customers to build, test, and deploy their applications on virtual servers using different infrastructures and multiple operating systems. Cloud service providers offer three different types of services in order to obtain their customers more flexibility, which are Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). SaaS provides remotely access to software applications and their functions as a Web based service. (PaaS) offers application frameworks and operating systems, obtains to minimize the development efforts, and provides many applications in the cloud for users without installing any framework or software on their machines. (IaaS), offers a pool of cloud computing resources, including hardware, servers, networking components, and a massive storage space. Finally, cloud computing offers unlimited data storage. Therefore, the organizations and users who are using the cloud do not need to be concerned about the size of their files. Amazon Web Service (AWS) is one of the famous cloud providers which provides infrastructure as a service with different types of services such as, Amazon Elastic Compute Cloud (EC2). Amazon EC2 is a cloud service that designed to make web-scale computing easier for developers and to provide flexible compute capacity in the cloud. In this paper, we focus on the idea of integration between wireless sensor network and cloud computing. After health sensors that are connected to patients' bodies collect and transmit data to the cloud, services which are available in this cloud are responsible for receiving, storing, processing, and distributing this data. We suppose that this solution offers an appropriate scenario to provide a comprehensive telemedicine service which automates the processes from collecting patients' data to delivering compatible medical decisions based on patients' current conditions and their historical medical data. The contributions of this paper are: - A framework for integrating WSN and cloud computing. - A prototype implementation using e-health sensors and the Raspberry Pi. - Improve the sensor Efficiency Applying data mining technique to extract an appropriate decision based on patient's condition and historical data. #### II. MOTIVATION Providing healthcare services is very important for people specially who have chronic diseases. Those people need continuous healthcare which cannot be provided outside hospitals. There are a variety of technologies around us, so to get benefits from connecting such technologies to build a new e-health system platform could help to achieve high quality health care services. There are many reasons which motivate us to build this platform: (1) making healthcare more accessible for people who do not have access to healthcare providers in their communities; (2) making healthcare easier for people who do not have access to public transportation in order to go to hospitals; (3) increasing bed capacity in hospitals, especially during public events where a large number of people are meeting in one place; (4) giving medical staff more time to be attentive to patients who need more care; (5) preventing delays in the arrival of patients' medical information to the healthcare providers, particularly in accident and emergency situations; and (6) reducing manual data entry for patients' data which prevents real-time monitoring and restricts medical staff to monitor their patients. ## III RELATED WORK Mohammad et al. [1] The system is aimed to prevent delays in the arrival of patients' medical information to the healthcare providers, particularly in accident and emergency situations, to stop manual data entering, and to increase beds capacity in hospitals, especially during public events where a large number of people are meeting in one place. The main objective of the system architecture is to provide high quality services because the e-heath smart system supports medical staff by providing real-time data gathering, eliminating manual data collection, enabling the monitoring of huge numbers of patients. Fakhrul et al. [2] focused on huge amount of data that is generated by different sensors and uploaded into the server through Wireless Sensor Network (WSN) faces a several types of security, privacy, flexibility, scalability, and confidentiality challenges. Existing architectures for patients' health data collection lack of different types of security issues. The main objective is to obtain secured Health cloud architecture for patients' health data collection. Where WSN are integrated with Cloud computing technology, have Cypher text Policy-ABE within our cloud infrastructure to guarantee data security, privacy and fine grained access control of data. Swathi B S, et al. [3] offers a novel design for Integration of Wireless Sensor Networks and Cloud Computing. The main objective architecture of cloud environments is mainly used for storage and processing of data. Cloud computing provides applications, platforms and infrastructure over the internet. Wireless Sensor Network is an very important technology in which sensor are placed in distributed manner to monitor physical and environment changes such as temperature, pressure etc. Combining these two technology helps in easy management of remotely connected sensor nodes and the data generated by these sensor nodes. For security and easy access of data, cloud computing is widely used in distributed/mobile computing environment. Lounis et al. [4] offer a novel design for gathering and accessing a huge amount of data generated by WSNs. The main objective of their architecture is to overcome the challenges of dealing with a huge amount of data and makes sharing of information easier for healthcare professionals. The paper focuses on data management in WSNs, specifically sensors' data gathered that have been generated from medical sensors which introduce many challenges for the existing architectures. Rolim et al. [5] focused on developing patients' data gathering technique. This paper presents a novel framework to solve the problems of taking notes manually which is a slow process. Besides, they cause lateness for accessing real-time data and that restricts the capability of clinical monitoring and diagnostics. Thus, authors proposed a system to automate collecting patients' information process using wireless sensor networks which are connected to medical equipment, and then transferring this data to the healthcare provider centers in the cloud to store, process, and analyze patients' data. However, this paper does not take security risk in consideration, practically in the architecture of proposed solution. Fortino et al. [6] state that the integration of cloud computing and wireless sensor networks can provide scalable powerful data storage, and improvement of processing infrastructure and analysis of body sensor data. This paper presents the management and monitoring of sensor infrastructure. In addition, this study also considers some components in the architecture of cloud computing such as data management and using APIs for communication between sensor data streams and the cloud. The authors implement their system by using an application of the Google App Engine (GAE) which is one of the cloud computing providers for hosting and developing web applications in the cloud. Hwang et al. [7] presents an interesting business model for cloud computing based on the concept of performing the encryption and decryption technique, and a cloud provider must ensure that the information has been stored in encrypted format. Moreover, after the computation operations are completed, all data must be deleted. This study discusses many points related to encrypting data in the cloud. However, this paper did not discuss the security part during uploading and downloading operations in terms of securing the channel between the client and cloud provider. ## IV E-HEALTH MONITORING ARCHITECTURE The architecture consists of three major layers which act as the backbone for our system. We have broadly categorized the architecture of our system into three layers based on the functionality of the components being used. Fig. 1 illustrates the three layers used in our architecture. ## A. Perception Layer The first layer at the bottom of the hierarchy consists of various types of sensors which collect real time data. These wearable sensors are embedded in and around the environment surrounding the patient and in his/her body. Fig 1: e-Health Monitoring Architecture They can be broadly classified into two types, viz. medical sensors and environmental sensors. The medical sensors monitor vital parameters of the patient whereas the environmental sensors monitor parameters of the room including room temperature, oxygen levels and beyond. The data accumulated by the sensors are relayed to a processing device which attaches several data like unit, timestamp etc. and thereby creating metadata. With that, one unique id is attached to each unit data in order to distinguish which report is for which patient. The data is sent to the next layer in the hierarchy through Gateway 1. The communication between the sensors and the gateway are conducted through short range communication systems including Local Area Network (LAN). ### B. Middleware and APIs layer This layer is the pivotal layer of the system consisting of various APIs (Application Programming Interfaces). The cloud storage stores the medical history of the patient as well as current records of the monitored parameters. This storage plays a central role in the emergency response and hospital monitoring system to correlate the data collected from the sensors to the stored thresholds for the parametric values. The cloud storage is instrumental in analyzing an emergency and declaring a state of emergency for the patient. Whenever a patient is registered in the system one API creates the profile for that patient. Another API can also be developed which would fetch the patient history for a patient who is already using the system and analyze the report. These APIs support the profile creation, storage, queries regarding patient history and other reports synchronizing with the whole system. The data from the cloud is relayed to the Gateway 2 over UMTS, optical fibers or over Wi-Fi. The data is then relayed to this layer for outsourcing applications and services from the Gateway 2 or E-Health Service Capability module. # C. E-Health Application and Service Layer The third layer of the system is a terminal layer offering outsourcing services for the monitored data. This layer offers E-health Advice services to the patient. This process involves prescribing medicines or providing suggestions to the patient correlating to the values of parameters that are being received from the sensors. The system plays the role of informing the doctors and the caregivers in accordance with the level of emergency. Depending on the level of emergency the response team takes required action. The hospital module monitors the patient remotely from the location of the patient, if the monitored patient is at home or a remote location. This module also allows analysis of all patients under monitoring centrally in the hospital or health care centre. # V. FUNCTIONAL COMPONENTS OF THE ARCHITECTURE # A. Raspberry pi The Raspberry Pi is a Linux-based microcomputer that connects with a computer monitor or TV, and uses a keyboard and mouse. It includes 2 USB ports, HDMI and Ethernet port, SD card slot, memory, video/audio outputs, and power source. We used C++ to implement the application (on the raspberry pi) for reading the data from the sensors and sending it to the cloud. We utilized TCP sockets to establish a connection between the Pi and the application in the cloud. The server program was written in C#. In the cloud, we selected Amazon Web Services (AWS). AWS is one of the widely used cloud providers which provides infrastructure as a service known as Amazon Elastic Compute Cloud (EC2). Amazon EC2 is a web service that is designed to make web-scale computing easier for developers and to provide flexible compute capacity in the cloud. For the EC2 instance, we installed Windows server 2008 as an operating system. To build the application on this instance we used C# language, and Microsoft SQL server database to achieve e-health smart system which is responsible for receiving, managing, and processing patients' data, then store this data in the database. #### B. The e-Health Sensor Shield V2.0 The e-Health Sensor Shield V2.0, as shown in Figure 3, allows Arduino and Raspberry Pi users to perform biometric and medical applications where physiological data monitoring is needed. Ten different sensors can be connected to this e-Health Sensor Shield including pulse, oxygen in blood (SPO2), airflow (breathing), body temperature, electrocardiogram (ECG), glucometer, galvanic skin response (GSR-sweating), blood pressure (sphygmomanometer), patient position(accelerometer), and muscle/electromyography sensor (EMG). Fig 3: The biometric shield The biometric information collected by the sensors can be used to monitor the real time health status of a patient in order to be subsequently analyzed for medical diagnosis. The information can be wirelessly sent by using any of the six connectivity options available including Wi-Fi, 3G, GPRS, Bluetooth, 802.15.4, and ZigBee depending on the application. If a real time image diagnosis is needed, a camera can also be attached to the 3G module in order to send photos and videos of a patient to a medical diagnosis center. Data can be sent to the Cloud in order to perform permanent storage and visualization in real time by sending the data directly to a laptop or smart phone. IPhone and Android applications have been designed in order to easily monitor the patient's information. # C. The LM35 Temperature Sensor The LM35 series are precision integrated circuit LM35 temperature sensors, whose output voltage is linearly proportional to the temperature in Celsius (Centigrade). The LM35 sensor thus has an advantage over linear temperature sensors, calibrated in °Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient centigrade scaling. The LM35 sensor does not require any external calibration or trimming to provide typical accuracies of $\pm 1/4$ °C at room temperature and $\pm 1/4$ °C over a full -55 to +150°C temperature range. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. As it draws only 60 μA from its supply, it has very low self-heating, less than 0.1°C in still air. ## D. Blood Pressure Sensor Blood pressure sensor is a device that measures the pressure of the blood in the arteries as it is pumped around the body by the heart. When our heart beats, it contracts and pushes blood through the arteries to the rest of our body. This force creates pressure on the arteries. Blood pressure is recorded as two numbers the systolic pressure (as the heart beats) over the diastolic pressure (as the heart relaxes between beats). Some special features of blood pressure sensor includes (i) automatic measurement of systolic, diastolic and pulse, (ii) large LCD screen with LED backlight, and (ii) touch pad key. In addition a typical blood pressure sensor can store 80 measurements data with time and date. ## E. Blood Glucose Sensor Blood glucose sensor is a medical device for determining the approximate concentration of glucose in the blood. A small drop of blood, obtained by pricking the skin with a lancet, is placed on a disposable test strip that the meter reads and uses to calculate the blood glucose level. The meter then displays the level in mg/dl or mmol/l. # VI. PROTOTYPE We have used commercial wireless health sensors that are connected with e-Health Sensor Shield that allows Raspberry Pi developers to perform biometric and medical applications to measure patient's physical parameters. In outr implementation, we used two types of sensors which are pulse and oxygen in blood sensor (SPO2), and body temperature sensor. In the cloud, we selected Amazon Web Services (AWS). AWS is one of the widely used cloud providers which provides infrastructure as a service known as Amazon Elastic Compute Cloud (EC2). Amazon EC2 is a web service that is designed to make web-scale computing easier for developers and to provide flexible compute capacity in the cloud. For the EC2 instance, we installed Windows server 2008 as an operating system. To build the application on this instance we used C# language, and Microsoft SQL server database to achieve e-health smart system which is responsible for receiving, managing, and processing patients' data, then store this data in the database. ## VII. IMPLEMENTATION RESULTS We have tested our prototype using one body temperature sensor and Pulse functions because we wanted to minimize the cost of the experiment. As a test sample, we have used seven hypothetical patients, and we have noticed that all of them have the same body temperature which is around 37 Celsius, so we worked on adding some training data to achieve our goal for allowing the system to make decisions based on the changing body temperature. As shown in Figure 1 body temperatures and blood pressure pulse of patient is continuously obtained from the temperature sensor and blood pressure sensor. Further these temperature and pulse readings are transmitted to the cloud through the server. Thus, medical staff can monitor the patient condition from server through the received sensor data. Hence medical staff can observe the real time patients' data through the e-health sensors attached to the patients' body through server and also monitoring of huge number of patients can obtained. ``` pi@raspberrypi: ~ pi@raspberrypi: $ sudo python serial_data.py Temperature(deg): 32 Pulse(/min): 71 Temperature(deg): 34 Pulse(/min): 73 Temperature(deg): 36 Pulse(/min): 72 Temperature(deg): 36 Pulse(/min): 72 Temperature(deg): 36 Pulse(/min): 72 Temperature(deg): 34 Pulse(/min): 72 ``` Figure 1: Output temperature and pulse results As shown in Table 1 we collected body temperatures for one patient in different times from march 12, 2016 until march 18, 2014. Thus, medical staff can monitor the patient easily during the day. The medical staff also can make decisions based on the patient's condition if they notice that the patient has an emergency. | Sensor Id | Patient Id | Insert date | Sensor Data | |-----------|------------|----------------|-------------| | TEMP | 1000001 | march 12, 2016 | 37.2 | | TEMP | 1000001 | march 13, 2016 | 38 | | TEMP | 1000001 | march 14, 2016 | 39.5 | | TEMP | 1000001 | march 15, 2016 | 37 | | TEMP | 1000001 | march 16, 2016 | 40 | | TEMP | 1000001 | march 17, 2016 | 38 | | TEMP | 1000001 | march 18, 2016 | 37 | Table 1: Body temperature monitor for one patient | Patient ID | Name | Date & Time | Temperature(°c) | |------------|---------|---------------------|-----------------| | 1000002 | Manju | Apr 10, 12:07:00 PM | 39.2 | | 1000003 | Madhu | Apr 10, 12:08:00 PM | 37 | | 1000004 | Ajith | Apr 10, 12:09:00 PM | 37.2 | | 1000005 | Sharath | Apr 10, 12:10:00 PM | 35.3 | | 1000006 | Dinesh | Apr 10, 12:11:00 PM | 37.5 | | 1000007 | Dilip | Apr 10, 12:12:00 PM | 38.3 | | 1000008 | Guru | Apr 10, 12:13:00 PM | 38 | Table 2: Body temperature monitoring for seven patients As shown in Table 2 we collected body temperatures data from seven patients. The objective of collecting this data is to compare the effectiveness of using body temperature sensors against the traditional way of measuring the body's temperature manually. We noticed that every patient needs about one minute to read his body's temperature which is a very short time compared with the traditional technique. We also applied a delay technique because we wish to obtain a high accuracy of body temperature because the body temperature sensor we have experimented with takes time to generate the correct body temperature. Therefore, we noticed that 30 seconds delay for collecting body temperature will assist in obtaining a high accuracy. ### VIII. CONCLUSIONS AND FUTURE WORKS The integration between wireless sensor networks and cloud computing will create a new generation of technology in many aspects such as patient monitoring with minimal cost, reducing the number of occupied beds in hospitals and improving medical staff performance, making healthcare easier for people, who do not have access to public transportation in order to go to hospitals. Giving medical staff more time to be attentive to patients who need more care, preventing delays in the arrival of patients' medical information to the healthcare providers, particularly in accident and emergency situations and reducing manual data entry for patients' data which prevents real-time monitoring and restricts medical staff to monitor their patients. The system introduced in this paper provides decisions based on patients' historical data, real-time data gathering, and thus eliminating manual data collection. For future work, we are planning to enhance the functionality of the system by adding more sensors and using it to collect data from a larger sample size of patients. [11] Raspberry Pi: www.raspberrypi.org. Last accessed, July 27, 2014. #### REFERENCES - [1] Mohammad S. Jassas, Abdullah A, Qasem, Qusay H. Mahmoud, "A Smart System Connecting e-Health Sensors and the Cloud" Proceeding of the IEEE 28th Canadian Conference on Electrical and Computer Engineering Halifax, Canada, May 3-6, 2015 - [2] Md. Fakhrul Alam Onik, "A Secured Cloud based Health Care Data Management System" International Journal of Computer Applications (0975 – 8887) Volume 49 No.12, July 2012. - [3] Swathi B S1, Dr. H S Guruprasad, "Integration of Wireless Sensor Networks and Cloud Computing" IPASJ International Journal of Computer Science (IIJCS) Volume 2, Issue 5, May 2014 - [4] Lounis A, Hadjidj, Bouabdallah A & Challal Y, "Secure and scalable cloud-based architecture for e-health wireless sensor networks" In Computer communications and networks (ICCCN), 21st international conference on (pp. 1-7). IEEE 2012. - [5] Rolim, C. O, Koch F. L, Westphall C. B, Werner J, Fracalossi A & Salvador G. S, "A cloud computing solution for patient's data collection in health care institutions", Second International Conference on (pp. 95-99). IEEE 2010. - [6] Fortino G, Pathan, M. Di Fatta G, "BodyCloud: Integration of Cloud Computing and body sensor networks," Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th International Conference on, vol., no., pp.851, 856, 3-6, Dec 2012. - [7] Hwang J. J, Chuang H. K, Hsu Y. C, & Wu C. H. (2011, April). "A business model for cloud computing based on a separate encryption and decryption service". In Information Science and Applications (ICISA) International 2011. - [8] Mell P, & Grance T, "The nist definition of cloud computing, recommendations of the national institute of standards and technology" National Institute of Standards and Technology, 800-145, 2011. - [9] AWS | Amazon Elastic Compute Cloud (EC2) Scalable Cloud Hosting, (n.d.) Amazon Web Services, Inc. Retrieved June 22, 2014, from http://aws.amazon.com/ec2/ - [10] E-Health Sensor Platform Complete Kit V2.0 for Arduino, Raspberry Pi. (2014, July 3). Retrieved from http://www.cooking-hacks.com/ehealthsensors complete-kit-biometric-medical-arduino-raspberry-pi