
International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 126

DOMI: A Dynamic Ordering Multi-field Index for Data Processing

SuraI.Mohammed
1
, Hussien M. Sharaf

2
, Fatma A. Omara

3

1(Computer science department, Cairo University/Faculty of computer science, Egypt, Cairo)

2 (IT Experts from Masr (I.T.E.M.), Software Corp., Egypt, Cairo)

3 (Computer science department, Cairo University/Faculty of computer science, Egypt, Cairo)

--************************************--

Abstract:

 The information retrieval from Big Data requires more efficient techniques for data indexing. According to the

work in this paper, a Dynamic Order Multi-field Index (DOMI) structure has been introduced and implemented. The

proposed DOMI indexing structure allows dynamic rather than sequential ordering of fields, in addition, compacting

values with common prefixes. Hence, the DOMI allows efficiently indexing of huge data sets and answering queries

that involve multi-fields, as well as, queries that involve a single field. A comparative study by building a composite-

field index among the proposed DOMI and other popular indexing data structures such as B and B+ trees has been

implemented. The comparison results show that DOMI composite indexing soutperform other composite indexing

structures in case of answering a single field query that addresses a non-leading field. The performance of DOMI is

slightly better than that of B+ in case of answering a composite-field query. Therefore, DOMI covers different cases

of data retrieval more efficiently. Generally, DOMI could be the most suitable indexing structure for intensive-data

such as Big Data because it is based on radix trees which compacts common prefixes into a single occurrence. Our

experiments show that DOMI is effective, scalable, and efficient for supporting structural data queries.

Keywords:- Dynamic Order Multi-field Index (DOMI), Composite field query, Single field query, Indexing structures,
Data processing, Big Data.

--************************************--

I. INTRODUCTION :

The growing of datasets indexing becomes more

important. Many researchers have directed their efforts to

facilitate faster execution of queries. Index and query

technologies are critical for facilitating interactive

exploration of large datasets which leads to the new era of

Big data [2]. Big data refers to interesting high-velocity,

high value, and/or high-variety data with volumes beyond

the ability of commonly-used software to capture, manage

and process within a tolerable elapsed time[1]. Also, Big

data refers to voluminous data which surpass the abilities of

the current database technology. So, a delay in the retrieval

of data can be expected. For this reason, a query over vast

amounts of unsorted data might be considered time

consuming. Otherwise, the size of the data itself becomes

part of the problem.

However, there are two major phases for supporting

queries on large data sets. The first phase concerns about

preparing data sets. The second phase concerns about

providing an answer to a query after using indexing of data

that results from the first phase. Regarding fields’ indexing,

it is necessary to perform the process of organizing data into

tuples before query execution. The chosen index should

need minimal preprocessing of the input data stream.

Now adays, an attention is concerned about the processes of

sorting, indexing and searching of data through the Data

Stream Model, data arrives at high speed, and the algorithms

which process this data under space and time constraints [3].

But, datastream introduces various challenges for designing

data indexing approach where the limited purse "Time"

should be considered. This purse must be dealt with

efficiently and at a low cost. So, indexing mechanisms are

needed to help fast information retrieval especially within

large data sets where the main objective of indexing is to

optimize the speed of queries processing [4]. According to

the work in this paper, a Dynamic Multi-Field Index

(DOMI) based on the Radix Tree as a basic structure has

been introduced. DOMI covers different cases of data

retrieval more efficiently. Also, DOMI presents a single

index structure that can be used for single-field and

composite-field queries. In case of single-field queries,

DOMI avoids sequential search among the stored index

tuples because it can dynamically sort data with respect to

any indexed field even if it is a non-leading field. Moreover,

the process of building DOMI does not need much

preprocessing of the input data whether it is a static or a

streaming data

RESEARCH ARTICLE OPEN ACCESS

International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 127

.

An implementation of a dynamic index using layers of

radix trees together with a single hash table has been

proposed. The proposed DOMI structure improves the

performance of handleling different types queries. Each

layer of the radix trees can be traversed without sequentially

visiting the unrelated layers. Hence, the look-up

performance for queries addressing a single field is handled

efficiently, as well as, queries addressing multiple fields.

This paper is organized as follows; Section II discusses

some of the related work. Section III describes DOMI

structure. Section IV presents the implementation of DOMI

architecture including the construction of the index and the

search performance. Section V lists the experiments of using

DOMI architecture and entails with the results of each

experiment. Finally, section VI presents the conclusions of

the paper.

II. BACKGROUND AND RELATED WORK:

Predilection of processing queries over large data set has

been contributed in the improvement of index structure,

such as projections strategy indexes (RB+), Value-List

Index (B+ tree) and more complex index structures to

speed-up the process of queries evaluation [7]. Although,

efficient query processing specifications have been achieved

from these indexes, querying huge data sets, especially

streaming data, have suffered from the time overheads

during answering the queries that involve multiple fields in

addition to queries that involve single field in their filtering

criteria.

According to the survey in [6], the problem of designing

efficient indexes to support spatial objects has been

addressed. On the other hands, the reason of creating an

index for a data set is to speed up the access of a subset of

the data [8]. Index structures are different in terms of

structure, query support, data type support and applications

[9]. Query Processing in QPPT (Query Processing Prfix

Trees) keeps the index materialization cost low, and uses

optimal prefix trees to satisfy balanced read/write operations

(i.e., memory optimization) [11]. Based on the used data

structure to store tuples of fields, B-tree is considered a

simple data strucutre that permits storing vertical partitions

in traditional B-tree indexes with practically zero overheads

for storing the tuples [10]. Yet, B-trees and B+ trees store

composite fields into one tuple with a static order. As a

result, B-trees and B+ trees respond to queries of the non-
leading fields with almost a sequential search which affect
the search efficiency.

Compared to the existing indexing strucutres, using

radix trees relatively compact the data by storing common

prefixes once. Reducing the needed space is very helpful

especially with huge static data-sets or streaming data. An

efficient search is considered the most important criterion

for selecting data structures because searching of data is

normally carried out on-line which needs fast response and

will be carried out many times [12].

Bitmap indexes have become popularin in this context.

In a bitmap index, leaf pages of an index structure don't

contain lists of record ids but bit vectors with one bit for

each data record. Several types of bitmap index structures

suitable for different query types are discussed in [13].

Bitmap indexes, however, are static because the insertion of

a data record needs all index entries to be updated.

Therfore, , The proposed DOMI architecture focuses on

scenarios of searching where searching might involve

multiple fields, as well as, a single field where one index

structure should be used to handle all scenarios. DOMI is

structured in form of layers of radix trees where each layer

is dedicated for a field. Layers can be accessed

independently or collaboratively resulting in a dynamical

mechanism (see Fig.1). A comarative study has been done

to exam the offered speedup by our DOMI technique and

and other techniques. An implementation has been done

using three index strucutres; DOMI, B-trees and B+ trees.

The structure of DOMI and query processing strategies have

been discussed in details in [5].

III. DOMI STRUCTURE:
In this section, the proposed Dynamic Order Multi-field

Index (DOMI) structure is presented. DOMI is based on

radix trees, and combines a set of fields into layers of radix

trees. A hashtable is used to refer only to the roots of each

level to allow direct and fast access to lower layers of the

DOMI. Candidate fields are decided according to the choice

of the index designer before runtime. The designer of such

index should take into account the relationship between the

fields. Fields with less distinct values should be at the

higher levels in order to decrease the branching.

Each level consists of n number of the radix trees. The

leaf nodes of each radix tree at level i may refer to a single

radix tree root in level i+1. Hence, the values of each field

are grouped into a layer that may contain one or more Sub-

Radix Trees (SRT). The DOMI can be partitioned with

respect to semantic categorization where each semantic

partition can be mapped to a separate node in a distributed

system.

 Fig. 1 DOMI Structure

International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 128

 In Fig.1, the radix tree has two types of nodes; dark nodes

and white nodes. The white nodes contain the data value.

Conversely, the dark nodes contain keyes. Each pointer (p)

refers to a root node of the relevant field. All pointers of a

field are stored in a single entry at the Hash Table (HT) to

eliminate the need of traversing the upper layers of the

DOMI. As a result, when a query is received, the DOMI

immediately moves towards the hash table to determine the

suitable root at the right level, and then process the query

accordingly

IV. THE IMPLEMENTATION DETAILS:

The main goal of DOMI implementation is to enable

building and querying of sets of data concurrently. Hence,

the implementation is designed in form of concurrent

processes. The main components of the system areas are as

follows (see Fig.2):

Fig. 2 Architecture of the Implementation

Preprocessing; It is intended to partition data into fields

for indexing and querying. It reads a chunk of the input data

set in a buffer. Each buffer is processed independently

without losing the sequencing of the dataset.

Index Builder; It builds the indexes for a subset of a
dataset and stores the indexes inthe memory.

The Query Processor; It accepts dataset queries from

the user, then performs compare data selection using the

stored indexes and returns the common records as a

finalreport to the user.

These processes are implemented in form of multi producers

and consumers. Each process is instantiated as soon as it

receives an input from its predecessor. All processes work

concurrently and collaboratively. The architecture allows

processing large amounts of streaming data. So, the memory

and CPU are used efficiently. Data is transferred from one

component to the next component through a shared FIFO-

queue. Processes are grouped in form of a pipeline. The first

process in the pipeline splits a stream of data into a set of

equal sized buffers and passes them as in-memory buffers to

the next process. The Scenario of the implementation

consists of eight processes as shown in (Fig.3).
User

 PC

 Start

PB.1

PA.1

Reading buffer Reading buffer

data set1 data set2

PA.2 PB.2

otni gnizingrO otni gnizingrO

set fo tuples tsil set fo tuples tsil

tes atad1 tes atad2

 PB.3

 Building Index

CA.1

Querying

to Index

CA.2

Saving

result

into file

User

Fig. 3 Implementation processes query

The program starts with process PC that recieves two
datasets, initiates one shared queue and two threads for
processing each dataset. The start process is briefly
described in the the following algorthim.

PC: Algorithm Start (DataSet1, Dataset2)

1: StartTime ← Now()
2: SharedQueue← Initiate a shared queue
3: Initiate a thread for PA.1 (DataSet1,SharedQueue)
4: Initiate a thread for PB.1 (DataSet2,SharedQueue)
5: Initiate a thread for CA.1 (SharedQueue)

Algorthim 1. Start PC

The partitioning of a stream is presented in Fig.4. The

partitioning of a stream can be controlled using three

parameters; Stream, Nbytes, and Start Position. 'Stream'

indicates a data source stream, 'Nbytes' controls the buffer

size, and 'Start Position' is an optional parameter that starts

reading from a chosen location within the input stream.

Next, both PB.2 and PA.processes organize each buffer

by processes PB.1 PA.1 into a list of tuples where each

tuple consists of well defined fields.

International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 129

 Fig. 4 Partition stream into multi buffer

The convertion of two data set into a list of tuples is
stated in the the following algorthim.

PA.2,PB.2:Algorithm list of tuples (DataSet1, Dataset2)
1: for each buffer

2: for Line buffer

3: Tuple← LineToTuple (line, ListofFieldNames) 4:
Append “Tuple” into list of tuples

Algorthim 2. List of tuples PA.2,PB.2

The algorithm consists of three steps. First, it scans the

buffer that is received from process PB.1 and process PA.1,

and plits buffer into line (Line 1-2). Second, it converts each

line into tuples (Line 3). Third, it appends each Tuple into

the list that is shared with the next process (Line 4).

Process PB.3 constructs the index by selecting a set of

values that map to the chosen set of indexed fields. The

details of the building of the index process (PB.3) is stated

in the the following algorthim.

PB.3: Algorithm Build Index from buffer ()

1: for each buffer
2: for Line buffer
3: Indexed Values←select fields from buffer()
4: IndexTree.Insert(Indexed Values,completetuple)
5: Append “index Tree” into a shared queue

Algorthim 3. BuildingIndex PB.3

The algorithm consists of three steps. First, it scans the

buffer and adds qualifying tuples into the result (Line 1-2).

Second, it selects the fields that should be indexed and

inserts a complete tuple into the chosen index structure

(DOMI, B-tree or B+ tree) (Line 3-4). Third, it appends

each index into the queue that is shared with the next

process (Line 5). Each buffer is loaded into a separate index

(See Fig.5). The size of a buffer controls the depth of the

tree of the index.

DOMI internal strucutre

Then, PB.3 reads each index tree "DOMI" and adds it

into a list of indexes. Both processes PA.2 and PB.3 are

synchronized before CA.1 starts to execute. CA.1 is the

process that does the actual data comparison by joining the

indexed data tuples extracted from data source2 and given

stream tuples from the data source1. A join operation starts

by pulling one list of tuples produced by PA.2, where each

list maps to a buffer to compare it with indexed data (see

Fig.6).

The CA.1 algorthim consists of three essential steps.

First, it extracts the set of values that are intended for

comparing the two datasets (Line 1-2). Next, it sends this

dictionary of values to the “DOMI” to check for its existing

(Line 3). The DOMI answers with a complete tuple if the

data is found or answers with NULL if the tuple is not found

(Line 4-8).

Algorithm CA.1 search performance ()
1: indexTree_Lstset ← of indexTrees “DOMI”
2: for indexTree indexTree_Lst

3: for Ddict2 Tupleslist of query

4: if “the query is a composite-field query”
5: Result=indexTree.findTuple(Ddict1,List of compare

fields1)
6:else

7: Result=indexTree.findvalue(Ddict1, List of compare
fields1)

8: if Result is not NULL
9: Append Result to MatchingList

Algorthim 4. Algorthim of search peformance

It returns the result of the comparing data-source1 and

data-source2 after joining the common compound values to

the user in form of a list of all matching lines (Line 9).

Finally, each list is appended as a single entry into a shared

queue. The shared queueis are received and processed by

process CA.1. Process CA.2 retrieves each list from the

shared queue and writes it into a file saved on disk as a final

result for the end user (see Fig. 6).

.

International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 130

Fig. 6 Comparative to Retrieval Information of user

VI. The Performance Evaluation:

A. Experimental Enviroment

Experiments are executed on a hardware environment of

an AMD FX(tm)-8320-Eight Core processor at 3.50 GHz

with 32 GB of main memory. The operating system is

Windows 7 64 bit edition and the coding language is Python

2.7. Each run is performed in form of a pool of background

threads. The objective of these experiments is to compare

the execution time of building an index and execution time

of querying this index several times to get common records
between two homogeneous datasets.

B. Experimental Data

The star schema benchmark (SSB) is used [14]. The

datasets are generated using a scale factor (SF) parameter of

size six million records for “Order” table. The query

involved in the experiment is based on Order table. For all

experiments, the “lo_orderkey”, “lo_linenumber” and

“lo_custkey” fields compound together into a single

composite index. A separate subset of the “Order” table of

size five hundard thousand records is created. The subset is

used to query the index five hundard thousand times to get

the common records. The performance of a join is measured

by calculating the total time which is taken to process all

records of the subset table against the index built for the

original “Order” table. The experiments measure the

performance of building index with a variety of sizes and

using it. For each buffer size, a comparsion is made against

indexes built based on B, B+ trees.

C. Building Composite-Field Index Results

The index is created in memory based on the chosen data

strucutre. The construction time of building index is

evaluated, as well as, the performance of querying the index

five hundard thousand times to get a join of two given

datasets. All measurements use the same cost model. Three

parameters are identified to describe the behavior of the

different indexing structures. The three parameters are the

available buffer size, the number of records for building

index, and the number of tuples for querying. In all cases,

the index is built as a single composite index on the three

fields mentioned above.

Experiment C.1: The first experiment illustrates the

building a composite-field index based on DOMI, B-tree

and B+ tree with an input buffer of 5 MB of data. As a

result, a series of 109 index trees is constructed for holding

6,000,000 records of the “Order” table where each index

holds relatively few amount of data. The depth of each tree

whether it is a DOMI, B-tree, B+ tree, is relatively small.

The insertion time for the DOMI, B+ tree and B-tree is

presented in Fig. 7. The insertion time is significantly high

for the index based on B-tree. DOMI and B+ tree have the

best performance. DOMI is faster by 10.8% and 49% than

B+ tree and B-tree respectively.

Experiment C.2: The second experiment illustrates

building a composite-field index based on DOMI, B-tree

and B+ tree with an input buffer of 250 MB of data.

Accordingly, each index holds much number of records and

the depth of each tree whether it is a B-tree, or B+ tree is
relatively higher than those constructed in experiment C.1.

Yet, the number of branches of the DOMI are bigger than

the DOMI constructed in experiment C.1 leading to longer

insertion time.

A series of three index trees is constructed for holding

6,000,000 records of the “Order” table where each index

holds relatively higher amount of data. The building of

DOMI index is faster by 22.17% and by 52% than B+ tree

index, and B-tree index respectively (see Fig. 8).

Experiment C.3: The third experiment illustrates the

building a composite-field index based on DOMI, B-tree

and B+ tree with an input buffer of 1000 MB of data.

Accordingly, each index holds much number of records and

the depth of each tree whether it is a B-tree, B+ tree is

relatively higher than those constructed in experiment C.2.

Yet, the depth and the width of the DOMI do not grow

much bigger than the DOMI constructed at experiment C.2

which leads to a nearly equal insertion time. Since DOMI is

based on radix trees that stores common prefixes once,

therefore the insertion time becomes constant.
A single index tree is constructed for holding 6,000,000

records of the “Order” table where each index holds

relatively higher amount of data than each index which is

constructed in experiments C.1 and C.2. The building

DOMI index is faster by 4.7% and 51% than B+ tree index

B-tree index respectively (see Fig. 9).

International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 131

Fig. 7 Insertion Time of three index with 5 MB buffer

Fig. 8 Insertion Time of three index with 250 MB buffer

Fig. 9 Insertion Time of three index with 1000 MB buffer

The relative performances of the data structures are

different for the three indexes with different buffers sizes.

This indicates that small buffer (5 MB) is faster than larger

buffers (250 MB and 1000 MB) because each index has

least depth. Regarding experiments C.2 and C.3, the depth

of B and B+ trees tuples much bigger which leads to a

higher insertion time. Regarding experiments C.2 and C.3,

DOMI does not grow in depth but it grows in width which

leads to a higher insertion time than the constructed DOMI

in experiment C.1 (see Fig. 9).
D. Executing a composite-field Query Results

The goal of this experiment is to evaluate the

performance of the composite-field index for each of the

three index structures; DOMI, B-tree and B+-tree. In each

experiment, the workload consists of 500,000 queries. Each

query is executed several times with different input data

sizes. During a join operation, the system stores the matched

stream tuples based on a values of composed of multi-fields.

Experiment D.1: A workload of 500,000 queries is run

against a series of 109 indexes that hold a volume of

6,000,000 records. For the comparison, the execution time

of 500,000 queries against the constructed composite-field

index is presented in Fig. 10. In case of the index

constructed by 5 MB of data, the lookup time is

significantly higher for B-tree based index. Experiment D.1

shows that DOMI and B+ trees have better searching

performance than B-trees. According to Fig.10, it is found

that DOMI is faster by 25.9% and 69% than B+ tree and B-

tree respectively.

Fig. 10 Query Time of multi value with 5 MB buffer

Experiment D.2: A workload of 500,000 queries is run

against a series of three indexes that hold a volume of

6,000,000 records. The lookup time of DOMI is faster by

13% and 47.5% than B+ tree and B-tree respectively (see

Fig.11).

International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 132

Fig. 11 Query Timeof multi field with 250 MB buffer

Experiment D.3: A workload of 500,000 queries is run

against a single index that holds a volume of 6,000,000

records. Fig.12 shows that in case of the constructed index

using 1000 MB of data, the lookup time of DOMI is faster

by 7% and 25.9% than B+tree and B-tree respectively.

Fig.12 shows that the performance of searching enhances as

the data are grouped into a big index rather than a list of

small indexes. This indicates that large index (with 1000

MB of data) is the best for all index types. So, the

performance of querying a single big index is much better

that that of querying a list of small-sized index. In case of a

single big index, the elimination of the loop against a list of

small sized-indexes provids better performance.

Fig. 12 Query Time with multi-field 1000 MB buffer
E. Executing a single-field queryResults

The goal of the single-field query experiments is to

search for a value of a single field among a composite-field

index. In each experiment, the workload consists of

executing 1000 query operations against the same composite

indexes that are constructed and explained in section C.

Each query searches for values of the field named

“lo_custkey”. “lo_custkey” is the third field of the
composite fields that constitute the indexes mentioned in

section C

Experiment E.1: A workload of 1,000 queries is run

against a list of 109 composite-field indexes that holds a

volume of 6,000,000 records. Each index holds 5MB of

data. Fig.13 represents the execution time of 1000 queries.

The lookup time of DOMI is faster by 8% and 48% than B+

tree and B-tree based index respectively (see Fig. 13).

Experiment E.2: A workload of 1,000 queries is run

against a list of three composite-field indexes that holds a

volume of 6,000,000 records. Each index holds 250MB of

data. The lookup time of DOMI is faster by 9% and 73%

than B+ tree and B-tree respectively (see Fig.14).
Experiment E.3: A workload of 1,000 queries is run

against a single composite-field index that holds a volume

of 6,000,000 records. Each index holds less than 1000 MB

of data. According to the experiment E.3, it is found that the

lookup time of DOMI is faster by 36% and 81% than B+

tree B-tree respectively (see Fig. 15).

Fig. 13 Query Time with single field 5 MB buffer

Fig. 14 Query Time with single field 250 MB buffer

International Journal of Computer Techniques -– Volume 2 Issue 1, 2015

ISSN: 2394-2231 http://www.ijctjournal.org Page 133

Fig. 15 Query Time with single field 1000 MB buffer
VII. Conclusion:

The proposed DOMI architecture presents a dynamic

data structure that consists of layers of radix trees. It allows

a query processing to be proceed directly to the relevant

layer. So, the query of a single value can be answered

without traversing unnecessary levels of nodes. This

structure allows answering multiple queries based on

composed-fields and to build compact index based on radix

trees.

A comparative study has been done among our proposed

DOMI, B-tree and B+-tree by implementing and executing

different experiments to measure the speed-up in case of a

composite-field query, and a single-field query using

differnet buffer sizes to measure the building time and

query time of different index sizes.

One of the main and common inability in the plurality of

the B and B+ indexing structures is the space and the

required time to store and search composite-fields.

Experiments are conducted to show the efficiency of the

proposed DOMI indexing structure comapering to B-tree

and B+-tree indexing structures. Generally, the proposed

DOMI indexing structure is considered a promosing

indexing structure for the execution of queries over big data.

Future enhancements with respect to the compression can

produce a more successful Big Data-indexing structutre.

REFERENCES:
[1] Jiang, Fan,“Reducing the Search Space for Big Data

Mining for Interesting Patterns from Uncertain Data”,
Big Data (BigData Congress), 2014 IEEE International
Congress, Anchorage, AK , pp 315 - 322 , 2014.

[2] S. Madden, “From databases to big data,” IEEE Internet
 Computing, Vol. 16, No. 3, pp. 4–6, May–June 2012
[3] Albert Bifet, "Mining Big Data in Real Time ", The

International Journal of Computing and Informatics,
Vol. 37, No.1, pp. 15–20, March 2013.

[4] Ajit Singh, Deepak Garg "Implementation and

Performance Analysis of Exponential Tree Sorting," the

IJCA International Journal of Computer Applications,

Vol. 24, No.3 , pp. 34-38, June 2011.

[5] Sura I. Mohammed, Hussien M. Sharaf, and Fatma A.

Omara, "Information Retrieval using Dynamic

Indexing," Proceedings of the 9th International

Conferenceof the Informatics and Systems (INFOS

2014), Cairo, Egypt, pp. PDC-93 - PDC-101, Dec. 2014.
[6] V. Gaede and O. Gu¨ nther, “Multidimensional Access

Methods,” ACM Computing Surveys, Vol. 30, No. 6,
pp. 170-231, June 1998.

[7] P. O’Neil, D. Quass, “Improved Query Performance

with Variant Indexes”, International Conference on

Management of Data (MOD) , ACM, New York,

USA, pp. 38-49, 1997.

[8] Lisa A. Horwitz, “Techniques for Managing Large Data

Sets:Compression, Indexing and Summarization,”

Proceedings of the 1997 North East SAS Users Group,
pp. 30-37, 1997.

[9] P. Patel, D Garg,” Comparison of Advance Tree Data

Structures,” the IJCA International Journal of Computer

Applications,Vol. 41, No. 2, 2012.

[10] Goetz Graefe, “Efficient columnar storage in B-trees,”

ACM SIGMOD Record 36 (1), New York, USA pp. 3-

6 , 2007.

[11] K.Ramamohanarao, John W. Lloyd, “Dynamic

Hashing Schemes,” ACM Computing Surveys, Vol.20,

No.2, pp. 850-113, June1998.

[12] Guojun Lu, “Techniques and Data Structures for

Efficient Multimedia Retrieval Based on Similarity,”

IEEE Circuits & Systems Society, Vol.4, No.3, pp. 372

- 384, Sep 2002.

[13] O’Neil P., Graefe G.: “Multi-Table Joins through

Bitmapped Join Indexes,” SIGMOD Record, Vol. 24,

No. 3, pp. 8-11, 1995.

[14] Electronic Publication: Pat O’Neil, Patrick E.,

Elizabeth J. O’Neil, and Xuedong Chen, “The star

schema benchmark (SSB)”, Jan 2007.

