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Abstract: 
 

     The information retrieval from Big Data requires more efficient techniques for data indexing. According to the 

work in this paper, a Dynamic Order Multi-field Index (DOMI) structure has been introduced and implemented. The 

proposed DOMI indexing structure allows dynamic rather than sequential ordering of fields, in addition, compacting 

values with common prefixes. Hence, the DOMI allows efficiently indexing of huge data sets and answering queries 

that involve multi-fields, as well as, queries that involve a single field. A comparative study by building a composite-

field index among the proposed DOMI and other popular indexing data structures such as B and B+ trees has been 

implemented. The comparison results show that DOMI composite indexing soutperform other composite indexing 

structures in case of answering a single field query that addresses a non-leading field. The performance of DOMI is 

slightly better than that of B+ in case of answering a composite-field query. Therefore, DOMI covers different cases 

of data retrieval more efficiently. Generally, DOMI could be the most suitable indexing structure for intensive-data 

such as Big Data because it is based on radix trees which compacts common prefixes into a single occurrence. Our 

experiments show that DOMI is effective, scalable, and efficient for supporting structural data queries. 
 

Keywords:- Dynamic Order Multi-field Index (DOMI), Composite field query, Single field query, Indexing structures, 
Data processing, Big Data. 

----------------------------------------------------------************************************-------------------------------------------------------- 

I. INTRODUCTION : 
 

The growing of datasets indexing becomes more 

important. Many researchers have directed their efforts to 

facilitate faster execution of queries. Index and query 

technologies are critical for facilitating interactive 

exploration of large datasets which leads to the new era of 

Big data [2]. Big data refers to interesting high-velocity, 

high value, and/or high-variety data with volumes beyond 

the ability of commonly-used software to capture, manage 

and process within a tolerable elapsed time[1]. Also, Big 

data refers to voluminous data which surpass the abilities of 

the current database technology. So, a delay in the retrieval 

of data can be expected. For this reason, a query over vast 

amounts of unsorted data might be considered time 

consuming. Otherwise, the size of the data itself becomes 

part of the problem. 
 

However, there are two major phases for supporting 

queries on large data sets. The first phase concerns about 

preparing data sets. The second phase concerns about 

providing an answer to a query after using indexing of data 

that results from the first phase. Regarding fields’ indexing, 

it is necessary to perform the process of organizing data into  

tuples before query execution. The chosen index should 

need minimal preprocessing of the input data stream. 
 

 

Now adays, an attention is concerned about the processes of  

 

 

sorting, indexing and searching of data through the Data 

Stream Model, data arrives at high speed, and the algorithms 

which process this data under space and time constraints [3]. 

But, datastream introduces various challenges for designing 

data indexing approach where the limited purse "Time" 

should be considered. This purse must be dealt with 

efficiently and at a low cost. So, indexing mechanisms are 

needed to help fast information retrieval especially within 

large data sets where the main objective of indexing is to 

optimize the speed of queries processing [4]. According to 

the work in this paper, a Dynamic Multi-Field Index 

(DOMI) based on the Radix Tree as a basic structure has 

been introduced. DOMI covers different cases of data 

retrieval more efficiently. Also, DOMI presents a single 

index structure that can be used for single-field and 

composite-field queries. In case of single-field queries, 

DOMI avoids sequential search among the stored index 

tuples because it can dynamically sort data with respect to 

any indexed field even if it is a non-leading field. Moreover, 

the process of building DOMI does not need much 

preprocessing of the input data whether it is a static or a 

streaming data 
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An implementation of a dynamic index using layers of 

radix trees together with a single hash table has been 

proposed. The proposed DOMI structure improves the 

performance of handleling different types queries. Each 

layer of the radix trees can be traversed without sequentially 

visiting the unrelated layers. Hence, the look-up 

performance for queries addressing a single field is handled 

efficiently, as well as, queries addressing multiple fields. 
 

This paper is organized as follows; Section II discusses 

some of the related work. Section III describes DOMI 

structure. Section IV presents the implementation of DOMI 

architecture including the construction of the index and the 

search performance. Section V lists the experiments of using 

DOMI architecture and entails with the results of each 

experiment. Finally, section VI presents the conclusions of 

the paper. 

 

II. BACKGROUND AND RELATED WORK: 
 

Predilection of processing queries over large data set has 

been contributed in the improvement of index structure, 

such as projections strategy indexes (RB+), Value-List 

Index (B+ tree) and more complex index structures to 

speed-up the process of queries evaluation [7]. Although, 

efficient query processing specifications have been achieved 

from these indexes, querying huge data sets, especially 

streaming data, have suffered from the time overheads 

during answering the queries that involve multiple fields in 

addition to queries that involve single field in their filtering 

criteria. 
 

According to the survey in [6], the problem of designing 

efficient indexes to support spatial objects has been 

addressed. On the other hands, the reason of creating an 

index for a data set is to speed up the access of a subset of 

the data [8]. Index structures are different in terms of 

structure, query support, data type support and applications 

[9]. Query Processing in QPPT (Query Processing Prfix 

Trees) keeps the index materialization cost low, and uses 

optimal prefix trees to satisfy balanced read/write operations 

(i.e., memory optimization) [11]. Based on the used data 

structure to store tuples of fields, B-tree is considered a 

simple data strucutre that permits storing vertical partitions 

in traditional B-tree indexes with practically zero overheads 

for storing the tuples [10]. Yet, B-trees and B+ trees store 

composite fields into one tuple with a static order. As a 

result, B-trees and B+ trees respond to queries of the non- 
leading fields with almost a sequential search which affect 
the search efficiency. 

 
Compared to the existing indexing strucutres, using 

radix trees relatively compact the data by storing common 

prefixes once. Reducing the needed space is very helpful 

especially with huge static data-sets or streaming data. An 

efficient search is considered the most important criterion 

for selecting data structures because searching of data is 

normally carried out on-line which needs fast response and 

will be carried out many times [12]. 
 

Bitmap indexes have become popularin in this context. 

In a bitmap index, leaf pages of an index structure don't 

contain lists of record ids but bit vectors with one bit for 

each data record. Several types of bitmap index structures 

suitable for different query types are discussed in [13]. 

Bitmap indexes, however, are static because the insertion of 

a data record needs all index entries to be updated. 
 

Therfore, , The proposed DOMI architecture focuses on 

scenarios of searching where searching might involve 

multiple fields, as well as, a single field where one index 

structure should be used to handle all scenarios. DOMI is 

structured in form of layers of radix trees where each layer 

is dedicated for a field. Layers can be accessed 

independently or collaboratively resulting in a dynamical 

mechanism (see Fig.1). A comarative study has been done 

to exam the offered speedup by our DOMI technique and 

and other techniques. An implementation has been done 

using three index strucutres; DOMI, B-trees and B+ trees. 

The structure of DOMI and query processing strategies have 

been discussed in details in [5]. 

 

III. DOMI STRUCTURE: 
In this section, the proposed Dynamic Order Multi-field 

Index (DOMI) structure is presented. DOMI is based on 

radix trees, and combines a set of fields into layers of radix 

trees. A hashtable is used to refer only to the roots of each 

level to allow direct and fast access to lower layers of the 

DOMI. Candidate fields are decided according to the choice 

of the index designer before runtime. The designer of such 

index should take into account the relationship between the 

fields. Fields with less distinct values should be at the 

higher levels in order to decrease the branching. 
 

Each level consists of n number of the radix trees. The 

leaf nodes of each radix tree at level i may refer to a single 

radix tree root in level i+1. Hence, the values of each field 

are grouped into a layer that may contain one or more Sub-

Radix Trees (SRT). The DOMI can be partitioned with 

respect to semantic categorization where each semantic 

partition can be mapped to a separate node in a distributed 

system. 
 

 

 

 

 

 

 

 

 

 

 

  Fig. 1 DOMI Structure 
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  In Fig.1, the radix tree has two types of nodes; dark nodes 

and white nodes. The white nodes contain the data value. 

Conversely, the dark nodes contain keyes. Each pointer (p) 

refers to a root node of the relevant field. All pointers of a 

field are stored in a single entry at the Hash Table (HT) to 

eliminate the need of traversing the upper layers of the 

DOMI. As a result, when a query is received, the DOMI 

immediately moves towards the hash table to determine the 

suitable root at the right level, and then process the query 

accordingly 

IV. THE IMPLEMENTATION DETAILS: 
 

The main goal of DOMI implementation is to enable 

building and querying of sets of data concurrently. Hence, 

the implementation is designed in form of concurrent 

processes. The main components of the system areas are as 

follows (see Fig.2): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2   Architecture of the Implementation 
 

Preprocessing; It is intended to partition data into fields 

for indexing and querying. It reads a chunk of the input data 

set in a buffer. Each buffer is processed independently 

without losing the sequencing of the dataset. 
 

Index Builder; It builds the indexes for a subset of a 
dataset and stores the indexes inthe memory. 

 

The Query Processor; It accepts dataset queries from 

the user, then performs compare data selection using the 

stored indexes and returns the common records as a 

finalreport to the user. 
 

These processes are implemented in form of multi producers 

and consumers. Each process is instantiated as soon as it 

receives an input from its predecessor. All processes work 

concurrently and collaboratively. The architecture allows 

processing large amounts of streaming data. So, the memory 

and CPU are used efficiently. Data is transferred from one 

component to the next component through a shared FIFO-

queue. Processes are grouped in form of a pipeline. The first 

process in the pipeline splits a stream of data into a set of 

equal sized buffers and passes them as in-memory buffers to 

the next process. The Scenario of the implementation 

consists of eight processes as shown in (Fig.3). 
User 
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Fig. 3  Implementation processes query 
 

The program starts with process PC that recieves two 
datasets, initiates one shared queue and two threads for 
processing each dataset. The start process is briefly 
described in the the following algorthim. 

 
PC: Algorithm Start (DataSet1, Dataset2)  

1: StartTime ← Now()   
2: SharedQueue← Initiate a shared queue   
3: Initiate a thread for PA.1 (DataSet1,SharedQueue)   
4: Initiate a thread for PB.1  (DataSet2,SharedQueue)   
5: Initiate a thread for CA.1 (SharedQueue)   

 

Algorthim 1. Start PC 

 

The partitioning of a stream is presented in Fig.4. The 

partitioning of a stream can be controlled using three 

parameters; Stream, Nbytes, and Start Position. 'Stream' 

indicates a data source stream, 'Nbytes' controls the buffer 

size, and 'Start Position' is an optional parameter that starts 

reading from a chosen location within the input stream. 
 

Next, both PB.2 and PA.processes organize each buffer 

by processes PB.1 PA.1 into a list of tuples where each 

tuple consists of well defined fields. 
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               Fig. 4  Partition stream into multi buffer 
 
 

The convertion of two data set into a list of tuples is 
stated in the the following algorthim.  

PA.2,PB.2:Algorithm list of tuples (DataSet1, Dataset2)  
1: for each buffer  

2: for Line   buffer  
 

3: Tuple← LineToTuple (line, ListofFieldNames) 4: 
Append “Tuple” into list of tuples  

Algorthim 2. List of tuples PA.2,PB.2 
 

The algorithm consists of three steps. First, it scans the 

buffer that is received from process PB.1 and process PA.1, 

and plits buffer into line (Line 1-2). Second, it converts each 

line into tuples (Line 3). Third, it appends each Tuple into 

the list that is shared with the next process (Line 4). 
 

Process PB.3 constructs the index by selecting a set of 

values that map to the chosen set of indexed fields. The 

details of the building of the index process (PB.3) is stated 

in the the following algorthim. 

 

 
PB.3: Algorithm Build Index from buffer ()  

1: for each buffer   
2: for Line buffer   
3: Indexed Values←select fields from buffer()   
4: IndexTree.Insert(Indexed Values,completetuple)   
5: Append “index Tree” into a shared queue   

Algorthim 3. BuildingIndex PB.3 
 

The algorithm consists of three steps. First, it scans the 

buffer and adds qualifying tuples into the result (Line 1-2). 

Second, it selects the fields that should be indexed and 

inserts a complete tuple into the chosen index structure 

(DOMI, B-tree or B+ tree) (Line 3-4). Third, it appends 

each index into the queue that is shared with the next 

process (Line 5). Each buffer is loaded into a separate index 

(See Fig.5). The size of a buffer controls the depth of the 

tree of the index. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOMI internal strucutre 
 

Then, PB.3 reads each index tree "DOMI" and adds it 

into a list of indexes. Both processes PA.2 and PB.3 are 

synchronized before CA.1 starts to execute. CA.1 is the 

process that does the actual data comparison by joining the 

indexed data tuples extracted from data source2 and given 

stream tuples from the data source1. A join operation starts 

by pulling one list of tuples produced by PA.2, where each 

list maps to a buffer to compare it with indexed data (see 

Fig.6). 
 

The CA.1 algorthim consists of three essential steps. 

First, it extracts the set of values that are intended for 

comparing the two datasets (Line 1-2). Next, it sends this 

dictionary of values to the “DOMI” to check for its existing 

(Line 3). The DOMI answers with a complete tuple if the 

data is found or answers with NULL if the tuple is not found 

(Line 4-8). 

Algorithm CA.1 search performance ()  
1: indexTree_Lstset ← of indexTrees “DOMI”   
2: for indexTree indexTree_Lst  

3: for Ddict2 Tupleslist of query  
 

4: if “the query is a composite-field query”   
5: Result=indexTree.findTuple(Ddict1,List of compare   

fields1)  
6:else 
 

7: Result=indexTree.findvalue(Ddict1, List of compare 
fields1)  

8: if Result is not NULL   
9: Append Result  to MatchingList   

Algorthim 4.   Algorthim of search peformance 
 

It returns the result of the comparing data-source1 and 

data-source2 after joining the common compound values to 

the user in form of a list of all matching lines (Line 9). 

Finally, each list is appended as a single entry into a shared 

queue. The shared queueis are received and processed by 

process CA.1. Process CA.2 retrieves each list from the 

shared queue and writes it into a file saved on disk as a final 

result for the end user (see Fig. 6). 

 
. 
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Fig. 6 Comparative to Retrieval Information of user 
 

VI. The Performance Evaluation: 

 
A. Experimental Enviroment 

 
Experiments are executed on a hardware environment of 

an AMD FX(tm)-8320-Eight Core processor at 3.50 GHz 

with 32 GB of main memory. The operating system is 

Windows 7 64 bit edition and the coding language is Python 

2.7. Each run is performed in form of a pool of background 

threads. The objective of these experiments is to compare 

the execution time of building  an index and execution time 
 

of querying this index several times to get common records 
between two homogeneous datasets. 

B. Experimental Data 
 

The star schema benchmark (SSB) is used [14]. The 

datasets are generated using a scale factor (SF) parameter of 

size six million records for “Order” table. The query 

involved in the experiment is based on Order table. For all 

experiments, the “lo_orderkey”, “lo_linenumber” and 

“lo_custkey” fields compound together into a single 

composite index. A separate subset of the “Order” table of 

size five hundard thousand records is created. The subset is 

used to query the index five hundard thousand times to get 

the common records. The performance of a join is measured 

by calculating the total time which is taken to process all 

records of the subset table against the index built for the 

original “Order” table. The experiments measure the 

performance of building index with a variety of sizes and 

using it. For each buffer size, a comparsion is made against 

indexes built based on B, B+ trees. 
 

C. Building Composite-Field Index Results 
 

The index is created in memory based on the chosen data 

strucutre. The construction time of building index is 

evaluated, as well as, the performance of querying the index 

five hundard thousand times to get a join of two given 

datasets. All measurements use the same cost model. Three 

parameters are identified to describe the behavior of the 

different indexing structures. The three parameters are the 

available buffer size, the number of records for building 

index, and the number of tuples for querying. In all cases, 

the index is built as a single composite index on the three 

fields mentioned above. 

 
Experiment C.1: The first experiment illustrates the 

building a composite-field index based on DOMI, B-tree 

and B+ tree with an input buffer of 5 MB of data. As a 

result, a series of 109 index trees is constructed for holding 

6,000,000 records of the “Order” table where each index 

holds relatively few amount of data. The depth of each tree 

whether it is a DOMI, B-tree, B+ tree, is relatively small. 

The insertion time for the DOMI, B+ tree and B-tree is 

presented in Fig. 7. The insertion time is significantly high 

for the index based on B-tree. DOMI and B+ tree have the 

best performance. DOMI is faster by 10.8% and 49% than 

B+ tree and B-tree respectively. 

 
Experiment C.2: The second experiment illustrates 

building a composite-field index based on DOMI, B-tree 

and B+ tree with an input buffer of 250 MB of data. 

Accordingly, each index holds much number of records and 

the depth of each tree whether it is a B-tree, or B+ tree is 
relatively higher than those constructed in experiment C.1. 

Yet, the number of branches of the DOMI are bigger than 

the DOMI constructed in experiment C.1 leading to longer 

insertion time. 
 

A series of three index trees is constructed for holding 

6,000,000 records of the “Order” table where each index 

holds relatively higher amount of data. The building of 

DOMI index is faster by 22.17% and by 52% than B+ tree 

index, and B-tree index respectively (see Fig. 8). 
 

Experiment C.3: The third experiment illustrates the 

building a composite-field index based on DOMI, B-tree 

and B+ tree with an input buffer of 1000 MB of data. 

Accordingly, each index holds much number of records and 

the depth of each tree whether it is a B-tree, B+ tree is 

relatively higher than those constructed in experiment C.2. 
 

Yet, the depth and the width of the DOMI do not grow 

much bigger than the DOMI constructed at experiment C.2 

which leads to a nearly equal insertion time. Since DOMI is 

based on radix trees that stores common prefixes once, 

therefore the insertion time becomes constant. 
A single index tree is constructed for holding 6,000,000 

records of the “Order” table where each index holds 

relatively higher amount of data than each index which is 

constructed in experiments C.1 and C.2. The building 

DOMI index is faster by 4.7% and 51% than B+ tree index 

B-tree index respectively (see Fig. 9). 
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Fig. 7   Insertion Time of three index with 5 MB buffer 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Insertion Time of three index with 250 MB buffer 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
Fig. 9 Insertion Time of three index with 1000 MB buffer 

 
The relative performances of the data structures are 

different for the three indexes with different buffers sizes. 

This indicates that small buffer (5 MB) is faster than larger 

buffers (250 MB and 1000 MB) because each index has 

least depth. Regarding experiments C.2 and C.3, the depth 

of B and B+ trees tuples much bigger which leads to a 

higher insertion time. Regarding experiments C.2 and C.3, 

DOMI does not grow in depth but it grows in width which 

leads to a higher insertion time than the constructed DOMI 

in experiment C.1 (see Fig. 9). 
D. Executing a composite-field Query Results  

The goal of this experiment is to evaluate the 

performance of the composite-field index for each of the 

three index structures; DOMI, B-tree and B+-tree. In each 

experiment, the workload consists of 500,000 queries. Each 

query is executed several times with different input data 

sizes. During a join operation, the system stores the matched 

stream tuples based on a values of composed of multi-fields. 

 

Experiment D.1: A workload of 500,000 queries is run 

against a series of 109 indexes that hold a volume of 

6,000,000 records. For the comparison, the execution time 

of 500,000 queries against the constructed composite-field 

index is presented in Fig. 10. In case of the index 

constructed by 5 MB of data, the lookup time is 

significantly higher for B-tree based index. Experiment D.1 

shows that DOMI and B+ trees have better searching 

performance than B-trees. According to Fig.10, it is found 

that DOMI is faster by 25.9% and 69% than B+ tree and B-

tree respectively. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Query Time of multi value with 5 MB buffer 
 

Experiment D.2: A workload of 500,000 queries is run 

against a series of three indexes that hold a volume of 

6,000,000 records. The lookup time of DOMI is faster by 

13% and 47.5% than B+ tree and B-tree respectively (see 

Fig.11). 
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Fig. 11 Query Timeof multi field with 250 MB buffer 
 
Experiment D.3: A workload of 500,000 queries is run 

against a single index that holds a volume of 6,000,000 

records. Fig.12 shows that in case of the constructed index 

using 1000 MB of data, the lookup time of DOMI is faster 

by 7% and 25.9% than B+tree and B-tree respectively. 

Fig.12 shows that the performance of searching enhances as 

the data are grouped into a big index rather than a list of 

small indexes. This indicates that large index (with 1000 

MB of data) is the best for all index types. So, the 

performance of querying a single big index is much better 

that that of querying a list of small-sized index. In case of a 

single big index, the elimination of the loop against a list of 

small sized-indexes provids better performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Query Time with multi-field 1000 MB buffer 
E. Executing a single-field queryResults  

The goal of the single-field query experiments is to 

search for a value of a single field among a composite-field 

index. In each experiment, the workload consists of 

executing 1000 query operations against the same composite 

indexes that are constructed and explained in section C. 

Each query searches for values of the field named 
 

“lo_custkey”. “lo_custkey” is the third field of the 
composite fields that constitute the indexes mentioned in 

section C 
 

Experiment E.1: A workload of 1,000 queries is run 

against a list of 109 composite-field indexes that holds a 

volume of 6,000,000 records. Each index holds 5MB of 

data. Fig.13 represents the execution time of 1000 queries. 

The lookup time of DOMI is faster by 8% and 48% than B+ 

tree and B-tree based index respectively (see Fig. 13). 
 

Experiment E.2: A workload of 1,000 queries is run 

against a list of three composite-field indexes that holds a 

volume of 6,000,000 records. Each index holds 250MB of 

data. The lookup time of DOMI is faster by 9% and 73% 

than B+ tree and B-tree respectively (see Fig.14). 
Experiment E.3: A workload of 1,000 queries is run 

against a single composite-field index that holds a volume 

of 6,000,000 records. Each index holds less than 1000 MB 

of data. According to the experiment E.3, it is found that the 

lookup time of DOMI is faster by 36% and 81% than B+ 

tree B-tree respectively (see Fig. 15). 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Fig. 13   Query Time with single field 5 MB buffer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Query Time with single field 250 MB buffer 
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Fig. 15 Query Time with single field 1000 MB buffer 
VII. Conclusion: 

 
The proposed DOMI architecture presents a dynamic 

data structure that consists of layers of radix trees. It allows 

a query processing to be proceed directly to the relevant 

layer. So, the query of a single value can be answered 

without traversing unnecessary levels of nodes. This 

structure allows answering multiple queries based on 

composed-fields and to build compact index based on radix 

trees. 
 

A comparative study has been done among our proposed 

DOMI, B-tree and B+-tree by implementing and executing 

different experiments to measure the speed-up in case of a 

composite-field query, and a single-field query using 

differnet buffer sizes to measure the building time and 

query time of different index sizes. 
 

One of the main and common inability in the plurality of 

the B and B+ indexing structures is the space and the 

required time to store and search composite-fields. 

Experiments are conducted to show the efficiency of the 

proposed DOMI indexing structure comapering to B-tree 

and B+-tree indexing structures. Generally, the proposed 

DOMI indexing structure is considered a promosing 

indexing structure for the execution of queries over big data. 

Future enhancements with respect to the compression can 

produce a more successful Big Data-indexing structutre. 
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