
p-ISSN : 2335-1357 e-ISSN : 2437-1122

Mediterranean Journal of Modeling and
Simulation

Med. J. Model. Simul. 07 (2017) 049-058

M J

M S

Numerical treatment of a nonlinear hyperbolic
equation

Nabiha Brik a �, Mourad Chamekh b

a University of Tunis El Manar, ENIT-LAMSIN,Tunis , Tunisia
b University of Jeddah, Faculty of Science and Arts-Alkamel, Alkamel, Saudi Arabia

ARTICLE INFO

Article history :
Received May 2016
Accepted December 2016

Keywords :
Nonlinear Schrödinger equation ;
Optimization ;
Finite element ;
Eigenvalue.

ABSTRACT

In this work we consider a nonlinear elliptic partial di¤erential equation,
which is derived from an application of a nonlinear Schrödinger equation.
Using a variational approach on this problem leads to an optimization
problem with a nonlinear constraint. A numerical solution based on �nite-
element method is used. We propose a new iterative algorithm to relax
this problem to a quadratic version.

c2017 LESI. All rights reserved.

1. Introduction

The nonlinear Schrödinger equation [1] appears in many physical contexts and applied
mathematics [8]. It is a very useful mathematical tool in describing many physical systems
in various �eldssuch as the propagation of classical waves in dispersive nonlinear media
[9].
It is a partial di¤erential equation which describes the evolution over time of a quantum

object represented by a wave function  of a given physical system [1, 6, 7]. Also, it takes
di¤erent forms depending on the interaction potential or according to the type of nonli-
nearity. However, the nonlinear Schrödinger equation is usually described in dimension d
as :

i
@ (x; t)

@t
= �1

2
� (x; t) + �j (x; t)j2 (x; t) (1)

Wheret is the time, x is a spatial coordinate, the wave function  of a system is a
postulate, which contains all the information, and unfolds several meanings. The letter i
denotes the complex number.
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And we have x =
dP
j=1

rjej and � =
dP
j=1

@2

@2rj
is the Laplace operator. The parameter �

characterizes the nonlinearity of the problem[1].
To solve the equation (1), we look for a wave solution [6, 7] which is written in this

following form

 (x; t) = e�i�tu (x) (2)

The parameter � is interpreted physically as the chemical potential of the given system.
By replacing (2) in (1), we get the following Euler-Lagrange equation :

�1
2
�u+ �juj2u = �u (3)

In the case, where G is equal to the positive constant �, we will obtain the following
problem with constant that we will study in this paper.
We consider �the operator�H of Schrödinger [6] which for all u 2 H1

0 (
) :

�u = ��u+ �u3

Where 
 is an open bounded subset of RN with regular border @
 and � 2 R+. Let
the problem be to �nd a function u 2 H1

0 (
) and a real � 2 R solution of :�
��u+ �u3 = �u in 
; 8� 2 R+
u = 0 on @


(4)

This problem can be treated as an eigenvalue problem of the nonlinear "operator"
H with homogeneous Dirichlet condition. By using the Green�s formula, we obtain the
following energy minimization problem

min
�2K

J (�)

with J (�) = 1
2

Z



jr�j2+�
4

Z



�4 for a give � 2 R+, and � 2 K =

8<:� 2 H1
0 (
) =

Z



�2 = 1

9=; :

Proposition 1. We suppose that � � 0 and if N is such that the injection of H1
0 (
)

in L4 (
) is compact, then the functional J is in�nite in H1
0 (
), the set K is non empty

and weakly closed in H1
0 (
) and J has at least a global minimum in K.

Remark 1. The problem (4) has more then a solution, since, u is a solution, then �u
and juj are also solutions. To construct the iterative algorithm, we suppose that uk is
known at the iteration k and we �nd uk+1. This is what we examine in the remaining
sections of this paper. For this, we posed gk = u2k and we consider the next problem.�
��uk+1 + �gkuk+1 = �uk+1 in 
, 8 2 R+
uk+1 = 0 on @


(5)

This problem leads to a nonlinear eigenvalue problem according to the operator ��+
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�gkId.
Proposition 2. The solution u of the problem (4) is an eigenfunction associated to the

smallest eigenvalue of the operator ��+ �u2Id. Then, it is solution of

min
�2K

1

2

Z



jr�j2 + �

2

Z



u2�2 (6)

Proposition 3. All global minimum of J on K keeps a constant sign and the equation
(3) has a unique couple (u; �) solution such as u is nonnegative.
We have proved that the direct minimization problem (4) with a nonlinear constraint

has at most one nonnegative solution, which is also the positive single solution of the
equation(3). However, this last equation may admit an in�nite solution and change sign.

2. Finite-element approximation

We propose an approach for an optimization of �nite element analysis [4, 5]. Therefore,
we consider the �rst order �nite-element method given by

Vh =
�
�h 2 C0 ([a; b]) ; � hj[xi;xi+1] 2 P1 and �h (a) = �h (b) = 0

	
Where i 2 f1; :::; ng and with meshsize h = b�a

n+1
: Then Vh � H1

0 (
), and 8�h 2 Vh:
We have :

�h (x)
nX
i=1

� (xi)' (xi)

with 'i are the piecewise linear functions.
This method is used to evaluate the objective function with a nonlinear equality constraint

in order to �nd an approximate solution. The problem is discretized as follows :

min
�h2Kh

J (�h) = min
�h2Kh

(Ch�h; �h) (7)

with Ch = 1
2

�
Ah +

�
2
M�h

�
; Kh =

8<:�h 2 Rn; (Bh�h; �h) =
Z



�2h = 1

9=; ;

Ah =
1
h

0BBB@
2 �1 � � � 0

�1 2 � � � ...
...

...
. . . �1

0 � � � �1 2

1CCCA ; Bh =
h
6

0BBB@
4 1 � � � 0

1 4 � � � ...
...
...

. . . 1
0 � � � 1 4

1CCCA
and M�h is a � dependent symmetric matrix.
Proposition 4. The function Jh : Kh ! RN ; �h ! J (�h) is continuous on RN and Kh

is a non-empty closed set of RN , then Jh has at least a minimum in Kh.
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3. Iterative method

If u is a solution of (4) associated to the eigenvalue 2�, or if (u; �) is a solution of
(3) with u is nonnegative, then u is a solution of the following quadratic minimization
problem

min
�2Ku

1

2

Z



jr�j2 + �

2

Z



u2�2

with the set Ku =

8<:� 2 H1
0 (
) =

Z



uv = 1

9=;. We will hold this note in what follows.
Hence the objective idea of numerical solution of our problem, using the iterative me-

thod is to calculate the positive solution of (4) thanks to the following proposed algorithm :

� Choose v0 > 0= kv0k2L2(
) = 1
� For k � 0 calculate ~vk+1 solution of

min
�2Kvk

1

2

Z



jr�j2 + �

2

Z



v2k�
2 (8)

� vk+1 :=
vk+1

k~vk+1kL2(
)
� k = k + 1
� if kvk+1 � vkkL2(
) � " or k � kmax RETURN
With kmax is the maximum number of iterations and " is a given tolerance.

Proposition 5. Suppose that � = 0. If
Z



uv0 6= 0, then the sequence (vk)k�0 converges

in H1
0 (
) to �v = u and it is a single non-negative solution of problem (4).

Proposition 6. For � > 0, if the sequence vk ! �v in H1
0 (
), then �v is a single

nonnegative solution of problem (4).

4. Numerical results

In this section, we proposed some numerical examples. We discuss the performance of
our proposed iterative algorithm. That is, while we have made a comparison between the
numerical results of this algorithm and the numerical results obtained by the pre-de�ned
function fminconMatlab. The function fmincon serves to minimize a quadratic subject to
nonlinear constraints. For 
 = ]0; 1[, the function fmincon solves the problem (7) without
any di¢ culties. However, if the number of discretization nodes n exceeds 80, the solution
begin to diverge as is shown in �gure 1 (left). The �gure 1 (right) shows that the proposed
method computes the solution and has encountered no problems for n = 100. We have
chosen kmax = 500 and " = 10�4.
For � = 0, we have a solution associated to the linear calculated operator ��. The

exact solutioncorresponds to the function x !
p
2 sin (�x) as a proper function of the

linear operator �� associated with the smallest eigenvalue � = �2 = 9; 86960.
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Fig. 1 �Numerical results obtained by both function fminconMatlab (left) and the ite-
rative algorithm for � = 10 (right).

Fig. 2 �Numerical results obtained by both function fminconMatlab (left) and the ite-
rative algorithm for � = 0 (right).

In �gure 3 (left) we can see that the iterative algorithm computes the nonlinear solution
with success for n = 500 and � = 10. In addition, the number of iterations used is 124.
We can say that the iterative method is more e¤ective in CPU time �gure 3 (right).

Fig. 3 �Numerical results obtained by iterative algorithm to n = 500 and � = 10 (left).
The CPU times presented in blue curve and red curve, respectively, by fmincon function
and the proposed method (right).
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Without imposing the constraint v � 0, there is a risk obtain the negative solution
which is the opposite of the solution we are looking for. But, the fmincon function give a
changing sign solution. This is the case of the following example, where we took � = 10,

 = ]0; 100[, without considering the constraint v � 0, we get the solution illustrated in
�gure 4.

Fig. 4 �Negative and changing signsolutionsfor n = 60.

In order to test the e¤ect of the parameter of the problem, we have computed the
solution with di¤erent values of the size of 
 and � . We note that when the value � is very
high or when 
 is a large domain the function fminconMatlab and the iterative method
give a bad results. If the domain is wide ( for example 
 = ]0; 1000[ ) , the number of
discretization (n < 1000) is insu¢ cient to approximate numerically the sought solution.

If the value � is very important ( for example � = 1000), the term
Z



jrvj2 becomes

negligible compared to the term �

Z



v4. This explains the divergence of the solution.

The iterative algorithm is more e¢ cient and more optimal than the direct method.

Table 1 �Comparison of the numerical results.

n fminconMatlab Iterative method
� = 0 60 � = 9; 87 � = 9; 898
� = 10 100 � = 24; 167 � = 24; 167

5. Conclusion

In this paper, an eigenvalue problem of a nonlinear hyperbolic operator is studied. We
have proved the existence and the uniqueness of a nonnegative solution. In addition, we
have proposed a simple iterative to resolve this problem. The numerical result shows its
performance in CPU time and in convergence.
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Appendix

Proof of proposition 5
If � = 0 : Let the following minimization problem

min
v2Kvk

F (v) = min
v2kvk

1

2

Z



jrvj2

To study the convergence, we go through various steps.
Beginning to prove that the sequence (kvkk)k�0 is convergent. In fact, the following

inequality is immediate as ~vk+1.
is a minimum of F and vk is admissible : F (~vk+1) � F (vk), which gives k~vk+1k2H1

0 (
)
�

kvkk2H1
0 (
)

.

Knowing that vk+1 =
~vk+1

k~vk+1kL2(
)
and using the of Cauchy-Schwartz inequality, we have

0 < kvk+1kH1
0 (
)

� kvkkH1
0 (
)

:

So, the sequence
�
kvkkH1

0 (
)

�
k�0

is a decreasing sequence and it is bounded below by

0, therefore it is convergent.
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In second step, we show that k~vk+1kL2(
) !
k!1

1.

In fact, we know that Fk is �� convex, for � = 1:
F
�
1
2
~vk+1 +

1
2
vk
�
+ 1

8
k~vk+1 � vkk2H1

0 (
)
� 1

2
F (vk) +

1
2
F (~vk+1) :

As ~vk+1 is a minimum, then we have
F (~vk+1) +

1
8
k~vk+1 � vkk2H1

0 (
)
� 1

2
F (vk) +

1
2
F (~vk+1)

1
4
k~vk+1 � vkk2H1

0 (
)
� F (vk)� F (~vk+1) =

1
2

�
kvkk2H1

0 (
)
� k~vk+1k2H1

0 (
)

�
And since kvk+1kH1

0 (
)
� k~vk+1kH1

0 (
)
; then

1
2
k~vk+1 � vkk2H1

0 (
)
� kvkk2H1

0 (
)
� k~vk+1k2H1

0 (
)

According to the previous conclusion, we �nd k~vk+1 � vkkH1
0 (
)

!
k!1

0:

Using the inequality of Poincaré : 9Cp > 0 such as���k~vk+1kL2(
) � kvkkL2(
)��� � k~vk+1 � vkkL2(
) � Cp k~vk+1 � vkkH1
0 (
)

,

then kvk+1 � vkkH1
0 (
)

!
k!1

0:

In the third step, the sequence (~vk+1)k is bounded in H1
0 (
) and the real sequence

(�k)k =
�
k~vk+1k2H1

0 (
)

�
is also bounded.

For a subsequence, 9�v 2 H1
0 (
) and �� 2 R such as vk ! �v in H1

0 (
) and �k !
k!1

�� in

R.
Thanks to the compact injection of H1

0 (
) into L
2 (
), we have vk !

k!1
�v in L2 (
).

Since we have
��~vk+1 = �kvk; thusZ



r~vk+1rv = �k

Z



vkv; 8v 2 D (
)

When we tender k to +1, we obtainZ



r�vrv = ��
Z



�vv; 8v 2 D (
)

So ���v = ���v: Like this vk � 0 p. p. and not null, therefore �v � 0.
The uniqueness of a positive proper function implies that �v = u and � = ��:
Finally, the sequence (vk)k converges weakly to u in H

1
0 (
) and it is as kvkkH1

0 (
)
!
k!1

kukH1
0 (
)

, in [3] we have (vk)k converges strongly to u in H
1
0 (
).

Proof of proposition 6
If � > 0 : The steps of this proof are similar to the case � = 0, but assuming here that

the sequence (vk)k converges strongly to �v in H
1
0 (
).

We recall that ~vk+1 is a solution of problem

minZ



vvk=1

Fk (v) = minZ



vvk=1

1
2

Z



jrvj2 + �
2

Z



v2kv
2

We beginning by the step, to prove that k~vk+1kL2(
) !
k!1

1. Such as

vk+1 =
~vk+1

k~vk+1kL2(
)
;
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then, using the inequality of Cauchy-Schwartz, we have

1 =

Z



~vk+1vk �
Z



v2k

Z



~v2k+1;

Z



v2k = 1 i.e.

k~vk+1kL2(
) � 1:
Besides, we have Fk is strongly convex and ~vk+1 achieves a minimum for Fk, then
1
2
F (~vk+1) +

1
8
k~vk+1 � vkk2H1

0 (
)
� 1

2
F (vk)

So,
1
8
k~vk+1 � vkk2H1

0 (
)
� 1

2
F (vk)� 1

2
F (~vk+1)

giving

1
4
k~vk+1 � vkk2H1

0 (
)
� F (vk)�

0@Z



~v2k+1

1AF (vk+1)

and since
Z



~v2k+1 � 1, the

1
4
k~vk+1 � vkk2H1

0 (
)
� F (vk)� F (vk+1)

� 1
2

Z



jrvkj2 � 1
2

Z



jrvk+1j2 + �
2

Z



v2k
�
v2k � v2k+1

�
� 1

2

Z



jrvkj2 � 1
2

Z



jrvk+1j2 + �
2

Z



v4k

Z



�
v2k � v2k+1

�2
Like that vk+1 !

k!1
�v in H1

0 (
) and the injection of H
1
0 (
) in L

4 (
) is continuous from

Rellich- Kondrachov (see [5]), then we have
k~vk+1 � vkkH1

0 (
)
!
k!1

0

Using the inequality of Poincaré : 9Cp > 0 such as���k~vk+1kL2(
) � kvk+1kL2(
)��� � k~vk+1 � vkkL2(
) � Cp k~vk+1 � vkkH1
0 (
)

Hence the result
kvk+1kL2(
) !

k!1
1, such as kvkkL2(
) = 1:

Thus, we have ~vk+1 = k~vk+1kL2(
) !
k!1

�v in H1
0 (
), therefore

~vk+1 = �v !
k!1

in H1
0 (
)

In the second step, we note that k�vkL2(
) = 1 = lim
k!1

kvkkL2(
). Let �� = lim
k!1

�k

Let us demonstrated that
�
�v; ��
�
is a solution.

In fact,
�~vk+1 + �v2k~vk+1 = �kvk
multiplying this equation by a test function v 2 D (
) and using the Greens formula,

we obtainZ



r~vk+1rv + �

Z



v2k~vk+1v = �k

Z



vkv

We already have, (vk)k and (~vk+1)k are two sequence which strongly converge to �v in
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H1
0 (
) and �k =

Z



jr~vk+1j2 + �

Z



v2k~v
2
k+1 converge to real ��:

We deduce, by passing to limit, thatZ



r�vrv + �

Z



�v3v = ��

Z



�vv:

Since the last equality is true for all v 2 D (
), then
���v + ��v3 = ���v
Thus �v is a proper function associated with the smallest eigenvalue �� of the non linear

operator ��+�u2Id, since the sequence (vk)k is nonnegative, therefore its limit �v is also
nonnegative. Thus �v = u and �� = �.
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