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Simple and Multi-collision of an Ellipsoid with Planar 
Surfaces. Part I: Theory 

Nicolae–Doru Stănescu, Nicolae Pandrea 

This paper discusses the problem of simultaneous collisions between an 
ellipsoid and some planar surfaces. The approach is one based on the 
theory of screws and uses the notion of inertance. The authors con-
sider that the coefficients of restitution are different for each planar 
surface and they obtain the velocities after the collision. An example 
concludes the theory. 
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1. Introduction 

The problem of the collision of a rigid solid with an obstacle or between rigid 
solids was considered in many papers [1-24, 26-34]. A presentation of the problem 
is discussed in [19] and [22] and will not repeat here. The approach is a multibody 
type one and it is based on the theory of screws. 

The multi-collision of a rigid body with an obstacle is presented in [25]. This 
paper is a generalization of the reference [25] by considering more than one ob-
stacle, each one being characterized by a different coefficient of restitution. The 
great problem is to determine the collision point between the rigid solid and one 
particular obstacle. In this paper the rigid solid is an ellipsoid and the obstacles are 
some planar surface. The theory is full developed and it can be generalized to 
other types of rigid solids and obstacles. 

 
2. General aspects 

Let us consider an ellipsoid moving in the space acted by a general system of 
forces that reduces at the point C  at the resultant F  and a resultant moment M  

(Fig. 1). 
Let OXZY  be a fixed reference frame having the Z - axis vertical ascendant 

and the X -axis and Y -axis defining a horizontal plane. 
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Figure 1. The motion of an ellipsoid 

 
Let Cxyz  be a mobile reference frame, rigidly linked to the ellipsoid, the axes 

Cx , Cy  and Cz  being the principal central axes of inertia. 

We denote by 0X , 0Y  and 0Z  the coordinates of the center of mass of the el-

lipsoid relative to the fixed reference frame, and by xJ , yJ  and zJ  its principal 

central moments of inertia and let m  be the mass of the ellipsoid. We may write 

( )
5

22 cbm
J x

+= , 
( )

5

22 acm
J y

+= , 
( )

5

22 bam
J z

+= , (1)

where a , b  and c  are the semi-axes of the ellipsoid. 

The moving equations of the ellipsoid are (Fig. 1) 
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( ) xzyzyxx MJJJ =ωω−−ωɺ , ( ) yxzxzyy MJJJ =ωω−−ωɺ , 

( ) zyxyxzz MJJJ =ωω−−ωɺ , 
(3)
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in which xω , yω  and zω  are the angular velocities around the principal central 

axes of inertia, XF , YF , ZF  are the components of the resultant on the axes of 

the fixed frames, while xM , yM  and zM  are the moments relative to the axes of 

the mobile reference system. 
 Let be P  a generic point situated on the surface of the ellipsoid, and let X , 
Y , Z , and x , y , z  respectively, be the coordinates of the point P  relative to 

the fixed and mobile systems of reference, respectively 
If we make the notations 

– [ ]A  - the rotation matrix of the ellipsoid; 

– { }R , { }0R , [ ]r , { }r  - the matrices 

{ } [ ]TZYX=R , (4)

{ } [ ]T0000 ZYX=R , (5)

{ } [ ]Tzyx=r , (6)
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xz

yz

r ; (7)

– ψ , θ , ϕ  - the Bryan rotation angles; 

– [ ]ψ , [ ]θ , [ ]φ  - the matrices 

[ ]
















ψψ
ψ−ψ=

cossin0

sincos0

001

ψ , (8)
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θθ−

θθ
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cos0sin

010

sin0cos

θ , (9)
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ϕϕ
ϕ−ϕ

=
100

0cossin

0sincos

φ , (10)

Where from 

[ ] [ ][ ][ ]φθψA = ; (11)

– { }β  - the column matrix 

{ } [ ]Tϕθψ=β ; (12)

– { }ψu , { }θu , { }ϕu  - the column matrices 



 359 

{ } [ ]T001=ψu , (13)

{ } [ ]T010=θu , (14)

{ } [ ]T
100=ϕu ; (15)

– [ ]Q  - the matrix 

[ ] [ ] [ ] { } { } { }[ ]ϕθψ= uuuθφQ
TT

; (16)

– { }ω , [ ]ω  - the matrices of angular velocity relative to the mobile reference 

system 

{ } [ ]Tzyx ωωω=ω , (17)

[ ]
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Where from 

{ } [ ]{ }βQω ɺ= ; (19)

– ( )[ ]0ω  - the matrix of angular velocity relative to fixed reference system 
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Then the following relations way be written [21] 

{ } { } [ ] [ ] [ ]{ }βQrARR 0
ɺɺɺ T++= , (21)

( )[ ][ ][ ][ ]T0 AωAω . (22)

Assuming now that the rigid solid collides simultaneously at the points iP , 

ni  ,1= , with some fixed obstacles, the coefficients of restitution being ik , 

ni  ,1= , then we have [25] 

{ } { } ( ) [ ] { }ic

n

i i

ini

g

vk
NMvv

1

1

0
0 1 −

=
∑

++= , (23)

where { }v  and { }0v  are the column matrices of the velocities after and before de 

collision 

{ } [ ]Tzyxzyx vvvωωω=v , (24)

{ } [ ]T0000000
zyxzyx vvvωωω=v , (25)
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kjin iii
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i , j , and k  being the unit vectors of the axes OX , OY  and OZ , 

kjinCP iiiii fed ++=× , (27)

{ } [ ]Tiiiiiii fedcba=N  (28)
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{ } [ ]iiii cba=n , (31)

{ } { }iinv nR
Tɺ= , (32)
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The impulse at the point iP  is [25] 
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i
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g

vk
P

01 +−= . (35)

The equation of the ellipsoid reads 



 361 

1
2

2

2

2

2

2

=++
c

z

b

y

a

x
. (36)

Taking into account the relation 
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it results 
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Writing the matrix of rotation [ ]A  in the form 

[ ]
















=

333231

232221

131211

aaa

aaa

aaa

A , (39)

the expression (38) becomes 

( ) ( ) ( )031021011 ZZaYYaXXax −+−+−= , 

( ) ( ) ( )032022012 ZZaYYaXXay −+−+−= , 

( ) ( ) ( )033023013 ZZaYYaXXaz −+−+−= . 

(40)

 
3. The collision between the ellipsoid and the horizontal plane 

Let us consider now the Fig. 2. 

The distance between the point ( )ZYXP ,,  and the plane 0=Z  is given by 

Z . 

Let ( )zyxF ,,  be the Lagrange function 

( ) 






 −++λ+= 1,,
2

2
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x
ZzyxF . (41)

We get 
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∂
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∂
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Figure 2. The collision between the ellipsoid and the horizontal plane. 

 
Equating to zero the relations (42) – (45), one obtains 

λ
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λ
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2
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2
33

22
32

22
31

2

33
2

32
2

31
2

0
acabaa

acabaa
ZZ

++
++= ∓ . (48)

If 0>Z , then no collision is present. 

If 0=Z , then we have two situations: 

a) the component Zv  of the velocity of the point P  is a positive one. In this 

case there is no collision; 

b) the component Zv  of the velocity of the point P  is negative. In this case 

we have a collision, which can be discussed with the aid of the formulae presented 
in paragraph 2 for 1=i . 

 
4. The collision between the ellipsoid and an oblique plane 

We now refer to the Fig. 3. 
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Figure 3. The collision between the ellipsoid and the oblique plane. 

 
The equation of the plane reads 

0=δ+γ+β+α ZYX . (49)

The distance between a point ( )ZYXP ,,  and the plane is 

222 γ+β+α

δ+γ+β+α
=

ZYX
dist , (50)

so we can use the Lagrange function 

( ) ( )







 −++λ+
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δ+γ+β+α= 1,,
2
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2
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222

2

c

z
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y

a

xZYX
zyxF . (51)

The following system is obtained 

( ) ( ) 0
22

2131211222
=λ+γ+β+α

γ+β+α
δ+γ+β+α=

∂
∂

a

x
aaa

ZYX

x

F
, (52)

( ) ( ) 0
22

2232221222
=λ+γ+β+α

γ+β+α
δ+γ+β+α=

∂
∂

b

y
aaa

ZYX

y

F
, (53)



 364 

( ) ( ) 0
22

2333231222
=λ+γ+β+α

γ+β+α
δ+γ+β+α=

∂
∂

c

z
aaa

ZYX

z

F
, (54)

01
2

2

2

2

2

2

=−++=
λ∂

∂
c

z

b

y

a

xF
. (55)

Taking into account that 

( ) ( )
( ) , 321000332313

322212312111

CzByBxBZYXzaaa

yaaaxaaaZYX

+++=δ+γ+β+α+γ+β+α+
γ+β+α+γ+β+α=δ+γ+β+α

 (56)

the equations (52) - (54) read 

131211

222

2321
aaaa

x
CzByBxB

γ+β+α
γ+β+αλ−=+++ , 

232221

222

2321
aaab

y
CzByBxB

γ+β+α
γ+β+αλ−=+++ , 

333231

222

2321
aaac

x
CzByBxB

γ+β+α
γ+β+αλ−=+++  

(57)

or, equivalently, 
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( ) CzByBx
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B −=++
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γ+β+αλ+ 32
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( )
( ) CzBy
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BxB −=+









γ+β+α
γ+β+αλ++ 3

232221
2

222

21 , 

( )
( ) Cz

aaac
ByBxB −=









γ+β+α
γ+β+αλ+++

333231
2

222

321 , 

(58)

that is, a system of three linear equations with three unknowns x , y  and z . 

Solving this system, we obtain the solution ( )λ= xx , ( )λ= yy  and 

( )λ= zz . Replacing this solution into (55) we get a second degree equation in λ  

with the roots 1λ  and 2λ . For these roots we calculate the values ix , iy , iz , 

2 ,1=i , and then iX , iY , iZ , 2 ,1=i , with the aid of the formula (37). The next 

step consists in the calculation of 

222 γ+β+α

δ+γ+β+α
= iiii

i

ZYX
dist , 2 ,1=i . (59)

The following situations may occur: 

a) both 0>idist , 2 ,1=i . In this case there is no collision; 

b) there exists a distance id  for which 0=idist . The following sub cases 

have to be discussed (Fig. 3): 
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b.1) if 0<⋅ nvP , then we have a collision at the point P  and we apply the 

formulae from section 2, for one point of collision, 

b.2) if 0≥⋅ nvP , then there is no collision at the point P . 

 
5. Simultaneous collision with two planes 

We refer now to Fig. 4. 
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Figure 4. The collision between the ellipsoid and two planes. 

 
The equations of the planes are 

0=δ+γ+β+α iiii ZYX , 2 ,1=i . (60)

The procedure is similar to that described in paragraph 4, the only modifica-
tion being given by the notations of α , β  and γ  at which one added the index i . 

We obtain now two systems (58), corresponding to the two contact points 1P  

and 2P . 

Let us denote the distances by adding a superior index that corresponds to 
the points. 

We have the following situations: 

a) all distances ( ) 0>j
idist , 2 ,1=i , 2 ,1=j . In this case there is no colli-

sion; 

b) there is only one distance for which ( ) 0=j
idist . We have to consider the 

following sub cases: 

b.1) if 0<⋅ jPj
nv , then we have a collision at the point jP  and we apply 

the formulae presented in the paragraph 2 for one point of collision, 
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b.2) if 0≥⋅ jPj
nv , then there is no collision; 

c) there exist the distances ( ) 0=j
idist  and ( ) 0=l

kdist , lj ≠ . Now we have 

the following sub cases: 

c.1) if 0<⋅ jPj
nv  and 0<⋅ lPl

nv , then we have two points of collision and 

we apply the formulae from section 2 for two points of collision, 

c.2) if 0<⋅ jPj
nv  and 0≥⋅ lPl

nv , then there is only one collision at point 

jP  and again we apply the formulae from paragraph 2 for one point of collision, 

c.3) if 0≥⋅ jPj
nv  and 0≥⋅ lPl

nv , then there is no collision. 

 
6. Example 

Let us consider that the two planes are the OXZ  and OYZ  planes for which 

j=1n  and in =2 . 

In addition, the ellipsoid’s equation is 

1
411

2

2

2

2

2

=++ zyx
, (i)

that is, m 1=a , m 1=b , m 2=c . The mass of ellipsoid is kg 500=m , where-

from it results that the central principal moments of inertia read 2kgm 200=xJ , 

2kgm 200=yJ , 2kgm 100=zJ . 

The first Lagrange function is 

( ) 






 −++λ+=λ 1
4

,,,
2

22
11

z
yxYzyxF  (ii)

and we obtain the system 

02 121
1 =λ+=

∂
∂

xa
x

F
, 02 122

1 =λ+=
∂
∂

ya
y

F
, 0

4

2 1
23

1 =λ+=
∂
∂ z

a
z

F
, 

01
4

2
22 =−++ z

yx . 

(iii)

It successively results 

1

21

2λ
−= a

x , 
1

22

2λ
−= a

y , 
1

232

λ
−= a

z , (iv)

2
23

2
22

2
211 4

2

1
aaa ++±=λ , (v)

2
23

2
22

2
21

232221
0

4

4

aaa

aaa
YY

++
++= ∓ . (vi)
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Similarly, one gets 

2
13

2
12

2
11

232211
0

4

4

aaa

aaa
XX

++
++= ∓ . (vii)

The simultaneous collisions appear when (assuming 0≥X , 0≥Y ) 

2
23

2
22

2
21

232221
0

4

4

aaa

aaa
Y

++
++= , 

2
13

2
12

2
11

131211
0

4

4

aaa

aaa
X

++
++= . (viii)

We assume that the Bryan rotation angles are 045=ψ , 030=θ , and 

090=ϕ ; we may write 
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=
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and it results 
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φθψA , (x)

011 =a , 
2

3
12 −=a , 

2

1
13 =a , 

2

2
21 =a , 

4

2
22 −=a , 

4

6
23 −=a , 

2

2
31 =a , 

4

2
32 =a , 

4

6
33 =a . 

(xi)

For the simultaneous collision one needs 

19

34 −=OX , 
26

26 −=OY . (xii)

If we consider that there is no rotation, that is 00=ψ , 00=θ , 00=ϕ , 

which is equivalent to state that the ellipsoid has only translational motion, then 
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[ ]
















=
100

010

001

A , (xiv)

111 =a , 012 =a , 013 =a , 021 =a , 122 =a , 023 =a , 031 =a , 032 =a , 

133 =a , 
(xv)

10 =Y , 10 =X , (xvi)

which is the expected answer, the problem being very simple in this case. 

7. Conclusion 

The paper presents the general approach for the study of the multi-collision of 
an ellipsoid with several planar surfaces. The general theory is discussed using the 
theory of inertances, the authors obtaining the velocities after the collision. The 
presentation starts with the simple case of the collision of the ellipsoid with the 
horizontal plane and is developed to the collision of the ellipsoid with an oblique 
plane and, finally, we discussed the collision of the ellipsoid with two planar sur-
faces. Obviously, the discussion may be generalized for the collision of the ellipsoid 
with several planar surfaces. 

The coefficients of restitution may be different from one planar surface to an-
other and no restriction is imposed for them in this paper. It is known [19] that in 
the case of the collision without friction the three coefficients of restitution: New-
ton, Poisson and energetic are equals. The formulae presented in this paper are 
deduced using the Poisson coefficient of restitution. 

In the situations considered in this paper, the motion of the rigid solid after 
the collision is perfectly determined. A critique case appear at the simultaneous 
collision with two parallel planes when the distribution of velocities before the colli-
sion is a particular one (e.g. the component of the velocity parallel to the two 
planes does not vanish). These cases are eliminated from our discussion. Some 
considerations to this problem may be found in [20], where the authors considered 
the collision with friction. 

The question: with how many planar surfaces may simultaneous collide the el-
lipsoid will be the subject of our next paper. 
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