
 211 

 

 

 

Sinc Function based Interpolation Method to Accu-
rate Evaluate the Natural Frequencies  

Andrea Amalia Minda, Gilbert-Rainer Gillich 

Due to leakage phenomena the frequencies and amplitude of the vi-
bration signals given by the sinc function are not indicated correctly. 
There are interpolation methods that solve the problem of frequency 
evaluation but which sometimes present significant errors. This paper 
presents how the real value can be found if the amplitudes are known 
on 3 spectral lines that are in the vicinity of the actual frequency. 
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1. Introduction   

The spectral leakage phenomenon occurs when truncated signals with finite 
length are used. This is why other frequency components are obtained besides 

the original frequency. To reduce the effects of this phenomenon we can take a 

different window function or choose more samples. Especially for short-time 
signals the phenomenon of spectral leakage occurs [1]. 

For a precise frequency determination, advanced algorithms must be applied. 
In [2] a study regarding spectral leakage and aliasing using biwavenumber 

transmission function is presented.  
In damage detection, we want to improve the frequency readability using 

interpolation methods. The methods used are based on analyzing two or three 

points belonging to a spectrum obtained from vibration signal measurements. 
A number of papers present different interpolation methods. Among those 

who have developed interpolation methods based on the study of two spectral 
lines, we mention Grandke who gives an efficient method that involves one DFT 

peak and its bigest neighbor, Quinn who proposed a method in which two 

interpolations are made, both using only two amplitudes [4]. Another similar 
interpolation method is given by Jain et al. [5] 

Interpolation methods based on the use of three spectral lines and thus three 
amplitudes have been developed by: Ding, which proposed a barycentric method 
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[6]; Voglewede with a quadratic method [7]; Jacobsen with a new quadratic esti-
mator [8]; Çandan [9] who gives a relation to improve Jaconsen’s correction esti-

mator.  
Using an iterative interpolation method based on a sequential removal of 

strong sinc functions in the spatial frequency domain an elimination of spectral 

leakage is reported in [10]. In [11] there are shown the advantages of using the 
Gaussian method of interpolation. 

A frequency estimation method based on polynomial interpolation is 
introduced in [12] and the obtained results are compared with that from other 

frequency evaluation methods in order to find its accuracy. 
In this paper we want to develop an interpolation method based on sinc 

function. For this we study the way in which the energies are distributed on the 

spectral lines, if they are conform to the sinc function.  
 

2. Theoretical background 

A continuous signal ( )x t has a discrete representation [16]:  

{ } { }[0], [1],..., [ ],..., [ 1]x x x x k x N= −     (1) 

Knowing the sampling time τ , the number of samples N and the sampling 

rate SF  the signal time length is calculated: 
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The sequence {x} from (1) is expressed as a sum of sinusoids  
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where the coefficients ja  are defined as 
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and jf  is the frequency of the -thj component, given by  
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The frequencies jf  are equidistantly distributed in the spectrum and there 

appear the spectral lines. The distance f∆ between two consecutive spectral lines 

is the frequency resolution. The power of the function cos is leaked out from its 

real frequency component into the components of the Fourier series 
representation. We calculate the real coefficients 

     ∫=
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If ω is large enough we can consider  
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where f∆= πω 20  and mfπω 2= .  

The power spectrum is a powerful tool for frequency evaluation [16] and is 

given by:  
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where xxx /sin)( =sinc is the sinc function.  

It can thus be concluded that the total power of the signal ( )tx  is 

concentrated around the frequency mf  and the spectral component at any 

frequency jf  includes a leaked contribution from mf . So the function 2sinc  

determines the size of this contribution.  
 

3. Numerical verification 

 In order to determine the real frequency we need to find a curve that best 

fits with some points obtained from DFT. We consider a harmonic signal that we 

have cut, processed and analyzed for various lengths of time. We have mf =5Hz, 

N=4,8, the sampling time τ =0.2s, t=T*N=0.96s. Starting with the observation 

time length 1.1sST =  we considered ten observation times with the 0.2 s step. 

Different frequency resolutions are achieved for the different time lengths. 
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Table 1. The coordinates of three considered points for several observation times   

 

sT  

[s] 

∆f  

[Hz]       

1.1 0.90909 3.63636 0.24571 4.54545 0.66693 5.45454 0.60894 

1.08 0.92592 3.70370 0.24297 4.62963 0.78051 5.55555 0.48337 

1.06 0.94339 3.77358 0.20824 4.71698 0.86637 5.66037 0.36156 

1.04 0.96153 3.84615 0.15081 4.80769 0.92993 5.76923 0.23961 

1.02 0.98039 3.92156 0.08090 4.90196 0.97575 5.88235 0.11659 

1 1 4 0 5 1 6 0 

0.98 1.02040 4.08163 0.10058 5.10204 0.99166 6.12244 0.09685 

0.96 1.04166 4.16666 0.22826 5.20833 0.94150 6.25 0.16205 

0.94 1.06383 4.25531 0.37816 5.31914 0.85048 6.38297 0.19194 

0.92 1.08695 4.34782 0.53349 5.43478 0.73149 6.52173 0.19380 

 

 

 
 

Figure 1. Graphical representation of the data obtained from the measurements 
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 If we consider three points we want to interpolate, for the spectral lines j-1, j 

and j + 1 we will have the amplitudes 1−jA , jA  and 1+jA . In table 1 we have this 

observation time lengths, the coordinates for the three considered points and the 
frequency resolution.  
 In figure 1 we have the graphical representation of the data obtained from 

the measurements more precisely, we plotted the amplitudes, from table 1, de-
pending of frequencies. As can be seen from figure 1, we can not find a curve 

going through these points. For this, a correction is needed. For this we multiply 

the column 1−jA  with 0.86 and the column 1+jA  by 1/0.86= 1.16, thus obtaining 

the graph in figure 2. 

  

 
 

Figure 2. The corrected graph 

  
 We want to see if the sinc function defined by (10) best fits with the points 
obtained from DFT.  
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 Figure 3 presents a comparison between the amplitudes obtained after the 

correction and the sinc function given by (10). With the adjustment we made we 

find that a sinc function fits pretty well with the corrected data. In Table 2 the 
error between sinc function and corrected data as well as relative error in per-

centages are presented. 
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Figure 3. Graphical representation of the corrected data and the sinc function 

  
   

 Table 2. Comparison between the corrected amplitudes and the sinc function  

Sinc Amplitude error error % Sinc Amplitude error error % 

0.212333 0.211313 -0.00102 -0.48022 0.984264 0.975751 -0.00851 -0.86494 

0.196964 0.208959 0.011995 6.090161 1 1 0 0 

0.169437 0.179086 0.00965 5.69519 0.98296 0.991669 0.008709 0.885983 

0.128202 0.129699 0.001497 1.167501 0.930119 0.941507 0.011388 1.224341 

0.071993 0.069577 -0.00242 -3.35565 0.840676 0.850485 0.009809 1.166772 

3.9E-17 0 -3.9E-17 0 0.716799 0.73149 0.014691 2.049462 

0.087918 0.086501 -0.00142 -1.61143 0.564253 0.562059 -0.00219 -0.38872 

0.190986 0.196308 0.005322 2.786349 0.422115 0.420419 -0.0017 -0.40196 

0.307257 0.325222 0.017965 5.846804 0.274402 0.278617 0.004216 1.536325 

0.433355 0.458803 0.025449 5.872447 0.130318 0.135573 0.005255 4.032404 

0.564253 0.579698 0.015446 2.737389 3.9E-17 0 -3.9E-17 0 

0.693154 0.676935 -0.01622 -2.33995 0.10642 0.112619 0.006198 5.82449 

0.789149 0.780512 -0.00864 -1.09447 0.180063 0.18844 0.008376 4.651849 

0.873352 0.866372 -0.00698 -0.79926 0.214783 0.223197 0.008413 3.917098 

0.940267 0.92993 -0.01034 -1.09938 0.208687 0.22535 0.016663 7.984449 
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4. Conclusion  

As can be seen, the data obtained fit well enough to the sinc function, only 
requiring a small adjustment of the values. The worst results are obtained for the 
lateral lobes. If there is no need for high precision we can use the sinc function, 

but for high precision we have to find another adapted function, based on this 
function.  
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