

CONFIDENCE INTERVAL OF ANNUAL EXTREMUM OF AMBIENT AIR TEMPERATURE AT DHUBRI

Rinamani Sarmah Bordoloi¹, Dhritikesh Chakrabarty² & Manash Pratim Kasyap³

¹Research Scholar, Department of Statistics, Assam Down Town University, Panikhaiti, Guwahati Assam, India
 ²Research Guide, Department of Statistics, Handique Girls' College, Panikhaiti, Guwahati, Assam, India
 ³Research Guide, Department of Statistics, Assam Down Town University, Panikhaiti, Guwahati, Assam, India

ABSTRACT

Confidence intervals (of 95%, 99% & 99.73% degrees of confidence) have been determined for each of annual maximum & annual minimum of ambient air temperature at Dhubri. The determination is based on the data from 1969 onwards collected from the Regional Meteorological Centre at Tezpur. This paper describes the method of determination of them and the numerical findings on them.

KEYWORDS: Ambient Air Temperature at Dhubri, Annual Extremum, Confidence Interval

Article History

Received: 21 May 2018 | Revised: 01 Jun 2018 | Accepted: 18 Jun 2018

I. INTRODUCTION

Observations data collected from experiments suffer or or survey from chance error (which is unavoidable or uncontrollable) even if all the assignable (or intentional) causes or the sources of errors are controlled or eliminated and consequently the findings obtained by analyzing the observations or data which are free from the assignable errors are also subject to errors due to the presence of chance error in the observations (D.Chakrabarty2014) (R. Sarmah Bordoloiand and D. Chakrabarty 2016). Determination of parameters, in different situations, based on the observations is also subject to error due to the same reason. Searching for mathematical models describing the association of a chance error with the observations is necessary for analyzing the errors. There are innumerable situations/forms corresponding to the scientific experiments. The simplest one is that where observations are composed of some parameter and chance errors (D.Chakrabarty2014, 2015,2008). The existing methods of estimation namely least squares method, maximum likelihood method, minimum variance unbiased method, method of moment and method of minimum chi-square (Ivory1825, G.A.Barnard1949, Lucien Le Cam, Birnbaum Allan 1962, Erich L. Lehmann 1990, Anders Hold 1999) provides the estimator of the parameter which suffers from some error. In other words, none of these methods can provide the true value of the parameter. However, An analytical method has been developed, by Chakrabarty [D.Chakrabarty2014] for determining the true value of the parameter from observed data in the situation where the observations consist of a single parameter chance error but any assignable error. The method has already been successfully applied in determining the central tendency of each of annual maximum and annual minimum of the ambient air temperature at Guwahati

(D.Chakrabarty2014). Again the method has already been successfully applied in determining the central tendency of each of annual maximum and annual minimum of the ambient air temperature at Tezpur (Ramani Sarmah Bordoloi 2016). This paper deals with the determination of the central tendency of each of annual maximum and annual minimum of the ambient air temperature at Tezpur by the same method. The study was carried out using the data since 1969 onwards.

2. GAUSSIAN DISCOVERY

In the year 1809, German mathematician *Carl Friedrich Gauss* discovered the most significant probability distribution in the theory of statistics popularly known as normal distribution, the credit for which discovery is also given by some authors to a French mathematician *Abraham De Moivre* who published a paper in 1738 that showed the normal distribution as an approximation to the binomial distribution discovered by *James Bernoulli* in 1713 {*Bernoulli* (1713), *Chakrabarty* (2005*b*, 2008), *De Moivre* (1711, 1718), *Gauss* (______), *Kendall* and *Stuart* (1977, 1979), *Walker* and *Lev* (1965), *Walker* (1985), *Brye* (1995), *Hazewinkel* (2001), *Marsagilia* (2004), *Stigler* (1982), *Weisstein* (------) et al}. The normal probability distribution plays the key role in the theory of statistics as well as in the application of statistics. There are innumerable situations where one can think of applying the theory of normal probability distribution to handle the situations.

The probability density function of normal probability distribution discovered by *Gauss* is described by the probability density function

$$f(\mathbf{x}:\boldsymbol{\mu},\boldsymbol{\sigma}) = \{ \boldsymbol{\sigma} (2\pi) \frac{1}{2} \}. \exp\left[-\frac{1}{2} \{ (\mathbf{x}-\boldsymbol{\mu})/\boldsymbol{\sigma} \}^2 \right],$$

$$-\infty < \mathbf{x} < \infty, -\infty < \boldsymbol{\mu} < \infty, 0 < \boldsymbol{\sigma} < \infty.$$
(2.1)

where (i) X is the associated normal variable,

(ii) $\mu \& \sigma$ are the two parameters of the distribution

and (iii) Mean of $X = \mu$ & Standard Deviation of $X = \sigma$.

Note: If $\mu = 0 \& \sigma = 1$, the density is standardized and X then becomes a standard normal variable.

Area Property of Gaussian Distribution:

If $X \sim N(\mu, \sigma)$, then

(i) $P(\mu - 1.96 \sigma < X < \mu + 1.96 \sigma) = 0.95,$ (2.2)

(ii) $P(\mu - 2.58 \sigma < X < \mu + 2.58 \sigma) = 0.99$ (2.3)

& (iii) P(
$$\mu - 3\sigma < X < \mu + 3\sigma$$
) = 0.9973. (2.4)

If X is a standard normal variable then

(i) P(-1.96 < X < 1.96) = 0.95, (2.5)

(ii) P(-2.58 < X < 2.58) = 0.99 (2.6)

& (iii) P(-3 < X < 3) = 0.9973. (2.7)

3. CONFIDENCE INTERVAL

If X_1, X_2, \ldots, X_n are n observations on μ (some characteristic / measure / parameter whose value is to be determined).

In this situation, each observation X_i is composed of the true value of μ and an error ε_i (occurring due to chance).

Thus the observations, in such types of situations, satisfy the model

 $X_i = T(\mu) + \varepsilon_i$

where (i) X_i is the ith observation on μ ,

(ii) T (μ) is the true value of μ

& (iii) ε_i is the chance error associated with X_i .

Let X_1, X_2, \ldots, X_n be, n observations on μ (some characteristic / measure / parameter whose value is to be determined).

T (μ), the true value μ is unique.

But the observed values on µ are different.

The variation in the observed values occurs due to two types of causes/errors namely

1. Assignable Cause(s) that is (are) avoidable / controllable

& 2. Chance, Cause/Error that is unavoidable / uncontrollable

The values X_i (i = 1, 2,, n) should be constant if there exists no cause of variation among them over i.

However, the chance cause of variation exists always.

Thus, if no assignable cause of variation exists in X_i (i = 1, 2, ..., n), we have

 $X_i = T(\mu) + \epsilon_i, (i = 1, 2, \dots, n)$

where (i) X_i is the ith observation on μ ,

(ii) $T(\mu)$ is the true value of μ

& (iii) ε_i is the chance error associated to X_i .

 $(i = 1, 2, 3, \dots).$

Here $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ are values of the chance error variable ε associated to X_1, X_2, \ldots, X_n respectively. It is to be noted that

- X₁, X₂,, X_n are known,
- $T(\mu), \epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are unknown
- The number of linear equations in (3.1) is n with n + 1 unknowns implying that the equations are not solvable mathematically.

Reasonable Facts Regarding ε_i :

- $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are unknown values of the variables ϵ .
- The values $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ are very small relative to the values X_1, X_2, \ldots, X_n .
- The variable ε assumes both positive and negative values.
- $P(\varepsilon = a) = P(\varepsilon = -a)$ for every a assumed by ε .
- Sum of all possible values of each ε is 0 (zero).
- Standard deviation of ε is unknown and small, say σ_{ε} .
- ε obeys the normal probability law. Thus $\varepsilon \sim N(0, \sigma_{\varepsilon})$.

3.1. Confidence Interval of Error 'ε':

Since $\varepsilon \sim N(0, \sigma_{\varepsilon})$,

By the area property of Gaussian distribution given by the equation (2.5),

$$P(-1.96 \sigma_{\varepsilon} < \varepsilon < 1.96 \sigma_{\varepsilon}) = 0.95$$
(3.1)

i.e. the interval

$$(-1.96 \sigma_{\varepsilon} 1.96 \sigma_{\varepsilon}) \tag{3.2}$$

is the 95% confidence interval of ε .

This means that out of 100 random observations on ε (unknown), maximum 5 observations fall outside this interval.

Again by the area property of Gaussian distribution given by the equations (2.6) and (2.7),

 $\& \mathbf{P}(-3\sigma_{\varepsilon} < \varepsilon < 3\sigma_{\varepsilon}) = 0.9973 \tag{3.4}$

Respectively which implies that the intervals

$$(-2.58\,\sigma_{\varepsilon}, 2.58\,\sigma_{\varepsilon}) \tag{3.5}$$

$$\& (-3\sigma_{\varepsilon}, 3\sigma_{\varepsilon}) \tag{3.6}$$

are respectively the 99% & 99.73% confidence intervals of ε .

These respectively mean that out of 100 random observations on ε (unknown), maximum 1 observation falls outside the interval ($-2.58 \sigma_{\varepsilon}$, $2.58 \sigma_{\varepsilon}$) and out of 10000 random observations on ε (unknown), maximum 27 observations fall outside the interval

 $(-3\sigma_{\epsilon}, 3\sigma_{\epsilon}).$

3.2. Confidence Interval of Parameter 'µ':

Also under the assumption number (7),

 $\mathbf{X} - \boldsymbol{\mu} \sim \mathbf{N}(0, \sigma_{\varepsilon})$

or equivalently X ~ N(μ , σ_{ϵ}).

Thus, by the same area property of Gaussian distribution mentioned above,

(i)
$$P(X - 1.96 \sigma_{\epsilon} < \mu < X + 1.96 \sigma_{\epsilon}) = 0.95,$$
 (3.7)

` i.e. the interval

 $(X - 1.96 \sigma_{\epsilon}, X + 1.96 \sigma_{\epsilon})$ (3.8)

is the 95% confidence interval .

This means that out of 100 random intervals corresponding to each random observation, the value of μ will fall outside a maximum 5 such intervals.

(ii)
$$P(X - 2.58 \sigma_{\epsilon} < \mu < X + 2.58 \sigma_{\epsilon}) = 0.99$$
 (3.9)

i.e. the interval

$$(X - 2.58 \sigma_{\epsilon}, X + 2.58 \sigma_{\epsilon})$$
 (3.10)

is the 99% confidence interval of μ .

This means that out of 100 random intervals corresponding to each random observation, the value of μ will fall outside a maximum 1 such intervals.

& (iii) $P(X - 3\sigma_{\epsilon} < \mu < X + 3\sigma_{\epsilon}) = 0.9973$ \(3.11)

i.e. the interval

$$(X - 3\sigma_{\varepsilon}, X + 3\sigma_{\varepsilon}) \tag{3.12}$$

is the 99.73% confidence interval of $\mu.$

This means that out of 10000 random intervals corresponding to each random observation, the value of μ will fall outside a maximum 27 such intervals.

3.3. Confidence Interval of Observation Variable 'X ':

Also under the assumption number (7),

$$X - \mu \sim N(0, \sigma_{\epsilon})$$

or equivalently $X \sim N(\mu, \sigma_{\epsilon})$.

Thus, by the same area property of Gaussian distribution mentioned above,

(i)
$$P(\mu - 1.96 \sigma_{\epsilon} < X < \mu + 1.96 \sigma_{\epsilon}) = 0.95,$$
 (3.13)

i.e. the interval

$$(\mu - 1.96 \sigma_{\epsilon}, \mu + 1.96 \sigma_{\epsilon})$$
 (3.14)

is the 95% confidence interval of X.

This means that out of 100 random observations, maximum 5 observations fall outside this interval.

(ii)
$$P(\mu - 2.58 \sigma_{\epsilon} < X < \mu + 2.58 \sigma_{\epsilon}) = 0.99$$
 (3.15)

i.e. the interval

$$(\mu - 2.58 \sigma_{e}, \mu + 2.58 \sigma_{e}) \tag{3.16}$$

is the 99% confidence interval of X.

This means that out of 100 random observations, maximum 1 observations fall outside this interval.

$$\& \text{(iii)} P(\mu - 3\sigma_{\varepsilon} < X < \mu + 3\sigma_{\varepsilon}) = 0.9973 \tag{3.16}$$

i.e. the interval

$$(\mu - 3\sigma_{\varepsilon}, \mu + 3\sigma_{\varepsilon}) \tag{3.17}$$

is the 99.73% confidence interval of X.

This means that out of 10000 observations, maximum 27 observations fall outside the interval.

Note

The set of observations

 $X_1, X_2, \ldots, X_i, \ldots, X_n$

constitute the population for the period from the year '1' to the year 'n'.

Thus,
$$\mu = \text{Arithmetic Mean of } (X_1, X_2, \dots, X_i, \dots, X_n)$$
 (3.18)

and $\sigma_{\epsilon}^{2} = Variance \text{ of } (X_{1}, X_{2}, \ldots, X_{i}, \ldots, X_{n})$

Table 1

Year No	Observed Value (X _i)	$(X_i - 36.3)^2$	Year No	Observed Value	$(X_i - 36.3)^2$
1	36.5	0.04	13	35.8	0.25
2	36.1	0.04	14	35.3	1.00
3	36.2	0.01	15	35.8	0.25
4	35.2	1.21	16	35.5	0.64
5	39.6	10.89	17	35.3	1.00
6	35.7	0.36	18	36.4	0.01
7	37.8	2.25	19	36.8	0.25
8	38.4	4.41	20	35.2	1.21
9	35.7	0.36	21	36.3	00
10	35.1	1.44	22	35.5	0.64
11	38.7	5.76	23	35.0	1.69
12	37.5	1.44	24	36.2	0.01
			25	36.0	0.09

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} Xi$$

$$=\frac{1}{25} \times 907.6$$

= 36.304

Impact Factor (JCC): 4.5095

(3.19)

$$\overline{\mathbf{O}}^2 = = \frac{1}{n} \sum_{i=1}^n (Xi \cdot \overline{X})^2$$

$$=\frac{1}{25} \times 35.25$$

= 1.41

$$G = 1.874342087$$

Confidence interval for µ

95% confidence interval for µ

$$(\overline{X} - 1.96 \frac{6}{\sqrt{25}}, \overline{X} + 1.96 \frac{6}{\sqrt{25}})$$

= (36.304 - 1.96× $\frac{1.874342087}{\sqrt{25}}$, 36.304 + 1.96× $\frac{1.874342087}{\sqrt{25}}$)

= (35.5692579019, 37.0387420981)

Therefore, at 95% confidence interval of μ the ambient temperature at Dhubri is

```
(35.5692579019, 37.0387420981)
```

99% confidence interval for µ

$$(\overline{X} - 2.58 \times \frac{6}{\sqrt{25}}, \overline{X} + 2.58 \times \frac{6}{\sqrt{25}})$$

= (36.304 - 2.58 \times \frac{1.874342087}{\sqrt{25}}, 36.304 + 2.58 \times \frac{1.874342087}{\sqrt{25}})

= (35.3368394832, 37.2711605168)

Therefore, at 99% confidence interval of μ the ambient temperature at Dhubri is

99.73% confidence interval for µ

$$(\overline{X} - 3 \times \frac{6}{\sqrt{25}}, \overline{X} + 3 \times \frac{6}{\sqrt{25}})$$

= (36.304 - 3 \times \frac{1.874342087}{\sqrt{25}}, 36.304 + 3 \times \frac{1.874342087}{\sqrt{25}})

= (35.1793947478, 37.4286052522)

Therefore, at 99.73% confidence interval of μ the ambient temperature at Dhubri is

(35.1793947478, 37.4286052522)

CONFIDENCE INTERVAL OF X

95% Confidence interval for X

(μ - 1.96 s, μ + 1.96 s)

 $= (36.3 - 1.96 \times 1.874342087, 36.3 + 1.96 \times 1.874342087)$

= (32.6262895095, 39.9737104905)

Therefore at 95% confidence interval of X the ambient temperature at Dhubri is

(32.6262895095, 39.9737104905)

99% Confidence interval for X

 $(\mu - 2.58 \times \sigma, \mu + 2.58 \times \sigma)$

= ($36.3 - 2.58 \times 1.874342087$, $36.3 + 2.58 \times 1.874342087$)

= (31.4641974156, 41.1358025844)

Therefore, at 99% confidence interval of X the ambient temperature at Dhubri is

99.73% Confidence interval for X

($\mu - 2.58 \times \sigma, \mu + 2.58 \times \sigma$)

 $= (36.3 - 3 \times 1.874342087, 36.3 + 3 \times 1.874342087)$

= (30.676973739, 41.923026261)

Therefore, at 99.73% confidence interval of X the ambient temperature at Dhubri is

(30.676973739, 41.923026261)

5. ANALYSIS OF ANNUAL MINIMUM TEMPERATURE AT DHUBRI

Year No	Observed Value	$(X_i - 8.8)^2$	Year No	Observed Value	$(X_i - 8.8)^2$
1	8.1	0.49	13	6.1	7.29
2	7.3	2.25	14	10.0	1.44
3	8.8	00	15	9.5	0.49
4	9.2	0.16	16	10.5	2.89
5	9.3	0.25	17	8.9	0.01
6	9.6	0.64	18	9.1	0.09
7	8.6	0.04	19	12.2	11.56
8	7.6	1.44	20	10.0	1.44
9	8.9	0.01	21	9.0	0.04
10	8.4	0.16	22	7.8	1.00
11	9.4	0.36	23	5.8	9.00
12	8.8	00			

Table 2

$$\bar{X} = \frac{1}{23} \sum_{i=1}^{36} X_i$$

$$=\frac{1}{23} \times 202.9$$

= 8.82173913043

$$G^2 = \frac{1}{23} \sum_{i=1}^{23} (X - \mu)^2$$

$$=\frac{1}{23} \times 41.05$$

= 1.78478260869

Impact Factor (JCC): 4.5095

 $G = \sqrt{1.78478260869}$

= 1.33595756245

Confidence interval for µ

95% confidence interval of µ

$$(\overline{X} - 1.96 \frac{\delta}{\sqrt{n}}, \overline{X} + 1.96 \frac{\delta}{\sqrt{n}})$$

= (8.82173913043 - 1.96 × $\frac{1.33595756245}{\sqrt{23}}$, 8.82173913043 + 1.96 × $\frac{1.33595756245}{\sqrt{23}}$)

= (8.27574897011, 9.36772929075)

Therefore, at 95% confidence interval of $\boldsymbol{\mu}$ the ambient temperature at Dhubri is

(8.27574897011, 9.36772929075)

99% confidence interval of µ

$$(\overline{X} - 2.58 \frac{\delta}{\sqrt{n}}, \overline{X} + 2.58 \frac{\delta}{\sqrt{n}})$$

$$= (8.82173913043 - 2.58 \times \frac{1.33595756245}{\sqrt{23}}, 8.82173913043 + 2.58 \times \frac{1.33595756245}{\sqrt{23}})$$

$$= (8.10303779694, 9.54044046392)$$

Therefore, at 99% confidence interval of μ the ambient temperature at Dhubri is (8.10303779694, 9.54044046392)

99.73% confidence interval of µ

$$(\overline{X} - 2.58 \frac{\delta}{\sqrt{n}}, \overline{X} + 2.58 \frac{\delta}{\sqrt{n}})$$

= (8.82173913043 - 3 × $\frac{1.33595756245}{\sqrt{23}}$, 8.82173913043 + 3 × $\frac{1.33595756245}{\sqrt{23}}$)

= (7.98603990544, 9.65743835542)

Therefore, at 99.73% confidence interval of μ the ambient temperature at Dhubri is

(7.98603990544, 9.65743835542)

Confidence interval for X

95% confidence interval of X

(μ - 1.96 s, μ + 1.96 s)

= ($8.8 - 1.96 \times 1.33595756245$, $8.8 - 1.96 \times 1.33595756245$)

= (6.1815231776, 11.4184768224)

Therefore, at 95% confidence interval of X the ambient temperature at Dhubri is

(6.1815231776, 11.4184768224)

```
99% confidence interval of X
```

 $(\mu - 2.58 \sigma, \mu + 2.58 \sigma)$

= (8.8 - 2.58 × 1.33595756245, 8.8 + 2.58 × 1.33595756245)

= (5.35322948888,12.2467705111)

Therefore, at 99% confidence interval of X the ambient temperature at Dhubri is

(5.35322948888,12.2467705111)

99.73% confidence interval of X

 $(\mu - 3\sigma, \mu + 3\sigma)$

 $= (8.8 - 3 \times 1.33595756245, 8.8 + 3 \times 1.33595756245)$

= (4.79212731265, 12.8078726873)

Therefore, at 99.73% confidence interval of X the ambient temperature at Dhubri is

(4.79212731265, 12.8078726873)

6. CONCLUSIONS

The existing statistical methods of estimation yield estimates which are not free from error.

However, the method developed by Chakra artist [8] can yield the estimate which is free from error (i.e. exactly equal to the true value of the parameter). Thus the central tendency of the annual maximum as well as an annual minimum of the ambient air temperature at Dibrugarh as the available data yield, can be taken as 36.3 Degree Celsius and 8.8 Degrees Celsius respectively. Based on these two central tendency Confidence intervals (of 95%, 99% & 99.73% degrees of confidence) have been determined for each of annual maximum & annual minimum of ambient air temperature in Dibrugarh.

The determination of these two is based on the assumption that the data recorded by the Indian Meteorological Department have been recorded correctly. If there is an error in recording the data, the determined value(s) will not be accurate. The determination of these two is based on another assumption that the change in temperature at Dibrugarh during the period whose data have been used in computation has not been influenced by any assignable cause(s). If in this period, some assignable cause has influenced significantly on the change in temperature at this location, the findings are bound to be inaccurate.

7. REFERENCES

- 1. Ivory, "On the Method of Least Squares", Phil. Mag., vol. LXV, pp. 3 10, 1825.
- 2. G. A. Barnard, "Statistical Inference", Journal of the Royal Statistical Society (Series B), vol. 11, pp. 115 149, 1949.
- 3. Birnbaum Allan, "On the Foundations of Statistical Inference", Journal of the American Statistical Association, vol. 57, pp. 269 306, 1962.

- 19
- 4. Lucien Le Cam, "Maximum Likelihood An Introduction", ISI Review, vol. 58, no. 2, pp. 153 –171, 1990.
- 5. Erich L. Lehmann & George Casella, "Theory of Point Estimation", Springer. ISBN 0-387-98502-6, 1998.
- 6. Anders Hald, "On the History of Maximum Likelihood in Relation to Inverse Probability and Least Squares", Statistical Science, vol. 14, pp. 214 – 222, 1999.
- 7. Dhritikesh Chakrabarty, "Analysis of Errors Associated to Observations of Measurement Type ", International Journal of Electronics and Applied Research, 1(1), (ISSN : 2395 0064), 15 28, 2014.
- Dhritikesh Chakrabarty, "Observation Composed of a Parameter and Chance Error: An Analytical Method of Determining the Parameter", International Journal of Electronics and Applied Research, 1(2), (ISSN: 2395 – 0064), 20 – 38, 2014.
- Dhritikesh Chakrabarty, "Observation Consisting of Parameter and Error: Determination of Parameter", Proceedings of the World Congress on Engineering 2015, (WCE 2015, July 1 - 3, 2015, London, U.K.), ISBN: 978-988-14047-0-1, ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online), Vol. II, 680 – 684.
- Dhritikesh Chakrabarty, "Chakrabarty D. (2015) : "Central Tendency of Annual Extremum of Ambient Air Temperature at Guwahati", J. Chem. Bio. Phy. Sci. (E- ISSN : 2249 – 1929), Sec. C, 5(3), 2863 – 2877. Online available at: <u>www.jcbsc.org</u>.
- 11. Sharma, Gr, Et Al. "Ambient Temperature Trend Analysis For The North Saurashtra Region In View Of Climate Change."
- 12. Dhritikesh Chakrabarty (2014) : "Temperature in Assam: Natural Extreme Value", J. Chem. Bio. Phy. Sci. (E-ISSN : 2249 – 1929), Sec. C, 4 (2), 1479 –1488. Online available at: <u>www.jcbsc.org</u>.
- 13. Dhritikesh Chakrabarty (2014) : "Determination of Parameter from Observations Composed of Itself and Errors ", International Journal of Engineering Science and Innovative Technology, 3(2), (ISSN : 2139 5967), 304 311.
- Dhritikesh Chakrabarty (2014) : "Natural Interval of Monthly Extreme Temperature in the Context of Assam", J. Chem. Bio. Phy. Sci. Sec. (E- ISSN : 2249 – 1929), C, 4 (3), 2424 –2433. Online available at: <u>www.jcbsc.org</u>.
- 15. Dhritikesh Chakrabarty (2014) : "Analysis of Errors Associated to Observations of Measurement Type ", International Journal of Electronics and Applied Research (ISSN : 2395 – 0064), 1(1), 15 – 28
- Dhritikesh Chakrabarty (2015) : "Central Tendency of Annual Extremum of Ambient Air Temperature at Guwahati Based on Midrange and Median", J. Chem. Bio. Phy. Sci. (E-ISSN : 2249 – 1929), Sec. D, 5(3), 3193 – 3204. Online available at: <u>www.jcbsc.org</u>.
- Dhritikesh Chakrabarty (2015) : "A Method of Finding True Value of Parameter from Observation Containing Itself and Chance Error", Indian Journal of Scientific Research and Technology, (E-ISSN: 2321-9262), 3(4), 14 – 21. Online available at: <u>http://www.indjsrt.com</u>.
- 18. Dhritikesh Chakrabarty (2015) : "Theoretical Model Modified For Observed Data: Error Estimation Associated To Parameter", International Journal of Electronics and Applied Research (ISSN : 2395 0064), 2(2), 29 45.

- Dhritikesh Chakrabarty (2015 16) : "Confidence Interval of Annual Extremum of Ambientm Air Temperature at Guwahati", J. Chem. Bio. Phy. Sci. (E- ISSN : 2249 – 1929), Sec. C, 6(1), 192 – 203. Online available at: www.jcbsc.org
- 20. J. Bernoulli, "Arts Conjectandi", ImpensisThurmisiorumFratrumBasileae, 1713
- 21. D. Chakrabarty, "Probability: Link between the Classical Definition and the Empirical Definition", J. Ass. Sc. Soc., 2005, 45, 13-18
- 22. D. Chakrabarty, "Bernoulli's Definition of Probability: Special Case of Its Chakrabarty's Definition", Int.J.Agricult.Stat.Sci., 2008, 4(1), 23-27
- 23. Rinamani Sarmah Bordoloi and D. Chakrabarty "CONFIDENCE INTERVAL OF ANNUAL EXTREMUM OFAMBIENT AIR TEMPERATURE AT GUWAHATI "Journal of Mathematics & Systems Sciences (JMASS) Vol. 12, No. 1-2, 2016, ISSN : 0975-5454
- 24. Rinamani Sarmah Bordoloi and D. Chakrabarty "Determination of Parameter from ObservationContaining Itself and Chance Error: Central Tendency of Annual Extremum of Ambient airTemperature at Dibrugarh" International Journal of Advanced Research in Science, Engineering and Technology, ISSN: 2350-0328 Vol. 3, Issue 8, August 2016