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ABSTRACT 

A disturbance observer achieves on-line estimation of unknown disturbances acting on a dynamic system based on 

the input and output information. This paper proposes a nonlinear disturbance observer for a class of nonlinear systems. 

Arbitrarily close estimate of the unknown disturbance can be obtained if the disturbance is bounded with bounded              

first-order time derivative, and the system nonlinearity satisfies a Lipschitz condition. A unique feature of the proposed 

nonlinear disturbance observer is that it allows the Lipschitz constant to be arbitrarily large. 
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1. INTRODUCTION 

In many engineering and science problems, one is concerned with the estimation of disturbances (or unknown 

inputs) acting on a dynamic system [1], [2], [3]. In control engineering, disturbance observer and unknown input observer 

are the most popular approaches to on-line disturbance estimation. The Disturbance Observer (DOB) [4] and [5] approach 

refers to using direct system inverse to estimate the input disturbance. In order to avoid a non-proper system inverse,             

a low-pass Q-filter is cascaded with the system inverse, where the Q-filter is chosen to achieve accurate disturbance 

estimation and to avoid amplification of measurement noise. Different design considerations and design skills have been 

proposed in the literature [6] - [11]. Disturbance rejection control based on DOB has been proved to be very effective 

especially in motion control applications. 

The second approach to disturbance estimation is the unknown input observer. In recent literatures, the most 

popular unknown input observer is the joint state and disturbance observer, where an observer is constructed to 

simultaneously estimate both the unknown state and the unknown disturbance. The designs in [12] - [14] are applicable 

under the assumption that the unknown disturbance is constant or slowly varying. The extended state observer design           

[15] - [17] basically follows the same assumption If knowledge of a disturbance model is known a priori, Luenberger type 

jointed state and disturbance observer can be constructed in [18] - [21] When no disturbance model is available,              

the designs in [22], [23] are applicable.  

Studies on the disturbance observer designs in linear systems are more common than nonlinear ones in the 

literature. The work in [22] and [24] simultaneous estimate the unknown disturbance and unknown state for a class of 

nonlinear systems. Their solution relies on solving an Linear Matrix Inequality (LMI), but the LMI admits a positive 

definite solution only if the Lipschitz constant of the nonlinearity is small [24]. Further, they constraint the relative degree 

from the nonlinearity to the system output to be one [22] There has been study of the disturbance observer for a particular 
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class of nonlinear system, that is, the robot systems [25] - [27]. In these literatures, the robot disturbance observer must 

assume that all the state variables (angles and velocities of all joints) are available for measurement. While the disturbance 

observer in this paper requires only information of system outputs (for example, angles of certain joints), and this 

requirement is much more relaxed than the robot disturbance observer designs. 

The disturbance observer design problem presented in the paper is more difficult than the state observer design 

problem for nonlinear systems. For the state estimation problem for nonlinear systems, one may see the interesting work in 

[28], [29], which shows that a nonlinear state observer exists as long as the distance to unobservability is larger than the 

Lipschitz constant. For the disturbance observer problem treated in this paper, one must first design a robust nonlinear 

observer that ensure small estimation error in front of unknown disturbances (Theorem 3 below). Then, one needs to prove 

that in the state estimation error dynamics, small state estimation error implies small input ex citation. After establishing 

this property can one prove that the disturbance estimation error is small. The disturbance estimation problem is therefore 

non trivial, and is dealt with by Lemma 4 and Theorem 5 in this paper.  

The remainder of this paper is arranged as follows. Section 2 presents the new nonlinear disturbance observer 

design for systems whose nonlinearity enters the system equation in the same direction as the disturbance. Section 3 further 

extends the nonlinear observer so that the nonlinearity and disturbance enter the system equation in different directions. 

Finally, Section 4 gives the conclusions. 

2. NONLINEAR DISTURBANCE OBSERVER 

Consider the disturbance estimation problem for a nonlinear system 

( ( ) ),

.

x Ax Bu G f x d

y Cx

= + + +
=
ɺ

                                                                                                                                   (1) 

Where nx R∈  is the unknown system state, mu R∈  the control input, py R∈  the measured system output, 

qd R∈  the unknown disturbance satisfying 

0 1,  ,d D d D≤ ≤ɺ                                                                                                                                                   (2) 

For two positive constants 
0D  and 

1D  , and ( ) qf x R∈  is a nonlinearity satisfying the Lipschitz condition: 

ˆ ˆ( ) ( ) ,f x f x x xγ− ≤ −                                                                                                                                        (3) 

For some Lipschitz constant 0γ > . Note thaFt in this paper the Lipschitz constant γ  can be arbitrarily large 

while previous papers all constrain γ  to be small. C and G are full rank. It is assumed that 

dim( ) dim( )y d≥ ,                                                                                                                                                (4) 

Where dim stands for dimension. Without loss of generality it is assumed in the sequel that dim(y) =dim (d); the 

case dim(y)>dim (d) can be treated by artificially expanding the dimension of d. Further, it is assumed that (A, C) is 

observable, (A, G) controllable, and the square system (A, G, C) has only stable zeros (minimum-phase). 
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To solve the disturbance estimation problem for the nonlinear system (1), one constructs a nonlinear joint state 

and disturbance observer as follows. 

ˆ ˆ ˆ ˆ( ) ( ),x Ax Bu L y Cx Gf x= + + − +ɺ                                                                                                                  (5) 

ˆ ˆ( ),d W y Cxπ= −                                                                                                                                                 (6) 

Where d̂  is a disturbance estimate for the unknown disturbance d, p pW R ×∈  is an unitary matrix to be 

specified, the observer feedback gain n pL R ×∈  is designed as in the LTR observer [30] and [31],  

,TL QC=                                                                                                                                                                (7) 

( ) ( ) 0,   0,  0.T T TQ A I A I Q QC CQ GGα α π π α+ + + − + = > >                                                                  (8) 

In the above equation, it is assumed that (A, G, C) is minimum-phase; that is, all system zeros iz of (A, G, C) are 

in the open-loop left half plane. The design parameter α is chosen to be smaller than the minimum of Re( )iz  so that the 

assumption (A, G, C) is minimum-phase ensures that (A + αI, G, C) is also minimum-phase. Previous studies [24] on the 

nonlinear disturbance observer require the solution of an LMI problem, which is equivalent to an H∞  type Riccati 

equation. However, their Riccati equation admits a positive definite solution matrix only if the Lipschitz constant γ in (3) is 

small. In contrast, this paper employs an LQ type Riccati equation (8), which is γ independent. The existence and positive 

definiteness of the solution matrix Q of the LQ Riccati equation (8) is always guaranteed [32] and [33] for all design 

parameters π > 0 and α > 0 if (A, C) is observable and (A, G) controllable. 

Remark 1 

Note that the above proposed robust observer is different from the linear high gain observer [34] because the 

proposed observer is nonlinear due to a nonlinear term ˆ( )f x  in (5). Furthermore, even if a linear high gain observer can 

work in state estimation, there is no disturbance estimation mechanism in a linear high gain observer. 

The solution matrix n nQ R ×∈  in (8) depends on its design parameter π, and Q(π) and π satisfies the following 

relationship. 

Lemma 1 [30], [35] 

If the system (A, G, C) is square and minimum-phase, the solution Q(π) of the observer Riccati equation (8), 

satisfies ( )
lim 0.

Q
π

π
π→∞

=  

With the above lemma, one can further derive the following result. 

Lemma 2 

If the system (A, G, C) is square and minimum-phase, the observer feedback gain L in (7) satisfies 

 as ,
L

GW π
π

→ → ∞                                                                                                                                             (9) 
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where p pW R ×∈  is an unitary matrix satisfying TWW I= .  

Proof 

Divide the Riccati equation (8) by π to obtain  

( ) ( ) 0.
1

T
T TQ Q Q C C Q

A I A I GGα α
π π π π π

+ + + − + =  

It follows from Lemma 1 that the first and second terms in the above equation can be neglected as π → ∞, and this 

results in ( )( ) .
T

TQC CQ
GG

π π
→  

Solving this equation yields TQC GWπ→  for some unitary matrix W. Finally, quoting (7) gives 

L GWπ→ . End of proof. 

Remark 2 

The unitary matrix W in Lemma 2 can be obtained from (9) as follows. 11
( )   as  .T TW G G G L π

π
−→ → ∞  

The state estimation error ˆx x x= −ɶ  resulting from the above proposed nonlinear observer satisfies 

ˆ( ) ( ( ) ( ) )x A LC x G f x f x d= − + − +ɺɶ ɶ .                                                                                                        (10) 

The goal of the following theorem is to prove that even for large Lipschitz constant in (3), the state estimation 

error xɶ  decays to almost zero in the error dynamics (10) if the design parameter π in (8) is chosen sufficiently large. 

Theorem 3 

Consider the nonlinear system (1) with (A, G, C) square and minimum-phase. For whatever large Lipschitz 

constant γ in (3), the state estimation error resulting from the nonlinear observer (5) asymptotically satisfies 

lim ,
t

x ε
→ ∞

≤ɶ                                                                                                                                                          (11) 

Where ε  can be an arbitrarily small positive constant if the design parameter π > 0 in the Riccati equation (8) is 

chosen sufficiently large. 

Proof 

Define a Lyapunov function 1TV x Q x−= ɶ ɶ , where Q > 0 is from the observer Riccati equation (8), and x as in 

(10). The time change rate of V along the trajectory (10) satisfies 

2 22 21 1 1 1
0ˆ2 2( ( ) ( ) ) 2 2( ) ,T T T TV V y G Q x f x f x d G Q x V y G Q x x D G Q xα π α π γ− − − −≤ − − − + − + ⋅ ≤ − − − + + ⋅ɺ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  

Wherey Cx=ɶ ɶ and the Lipschitz condition (3) was used to obtain the second inequality. Note that the maximum 

of the last two terms in the last equation occurs when 1
0( )TG Q x x Dγ π− = +ɶ ɶ , with the maximum value being 
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2
0( )x Dγ π+ɶ . Hence, 

2 2
2 0 0( ) ( )

2 ( )
x D x D

V V y V V
γ γ

α α α
π π
+ +

≤ − − + ≤ − − −
ɶ ɶ

ɺ ɶ                                                                                          (12) 

From the last inequality, one observes that V decays exponentially as long as 2
0( ) ( )V x Dγ απ> +ɶ . Therefore, 

eventually we have 2
0( ) ( )   as  .V x D tγ απ≤ + → ∞ɶ  Using 2 21( ) ( ),V Q x x Qσ σ−≥ =ɶ ɶ  we obtain 

0

( )
( )  as  .

Q
x x D t

σ π γ
α

≤ + → ∞ɶ ɶ  Re-arranging the equation gives 
0

( ) ( )
lim(1 ) ( ) .
t

Q Q
x t D

σ π σ πγ
α α→∞

− ≤ɶ  

Lemma 1 ensures that given any larege Lipschitz constant γ, there always exists a sufficiently large observer design 

parameter π such that the number in the parenthesis in the above equation is positive. Hence, we can write 

0

( )

lim ( )
( )

1
t

Q
D

x t
Q

σ π
αε

σ πγ
α

→ ∞
≤ =

−
ɶ

. 

The above inequality together with Lemma 1 imply that given any bounded Lipschitz constant γ and disturbance 

upper bound D0 , xɶ  will eventually become arbitrarily small as long as π is sufficiently large. End of proof. 

Compared with the nonlinear state observer in [28], [29], the nonlinear observer in Theorem 3 is robust against 

unknown disturbance; it achieves arbitrarily small state estimation error in the fact of large unknown disturbance. 

Furthermore, even facing with arbitrarily large Lipschitz constant, the proposed observer is still stable. 

In the formulation of this paper, the disturbance d enters the system through a constant vector channel G in the 

system equation (1). For certain nonlinear systems, for instance, the robot systems or other nonlinear systems in [29],               

the system has the structure that the input channel vector G(x) is state dependent. In this case, we can use state 

transformation so that in the transformed state, the new system has a constant disturbance channel vector. For example,            

a nonlinear system 

1 1 2 2( ) ,   ( ) ( ) ( ),x Ax G x d G x G n x G n x= + = +ɺ  

Where G1 and G2 are constant vectors, and n1(x) and n2(x) are nonlinear functions of x. If we defines extended 

state z = [x, xn+1 ], where xn+1 = d, then the above system can be written as 

1 1 1 2 2 1( ) ( ) ,n nx Ax G n x x G n x x+ += + +ɺ                                                                                                               (13) 

1 1 1,   where .nx d d d+ = = ɺɺ                                                                                                                               (14) 

The above new system can be viewed as a nonlinear system with nonlinearity n1(x)xn+1 and n2(x)xn+1 and an 

disturbance d1 with constant disturbance channel vector. We can then follow the procedure in the next section to design 

state observer and disturbance observer. 

The state estimation error dynamics resulting from the proposed nonlinear observer can be written as, via the 

result of Lemma 2, 



32                                                                                                                                                                 Ming-Lei Tseng, Shih-Yu Lin & Min-Shin Chen 

 
Impact Factor (JCC): 3.8967                                                                                                                     NAAS Rating 3.30 

ˆ( ( ) ( ) ) ,   as ,x Ax G f x f x d LCx Ax Gv π= + − + − = + → ∞ɺɶ ɶ ɶ ɶ                                                               (15) 

ˆˆ ˆ( ) ( ) ( ) ( ) .v f x f x d WCx f x f x d dπ= − + − = − + −ɶ                                                                          (16) 

We can view the above error dynamics (15) as a linear system subject to an input excitation v. According to 

Theorem 3, the system state xɶ  becomes arbitrarily small if the design parameter π of the nonlinear observer is chosen 

sufficiently large. One question stemming from equation (15) is that since the state xɶ  is small, can one conclude that its 

input excitation v is also small ? This is the bounded state bounded input (BSBI) property. A counter example of BSBI 

property is the sliding mode control applied to a linear system, ( ),  ( ),x Ax B u d u sign sρ= + + = − ⋅ɺ  where the 

system is subject to an unknown disturbance d, ρ is the switching control gain, and s is the sliding variable. If s and ρ are 

properly chosen, the switching control u can drive the system state x to zero. In this case, the state x is small, but the input 

excitation u + d is not necessarily small. 

To answer the question of BSBI property, one quotes a well-known lemma in the study of Adaptive Control. 

Define the truncated norm of a time signal v as sup ( )T tt
v vτ τ≤ ≤= . A time signal v is regular if 

1 0t
v M v M≤ +ɺ  for two positive constants M1 and M0 for t > T. Due to (11) in Theorem 3, there exists a finite 

time T such that 

( ) 1.5   for all  .x t t Tε≤ >ɶ                                                                                                                           (17) 

In the sequel, this T will be used in the definition of sup ( )T tt
v vτ τ≤ ≤= . Hence, it follows from (17) 

that 

( ) 1.5   as  .x t tε≤ → ∞ɶ                                                                                                                                  (18) 

Note that the disturbance observer design problem for nonlinear systems is more difficult than the state observer 

design problem for nonlinear systems. In the disturbance observer problem, one must first design a robust nonlinear 

observer that ensure small estimation error in front of unknown disturbances. Then, we need to prove for the state 

estimation error dynamics that small state estimation error implies small input excitation. After establishing this property 

we can prove that the disturbance estimation error is small. The latter job is non-trivial, and is dealt with by Lemma 4 and 

Theorem 5 below. 

Lemma 4 [36] 

Given a linear system x Ax Gv= +ɺɶ ɶ , where (A, G) is controllable, if v is regular, then  

,
t t

v K x≤ ɶ                                                                                                                                               (19) 

For some positive constant K 

Lemma 4 states that as long as the input is smooth in the sense of being regular, we can use (19) to conclude BSBI 

property. With Lemma 4, one is now in a position to prove the main result of this section that d̂  in (6) is a close estimate 

of the unknown disturbance d. 
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Theorem 5 

Consider the nonlinear system (1) subject to the unknown disturbance d, and the corresponding nonlinear observer 

(5) and the disturbance estimate d̂  in (6). If functions ,  ,  ( )
f f f

Ax G f x
x x x

∂ ∂ ∂
∂ ∂ ∂

, are all Lipschitz, and the control input u 

is bounded, the disturbance estimate d̂  in (6) is arbitrarily close to the true disturbance d if the observer design parameter π 

in (8) is sufficiently large. 

Proof 

Define a function  

( , ) ( ( ) ).
f f f

M x t Ax Bu G f x d
x x x

∂ ∂ ∂= + + +
∂ ∂ ∂

 

From hypothesis of this theorem, M is Lipschitz in x. According to the definition of 

ˆ( ) ( )v f x f x d WCxπ= − + − ɶ  in (16), the time derivative of v can be expressed as 

ˆ( , ) ( , ) ( ).v M x t M x t d WC Ax Gvπ= − + − +ɺɺ ɶ  

Finally, quoting the Lipschitzness of M(x,t), boundedness of dɺ , and Theorem 3, one concludes from the above 

equation that v is regular. Since v in (15) is regular, we deduces from Lemma 4 that 

( ) 1.5   as  ,
t t

v t v K x K tε≤ ≤ ≤ → ∞ɶ  where the last inequality follows from (18). Define the disturbance estimation 

error ˆd d d= −ɶ , and re-arrange (16) to yield 

ˆ ( ) ( ) 1.5 ,d d d v f x f x v x Kγ ε γε= − = − + ≤ + ≤ +ɶ ɶ ɶ  where we have used the Lipschitz condition (3) to 

obtain the first inequality. Since ε  approaches zero as the design parameter π approaches infinity, the last inequality shows 

that the disturbance estimation error d can be made arbitrarily small. End of proof. 

The above theorem shows that the disturbance estimate d is arbitrarily close to the true disturbance d if the 

observer design parameter π is sufficiently large. In real applications, we can use computer simulations to test just how 

large the design parameter π should be so that a desired disturbance estimation error is obtained. 

3. EXTENSION TO MORE GENERAL SYSTEMS 

In previous sections, the unknown disturbance and the nonlinear function enter the state equation through the 

same channel. The purpose of this section is to construct a disturbance observer for systems whose unknown disturbance 

and nonlinear function enter the state equation through different channels. Consider a nonlinear system subject to an 

unknown disturbance, 

1 2( ) ,

.

x Ax Bu G f x G d

y Cx

= + + +
=
ɺ

                                                                                                                     (20) 

Where all symbols are as defined in (1), and 
1 2G G≠ . Further, it is assumed that (A, C) is observable, and            

(A, [G1, G2]) controllable, 1( ) qf x R∈ , 2qd R∈ , and py R∈ . 
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Constructing a disturbance observer for the above system is more difficult than for the system (1) in the previous 

section. However, it will be shown that if the number of output sensors is sufficient in the sense that 

( ) ( ( )) ( ) 1 2 ,dim y dim f x dim d p q q≥ + ⇔ ≥ +                                                                                   (21) 

Where dim stands for dimension, then design of a nonlinear disturbance observer is achievable. For simplicity, it 

will be assumed in the sequel that ( ) ( ( )) ( )dim y dim f x dim d= + , 1 2( ) ([ , ])rank C rank G G= . 

The case ( ) ( ( )) ( )dim y dim f x dim d> +  can be treated similarly by artificially expanding the dimension of d 

or f(x). Note that this condition (21) is similar to the assumption adopted in other reference [24]. 

A nonlinear disturbance observer for the system (20) is proposed as follows, 

1ˆ ˆ ˆ( ) ( ),x Ax Bu L y Cx G f x= + + − +ɺ ɶ                                                                                                            (22) 

2 1 2 2
ˆ ˆ[0 ,  ] ( ),q q q qd I W y Cxπ× ×= −                                                                                                          (23) 

Where W is an unitary matrix to be specified, and the observer feedback gain n pL R ×∈  is given by 

1 2 1 2

,

( ) ( ) [ , ][ , ] 0,  0,  0.

T

T T T

L QC

Q A I A I Q QC CQ G G G Gα α π π α
=

+ + + − + = > >
                                        (24) 

Note that the above Riccati equation is different from that in the previous section. The existence of a positive 

definite solution matrix n nQ R ×∈  is guaranteed [32] and [33] when (A, C) is observable, and (A, [G1 , G2 ]) controllable. 

The state estimation error ˆx x x= −ɶ  resulting from the proposed robust nonlinear observer (22) obeys the 

dynamics 
1 2

ˆ( ) ( )
( ) [ ,  ]

f x f x
x A LC x G G

d

− = − +  
 

ɺɶ ɶ  where the last term satisfies an upper bound 

0

ˆ( ) ( )
ˆ( ) ( )

f x f x
f x f x d x D

d
γ

−  ≤ − + ≤ + 
 

ɶ  in which we have used (3) and (2) to obtain the second inequality. 

The following theorem shows that the above robust nonlinear observer (22) guarantees that the estimation error 

ˆx x−  decays to almost zero even in the face of large disturbance d. 

Theorem 6 

Consider the nonlinear system (20) subject to a bounded disturbance d, and the assumption that (A, [G1 , G2 ], C) 

is square and minimum-phase. For whatever large Lipschitz constant γ, and whatever large disturbance d, the robust 

nonlinear observer (22) guarantees that the state estimation error ˆx x x= −ɶ  will eventually approach a small residual set 

containing the origin, with the size of the residual set approaching zero as the design parameter π in (24) approaches 

infinity. 

Proof 

The proof is similar to that of Theorem 3, and is omitted. 
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The next theorem proves that the disturbance estimate d̂  in (23) is arbitrarily close to the true disturbance d if the 

design parameter π in the Riccati equation (24) is chosen sufficiently large. 

Theorem 7 

Consider the nonlinear system (20) subject to the unknown disturbance d, and the corresponding nonlinear 

observer (22). If functions ,  ,  ( )
f f f

Ax G f x
x x x

∂ ∂ ∂
∂ ∂ ∂

, are all Lipschitz, and the control input u is bounded, the 

disturbance estimate d̂  in (23) can be arbitrarily close to the true disturbance d if the observer design parameter π in (24) is 

sufficiently large. 

Proof 

The proof is similar to that of Theorem 5, and is omitted. 

To demonstrate the effectiveness of the proposed nonlinear disturbance observer, we present a numerical 

simulation example. 

Example 

2 1

0 1 0 0 0 0 0 1

1 0 1 0 0 1 0 0
,  ,  ,  

0 0 0 1 0 0 1 0

1 0 1 1 1 0 0 0

TA B G G C

       
       −       = = = = =
       
       −       

 

Consider a single-link with flexible joint robot [37], whose governing equation is as in (20) with the control u(t) = 

0, the disturbance d(t) = 2, and nonlinearity 1( ) 10sinf x x= − . Note that the nonlinearity f(x) is globally Lipschitz, and the 

large Lipschitz constant γ = 10 implies a long or heavy robot arm. The initial condition are [ ](0) 1, 1, 1, 1Tx =  for the 

robot, and [ ]ˆ (0) 1, 1, 1, 1Tx = − − − −  for the observer (22). The modified Riccati equation (24) has design parameters 

1α = , and π(t) scheduled continuously from 1 to 1012 within 10 seconds according to the formula π(t) = 1012t/10 , t ∈ [0, 

10] and π(t) = 1012 , t > 10. Note that the design parameter π is time-varying only for the initial transient 10 seconds. After t 

> 10 seconds, the design parameter π becomes constant. Hence, the analysis in the previous sections applies Theorems 3 

and 5 holds for t > 10. At the steady state, π = 1012, the corresponding observer feedback gain is found to be 

7.0711 004 1.4162 003

1.0004 1.0014 006

1.4152 003 7.0711 004

1.0000 006 1.0004

e e

e
L

e e

e

− + 
 + =
 + −
 + 

 

Figure 1 shows the disturbance d and the proposed disturbance estimate d̂ . It is seen that the ̂d  converges to d, 

as predicted by Theorem 5, in about 4 seconds. Figure 2 shows the state estimation error ( )x tɶ  versus time.                           

The estimation error decays to almost zero 
3( ( ) 10 )x t −≈ɶ , confirming that the proposed robust nonlinear observer 

design is successful in the face of disturbances and large-Lipschitz-constant nonlinearity. Note that if we use π = 1012 right 
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from the beginning of observation, there will be a substantial peaking phenomenon. The proposed stepwise scheduling of π 

(t) has successfully avoided the peaking phenomenon. 

 

Figure 1: Disturbance and Its Estimate 

 

Figure 2: Norm of State Estimation Norm 

4. CONCLUSIONS 

Previous studies on the disturbance observer are mostly linear systems. This paper proposes a nonlinear 

disturbance observer for a class of nonlinear systems. Arbitrarily close estimate of the unknown disturbance can be 

obtained if the disturbance is bounded with bounded first-order time derivative, and the system nonlinearity satisfies a 

Lipschitz condition. The contribution of this paper is that it allows the Lipschitz constant to be arbitrarily large, and it 

imposes no constraint on the system relative degree.  
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