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ABSTRACT

A disturbance observer achieves on-line estimaifaimknown disturbances acting on a dynamic systased on
the input and output information. This paper preagsoa nonlinear disturbance observer for a claswolinear systems.
Arbitrarily close estimate of the unknown disturbancan be obtained if the disturbance is boundeti ounded
first-order time derivative, and the system nonliitgssatisfies a Lipschitz condition. A unique fe&twof the proposed

nonlinear disturbance observer is that it allovesltipschitz constant to be arbitrarily large.
KEYWORDS: Disturbance Observer, Disturbance Estimation, RoBbserver, Nonlinear System, Lipschitz Condition
1. INTRODUCTION

In many engineering and science problems, one risaroed with the estimation of disturbances (ornomkn
inputs) acting on a dynamic system [1], [2], [3].dontrol engineeringlisturbance observer andunknown input observer
are the most popular approaches to on-line dishadastimation. The Disturbance Observer (DOB@f] [5] approach
refers to using direct system inverse to estimaésinput disturbance. In order to avoid a non-prapetem inverse,
a low-pass Q-filter is cascaded with the systemrssjewhere the Q-filter is chosen to achieve aceuditurbance
estimation and to avoid amplification of measurenraise. Dfferent design considerations and design skills leemn
proposed in the literature [6] - [11]. Disturbanggection control based on DOB has been provedetodry dfective

especially in motion control applications.

The second approach to disturbance estimationeisuttknown input observer. In recent literatureg, thost
popular unknown input observer is the joint statel alisturbance observer, where an observer is mmbst to
simultaneously estimate both the unknown statethadinknown disturbance. The designs in [12] - [A4 applicable
under the assumption that the unknown disturbasagonstant or slowly varying. The extended statsenlker design
[15] - [17] basically follows the same assumptibkrowledge of a disturbance model is known a pricuenberger type
jointed state and disturbance observer can be remtestl in [18] - [21] When no disturbance modelaigailable,

the designs in [22], [23] are applicable.

Studies on the disturbance observer designs imdisgstems are more common than nonlinear onekein t
literature. The work in [22] and [24] simultaneoestimate the unknown disturbance and unknown $taita class of
nonlinear systems. Their solution relies on solvanrg Linear Matrix Inequality (LMI), but the LMI adta a positive
definite solution only if the Lipschitz constanttbe nonlinearity is small [24]. Further, they caoasit the relative degree

from the nonlinearity to the system output to be 2] There has been study of the disturbancerebséor a particular
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28 Ming-Lei Tseng, Shih-Yu Lin & Min-Shin Chen

class of nonlinear system, that is, the robot systf25] - [27]. In these literatures, the robottulibance observer must
assume that all the state variables (angles amtitiek of all joints) are available for measurem#hile the disturbance
observer in this paper requires only informationsgktem outputs (for example, angles of certaint$j and this

requirement is much more relaxed than the robatidiance observer designs.

The disturbance observer design problem presentélkei paper is more flicult than the state observer design
problem for nonlinear systems. For the state esitimgroblem for nonlinear systems, one may seéntieeesting work in
[28], [29], which shows that a nonlinear state obseexists as long as the distance to unobseitalsillarger than the
Lipschitz constant. For the disturbance observeblpm treated in this paper, one must first desigobaist nonlinear
observer that ensure small estimation error intfofrunknown disturbances (Theorem 3 below). Tiee needs to prove
that in the state estimation error dynamics, sisialle estimation error implies small input ex aiat After establishing
this property can one prove that the disturbantenason error is small. The disturbance estimatooblem is therefore
non trivial, and is dealt with by Lemma 4 and Theor5 in this paper.

The remainder of this paper is arranged as foll@®extion 2 presents the new nonlinear disturbabserger
design for systems whose nonlinearity enters tetegy equation in the same direction as the distushaSection 3 further
extends the nonlinear observer so that the nonligeand disturbance enter the system equationiffiereént directions.

Finally, Section 4 gives the conclusions.
2. NONLINEAR DISTURBANCE OBSERVER
Consider the disturbance estimation problem fop@inear system

X=Ax+Bu+G(f(x)+d),

1
y =Cx @

Where xOR" is the unknown system state,[JR™ the control input,y JRP the measured system output,

d OR" the unknown disturbance satisfying

ld]<D,. |d]<D., @

For two positive constants, and D, , and f (x) [J R® is a nonlinearity satisfying the Lipschitz condlti

1100 - £ R < yx-5. 3)

For some Lipschitz constarjt>0. Note thaFt in this paper the Lipschitz constgnican be arbitrarily large

while previous papers all constragnto be smallC andG are full rank. It is assumed that
dim(y) = dim(d), 4)

Wheredim stands for dimension. Without loss of generalitisiassumed in the sequel thlain(y) =dim (d); the
casedim(y)>dim (d) can be treated by artificially expanding the disien of d. Further, it is assumed thaA,(C) is

observable,4, G) controllable, and the square systéin@, C) has only stable zeros (minimum-phase).
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Nonlinear Disturbance Observer for a Class of Nonfiear Systems 29

To solve the disturbance estimation problem forribalinear system (1), one constructs a nonlineiat state

and disturbance observer as follows.
X = AX+ Bu+ L(y-CX) +Gf (%), (5)
d =VW(y-CX), (6)

Where d is a disturbance estimate for the unknown distucbal, W O RP*P is an unitary matrix to be

specified, the observer feedback ghinl R™" is designed as in the LTR observer [30] and [31],
L=QCT, (7
Q(A+al) +(A+al)Q-QC'CQ+nGG' =0, 7>0,a> 0 (8)

In the above equation, it is assumed thatQ, C) is minimum-phase, that is, all system ze@sf (A, G, C) are
in the open-loop left half plane. The design partemeis chosen to be smaller than the minimurr1R>é(zi j so that the

assumption4, G, C) is minimum-phase ensures that« al, G, C) is also minimum-phase. Previous studies [24]ten t

nonlinear disturbance observer require the solutbran LMI problem, which is equivalent to aH_ type Riccati

equation. However, their Riccati equation admipositive definite solution matrix only if the Lipgehconstany in (3) is
small. In contrast, this paper employs an LQ type&i equation (8), which isindependent. The existence and positive
definiteness of the solution matr) of the LQ Riccati equation (8) is always guaranteed [32] B8] for all design

parameterg > 0 anda > 0 if (A, C) is observable and\( G) controllable.
Remark 1

Note that the above proposed robust observerffsrdint from the linear high gain observer [34] beseathe
proposed observer is nonlinear due to a nonlirean tf (X) in (5). Furthermore, even if a linear high gairsetver can

work in state estimation, there is no disturbarstar&tion mechanism in a linear high gain observer.

The solution matrixQ [JR™ in (8) depends on its design parameteandQ(r) andxr satisfies the following
relationship.
Lemma 1 [30], [35]

If the system A4, G, C) is square and minimum-phase, the solutigfa) of the observer Riccati equation (8),

satisfies|im % =0.
T— ”

With the above lemma, one can further derive thieviong result.
Lemma 2

If the systemA, G, C) is square and minimum-phase, the observer fe&dimnlL in (7) satisfies

L o owasrow, 9)

i
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whereW O RP" is an unitary matrix satisfyingg™ =1 .
Proof

Divide the Riccati equation (8) byto obtain

—(A+a|) +(A+a )Q QCTCQ+GGT—O
mlm

It follows from Lemma 1 that the first and seconuii® in the above equation can be neglected-aswo, and this

T
results m(QC

GG'.

Solving this equation yieIdsQCT - «/I_TGW for some unitary matrixW. Finally, quoting (7) gives

L — /77GW . End of proof.

Remark 2

The unitary matrix W in Lemma 2 can be obtainednfr(®) as followsyy _, %(GTG)ﬂGTL as 71 - o
V4

The state estimation errdt = X — X resulting from the above proposed nonlinear olesesatisfies

X=(A-LC)X+G(f(x)- f(X)+d). (10)

The goal of the following theorem is to prove tleaen for large Lipschitz constant in (3), the segéimation
error X decays to almost zero in the error dynamics (flbei design parameterin (8) is chosen dficiently large.
Theorem 3

Consider the nonlinear system (1) with, G, C) square and minimum-phase. For whatever largechifs

constant in (3), the state estimation error resulting frhra nonlinear observer (5) asymptotically satisfies

lim [%] < &, (11)
t - oo

Where £ can be an arbitrarily small positive constanh# tdesign parameter> 0 in the Riccati equation (8) is

chosen sfficiently large.

Proof

Define a Lyapunov functioV = X'Q™'X, whereQ > 0 is from the observer Riccati equation (8), anas in

(10). The time change rate \@falong the trajectory (10) satisfies

V<20V —|§f* - 77||GTQ‘1>”<1|2 +2( 1 )~ &) +|d) QK| < ~2v -9 - 77||GTQ‘1>"4|2 + 2048 +D, QY
Wherey = CX and the Lipschitz condition (3) was used to obth second inequality. Note that the maximum

of the last two terms in the last equation occuhemv"GTQ‘l)”(”:(y||)”(||+Do)/n, with the maximum value being
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(V||| + D,)?/mr- Hence,

V <-20N _Hsz + (yHXH + DO)2 <-aV - (OV _ (yHXH + DO)Z) (12)
Vs T

From the last inequality, one observes Matecays exponentially as long ¥s> (y||>”<|| + DO)Z/(CUT) . Therefore,

eventually we have V <(y|%|+D,)*/(anm) ast - Using VZQ(Q‘l)")”("Z:||>~<||2/5(Q), we obtain

||>”(||s M(V"X”Jf[)o) ast - o Re-arranging the equation givem(1-y, M)”X(t)”g D, /M
a tooo a a

Lemma 1 ensures that given any larege Lipschitstemmy, there always exists a ffigiently large observer design

parameterz such that the number in the parenthesis in theveabequation is positive. Hence, we can write

b, [7@/m)

a .
l_y\/ﬁ(ccz/n)

lim (1)< & =

The above inequality together with Lemma 1 implgtthiven any bounded Lipschitz constargnd disturbance

upper boundy , ||)?|| will eventually become arbitrarily small as longrais suficiently large. End of proof.

Compared with the nonlinear state observer in [EB]], the nonlinear observer in Theorem 3dbust against
unknown disturbance; it achieves arbitrarily smstthte estimation error in the fact of large unknogisturbance.

Furthermore, even facing with arbitrarily large &@hitz constant, the proposed observer is stitlsta

In the formulation of this paper, the disturbancenders the system through a constant vector chahie the
system equation (1). For certain nonlinear systdorsinstance, the robot systems or other nonlirsatems in [29],
the system has the structure that the input chaweefor G(x) is state dependent. In this case, we can use stat
transformation so that in the transformed state,rtbw system has a constant disturbance channlrvEor example,

a nonlinear system
%= Ax+G(x)d, G(x)=Gyny(x)+Gany(x),

WhereG; andG, are constant vectors, ang(x) andny(x) are nonlinear functions of If we defines extended

statez = [, X,+1 ], wherex,,; = d, then the above system can be written as

X= AX+GNy(X) %41+ G A X) X4 (13)

X,+1 = dy, whered;=d (14)

The above new system can be viewed as a nonlinséens with nonlinearityn;(X)X,+1 and ny(X)x,+; and an
disturbanced; with constant disturbance channel vector. We bam ffollow the procedure in the next section toigtes

state observer and disturbance observer.

The state estimation error dynamics resulting fithin proposed nonlinear observer can be writterviasthe

result of Lemma 2,
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%= AX+G(f(x)- f(X)+d)-LCX = AX+Gv, asir - o (15)

v=f(x)= f(R)+d -/mWCx = f(x) - f(X)+d -d. (16)

We can view the above error dynamics (15) as afirsystem subject to an input excitatinAccording to
Theorem 3, the system stage becomes arbitrarily small if the design parametaf the nonlinear observer is chosen
suficiently large. One question stemming from equafih) is that since the state is small, can one conclude that its
input excitationv is also small ? This is the bounded state bourwciest (BSBI) property. A counter example of BSBI
property is the sliding mode control applied toiredr system,Xx = Ax+ B(u+d), u=-p[&ign(s), where the
system is subject to an unknown disturbadce is the switching control gain, arsds the sliding variable. 1§ andp are
properly chosen, the switching conttotan drive the system statd¢o zero. In this case, the statés small, but the input

excitationu + d is not necessarily small.

To answer the question of BSBI property, one quetesell-known lemma in the study of Adaptive Cohtro

Define the truncated norm of a time signal as ||V||t =SUpr o V(T}| A time signal v is regular if

||V|| <M 1 ||V||t + M o for two positive constantsl; and M, for t > T. Due to (11) in Theorem 3, there exists a finite

time T such that

|X(t)|<1.5¢ forallt>T 17)

In the sequel, thi§ will be used in the definition oHV”t = SUPr ., < |V 13 j| . Hence, it follows from (17)

that
|%(t)|<1.5¢ ast - e (18)

Note that the disturbance observer design probtanmdnlinear systems is moreffitult than the state observer
design problem for nonlinear systems. In the distoce observer problem, one must first design astobonlinear
observer that ensure small estimation error intfr@hunknown disturbances. Then, we need to pravettie state
estimation error dynamics that small state estomaéirror implies small input excitation. After stahing this property
we can prove that the disturbance estimation ésremall. The latter job is non-trivial, and is desith by Lemma 4 and

Theorem 5 below.

Lemma 4 [36]

Given a linear systenX = A% + Gv , where A, G) is controllable, ifv is regular, then
vl < K Il (19)

For some positive constalit

Lemma 4 states that as long as the input is snindtte sense of being regular, we can use (19nclade BSBI

property. With Lemma 4, one is now in a positiorptove the main result of this section thtin (6) is a close estimate

of the unknown disturbanak
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Theorem 5

Consider the nonlinear system (1) subject to tHenawn disturbance, and the corresponding nonlinear observer

(5) and the disturbance estimatan (6). If functionsﬂ, of AX of

ax' ax ' ax

is bounded, the disturbance estimdtén (6) is arbitrarily close to the true disturbarmkif the observer design parameter

Gf (x). are all Lipschitz, and the control input

in (8) is stfficiently large.
Proof

Define a function

M(x,t)=£Ax+iBu+ﬂG(f(x)+d).
[1)4 oXx oXx

From hypothesis of this theoremM is Lipschitz in x. According to the definition of
v=f(x)- f(x)+d -JmNCX  in (16), the time derivative of v can be expressed as
V=M (x,t)= M (X,t)+d —/7WC (AX + Gv).

Finally, quoting the Lipschitzness ®(xt), boundedness ofi , and Theorem 3, one concludes from the above

equation that v is regular. Since v in (15) is regular, we deduces from Lemma 4 that

V)] <[V, < KX, £1.5Ke ast - « where the last inequality follows from (18). Defitie disturbance estimation
errord =d - & , and re-arrange (16) to yield

[ =[a - d] =V~ £+ £ ()] <[V +¥]%| 1.5 + &, where we have used the Lipschitz condition (3) to
obtain the first inequality. Since approaches zero as the design paramespproaches infinity, the last inequality shows

that the disturbance estimation error d can be raggigrarily small. End of proof.

The above theorem shows that the disturbance dstithas arbitrarily close to the true disturbartcéf the
observer design parameteiis suficiently large. In real applications, we can use potar simulations to test just how

large the design parameteshould be so that a desired disturbance estimatimm is obtained.
3. EXTENSION TO MORE GENERAL SYSTEMS

In previous sections, the unknown disturbance #&ednionlinear function enter the state equationutiinothe
same channel. The purpose of this section is tetoact a disturbance observer for systems whoseawk disturbance
and nonlinear function enter the state equatioouiin di/Zrent channels. Consider a nonlinear system subjecinto a

unknown disturbance,

X=Ax+Bu+G,f(x)+G,d,
y = Cx.

(20)

Where all symbols are as defined in (1), aBdz G, . Further, it is assumed thaA,(C) is observable, and

(A, [Gy, G,]) controllable,f (X) DR* , d OR*, and y O RP.
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Constructing a disturbance observer for the abgstem is more dficult than for the system (1) in the previous

section. However, it will be shown that if the nuenlof output sensors isfficient in the sense that
dim(y)2dim(f(x))+dim(d) =« p=qgl+qg2, (21)

Wheredim stands for dimension, then design of a nonlinéstuxbance observer is achievable. For simplidity,

will be assumed in the sequel thlm(y) = dim( f (x)) +dim(d), rank(C) = rank([G,, G,]) .

The casedim(y) > dim(f (x)) + dim(d) can be treated similarly by artificially expanditig dimension ol

or f(xX). Note that this condition (21) is similar to tagsumption adopted in other reference [24].

A nonlinear disturbance observer for the system i2@roposed as follows,

X = AX+Bu+L(y-Cx)+G,f(X), (22)
a = [0q2><q1’ Iq2><q 2]\/7—7\/\/(y - C)’Z)’ (23)

WhereW is an unitary matrix to be specified, and the oleeieedback gaih. 0 R™" is given by

L=QCT,

Q(A+al) +(A+al)Q-QCTCQ+ /G, GI[G, G =0, 7>0, a>0. &4

Note that the above Riccati equation iffatient from that in the previous section. The eristeof a positive

definite solution matrixQ [ R™ is guaranteed [32] and [33] wheh, €) is observable, and\( [G; , G, ]) controllable.

The state estimation errok = X — X resulting from the proposed robust nonlinear olee(22) obeys the

dynamics % = (A= LC)% +[G,, Gz]{f(X); f(X)} where the last term satisfies an upper bound

f(x) - f(R)
B

The following theorem shows that the above robwsilinear observer (22) guarantees that the estmasiror

< || f(x)- f ()“()” + ||d|| < y”y(" +D, in which we have used (3) and (2) to obtain ttewed inequality.

X — X decays to almost zero even in the face of largridiance.
Theorem 6

Consider the nonlinear system (20) subject to antbed disturbancd, and the assumption thak, (G, , G, ], C)

is square and minimum-phase. For whatever largschitz constany, and whatever large disturbandgethe robust
nonlinear observer (22) guarantees that the stibmation errorX=X—X will eventually approach a small residual set
containing the origin, with the size of the resideat approaching zero as the design paramefer(24) approaches
infinity.

Proof

The proof is similar to that of Theorem 3, andnsitted.
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The next theorem proves that the disturbance eftichain (23) is arbitrarily close to the true disturben if the

design parameter in the Riccati equation (24) is chosefffmiently large.
Theorem 7

Consider the nonlinear system (20) subject to thkenown disturbancel, and the corresponding nonlinear

observer (22). If functionsi, ﬂAx, ﬂ@f (x), are all Lipschitz, and the control inputis bounded, the

0x 0x
disturbance estimateé in (23) can be arbitrarily close to the true disanced if the observer design parametein (24) is

suficiently large.
Proof
The proof is similar to that of Theorem 5, andnsitted.

To demonstrate theffectiveness of the proposed nonlinear disturbanceergbr, we present a numerical

simulation example.

Example
0 100 0 0 0
-1 01 0 0 1 . 0
A= ,B=G,=| |,.G = ,C' =
0 00 1 0 0 1
1 01 -1 1 0 0

Consider a single-link with flexible joint robot [BTvhose governing equation is as in (20) with¢batrolu(t) =

0, the disturbancd(t) = 2, and nonlinearityf (x) =—10sinx . Note that the nonlinearityx) is globally Lipschitz, and the

large Lipschitz constant= 10 implies a long or heavy robot arm. The ihitiendition areX’ (0)=[l, 1 1 }.for the

robot, andX' (0) :[—l, -1, -1 - 1for the observer (22). The modified Riccati equa(4) has design parameters

a =1, andx(t) scheduled continuously from 1 to’#@vithin 10 seconds according to the formm(g) = 10*° t € [0,
10] andz(t) = 10, t > 10. Note that the design parametés time-varying only for the initial transient @conds. Aftet
> 10 seconds, the design parameté&recomes constant. Hence, the analysis in the qus\gections applies Theorems 3

and 5 holds fot > 10. At the steady state= 10", the corresponding observer feedback gain is faarnm

7.071B- 004 1.4162+ 00
| 1.0004  1.001é+ 00
" |1.4152+ 003 7.07E- O

1.000@+ 006  1.0004

Figure 1 shows the disturbandeand the proposed disturbance estirrn’itelt is seen that the:] converges tal,
as predicted by Theorem 5, in about 4 seconds.r&i@u shows the state estimation erdb?(t)” versus time.
The estimation error decays to almost ze(H&(t)” =10°), confirming that the proposed robust nonlinear nlese

design is successful in the face of disturbanceslamge-Lipschitz-constant nonlinearity. Note tHawe user = 10 right
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from the beginning of observation, there will bsudstantial peaking phenomenon. The proposed stemeheduling of

(t) has successfully avoided the peaking phenomenon.

| d |
a5t === dhat ]

disturbance
o

] 2 4 6 8 10
Time (sec)

Figure 1: Disturbance and Its Estimate

state estimation eror

o o o ©
O N B B ® = N B O BN

2 4 5 B 10
Time (sec)

o

Figure 2: Norm of State Estimation Norm
4. CONCLUSIONS

Previous studies on the disturbance observer arstlyntinear systems. This paper proposes a nonlinea
disturbance observer for a class of nonlinear systéArbitrarily close estimate of the unknown dibance can be
obtained if the disturbance is bounded with bounfilet-order time derivative, and the system nordiity satisfies a
Lipschitz condition. The contribution of this paperthat it allows the Lipschitz constant to beitabily large, and it

imposes no constraint on the system relative degree
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