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ABSTRACT 

People usually use multiple social networks simultaneously, and can share the information they learned from one 

social network to another. In this paper, we study the information spreading on multilayer networks and propose a model 

that the acceptance of information is not only determined by the information itself (fundamental transmissibility), but also 

influenced by the state of the individuals. In particular, layer-switching cost is taken into consideration in our model.              

The numerical results indicate that multilayer networks have the lower threshold and the larger propagation size than the 

single network. Furthermore, we get the threshold equation from the simulation results and prove that the structure of 

source layer plays a dominant role in the multilayer system. 
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INTRODUCTION 

Many real world systems can be modeled as networks, i.e., sets of interconnected entities. A typical example is 

represented by online social networks, where information can move from one user to the other through, e.g., friendship or 

following connections. In recent years, the information diffusion process of complex networks has been an extensively 

discussed topic [1-4]. 

Although spreading processes of networks had been thoroughly studied during the last decade, real spreading 

phenomena are seldom constrained into a single network. In online social networks, individuals usually use different social 

platforms at the same time, and can share the information they have learned from one platform to another. For example, 

users of online social networks are often faced with a variety of options to choose from, e.g., Facebook, Twitter, in which 

they learn and spread information. In addition to studies on single-layer networks, increasing attention has been paid to 

epidemic and information diffusion on multilayer networks [5-8]. Buonoet al. present a study of epidemic diffusion 

process of partially overlapped multiplex networks, in which nodes belonging to both layers help to reduce the epidemic 

threshold of the multiplex system[9]. Saumell-Mendiola et al. propose a model of epidemic spreading on top of two 

interconnected networks, and suggest that global epidemic may arise even the disease is incapable to propagate in either 

network separately[10]. Also, Yağanet al. found that overlaying social-physical networks can speed up information 

diffusion [11]. The study of epidemic and information diffusion on multilayer networks shows richer phenomenology and 

additional interdependencies, compared to the spreading process that takes place on a single network. 

Relevant studies on complex networks are occasionally conducted analogously to the epidemic spreading process 

[12-15]. Epidemic models describing distinct disease spreading mechanisms are proposed, the most extensively studied 
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ones including SI[16], SIS[17], SIR[18-20] models. In the SIR model, each node of the network has one of three possible 

states: susceptible (S), infected (I), and recovered (R). The SIR diffusion process of a single-layer network is equivalent to 

bond percolation with bond occupation probability as the transmissibility[14]. Suppose that the average infection rate 

between two individuals is r, and the infected one remains the infective state for a time τ, then the probability that the 

disease will not be propagated from the infected individual to the other is τδ
τ

δ
δ rt

t
etrT −

→
=−=− )1(lim1

0
, so the probability of 

transmission is τreT −−= 1 . We call T the “transmissibility”, which denotes an infected individual infects its neighbors 

before recovery. 

As in the SIR model, an individual cannot be reinfected, the disease spreads through branches of infection that 

have a tree-like structure, and thus can be described using a generating function formalism[21, 22] that holds in the 

thermodynamic limit. In the generating function framework, the relevant magnitude that provides information about the 

process is the probability f that a branch of infection can extend throughout the network[23].When a branch of infection 

reaches a node of connectivity k across one of its links, the branch can only expand through its remaining 1−k

connections. Thus the probability that a node of connectivity k belongs to a branch of infection is proportional to

])1(1[ 1−−− kTfk , since the probability to reach a node through a link is proportional to its connectivity. Thus f verifies 

the self-consistent equation )1(1 1 TfGf −−=  in isolated networks, where ∑
−=

k

kxkxkPxG 1
1 )()(  is the generating 

function of the underlying branching process[22], P(x) is the degree distribution, and <k> is the average degree of the 

network. In the steady state of the epidemics, the branches of infection from a single cluster of recovered individuals made 

up of nodes that were infected by some of its connections. Thus the fraction of nodes in the cluster of infection of an 

isolated network is given by )1(1 0 TfGR −−= , where ∑=
k

kxkPxG )()(0  is the generating function of the degree 

distribution. Within this formalism, the self-consistent equation has a nontrivial solution above the critical transmissibility 

)1(1 −= κcT , where kk 2=κ  is the branching factor and <k2> is the second moment of P(k). 

METHOD AND MODEL 

However, the derivations above are based on a premise that the transmissibility is constant. In real online social 

networks, the propagation of information usually proceeds with complicated ways determined by many human behavioral 

and psychological factors. In this paper, we propose a model with the adjusted transmissibility to study how the 

connections between layers affect the spreading of information. We start by defining the specific setup of our model.               

The multilayer system consists of a source layer and a non-source layer with each layer representing an online social 

network. The two layers of the same size N represent two different groups of user accounts respectively. The layers have 

different connectivities with a random degree for each node, and we incorporate no degree correlations between the layers. 

In the multilayer system, the connections between two layers in Figure 1(a) show that a part of individuals own an account 

on both networks, allowing them (connection nodes) to participate in the information diffusion process on both layers. 

Here, the fraction of connection nodes in each layer called connection rate, denote by θ. θ can be expressed by 

N

N c=θ ,                                                                                                                                                                  (1) 

Where Nc is the number of connections, and Nis the total number of nodes in each layer. 
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Figure 1(a) shows an example of the information diffusion process takes place on multilayer networks. 

All individuals in the system are ignorant of the information at the initial stage. The diffusion process begins by randomly 

choosing an individual in source layer as the source of information. Then the information will spread from this node to its 

neighbors with the transmissibility T and propagate on the network.

becomes infected, its counterpart in another layer will be activated because they present the same individual. Then the 

information will spread from the counterpart to its neighbors under the effect of layer

layer-switching cost ratio α is introduced to describe the effect of layer

expressed by 

TTs ×−= )1( α ,                               

Where T is the fundamental transmissibility, and

the layer-switching cost, describing the overburden or surcharge for transmissions that proceed by crossing different layers 

compared to those proceeding as confined to the same layer. For example, when one received new information

online social medium, say Twitter, he would more likely spread it again through Twitter as it is the handiest, than would do 

it over other online media, such as e-mail, let alone to an offline social network, as it would require additional effort an

accompany spatiotemporal delay in switching the medium.

under the effect of the layer-switching cost. The nodes of different colors indicate that the individuals receive i

on different layers. 

Figure 1(a)

Process with Layer

Figure 1

Transmissibility in the Information Diffusion Process

In real social networks, people usually refer to or follow the views of the surrounding during the process of the 

information-spreading. To generate a more realistic scenario, we propose a framework that the acceptance of a node is not 

only determined by the fundamental transmissibility 

an example of the information diffusion process, the green nodes represent the infected individuals, and then we use 

instead of the fundamental transmissibility 
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1(a) shows an example of the information diffusion process takes place on multilayer networks. 

All individuals in the system are ignorant of the information at the initial stage. The diffusion process begins by randomly 

individual in source layer as the source of information. Then the information will spread from this node to its 

and propagate on the network. When a connection node accepts the information and 

nterpart in another layer will be activated because they present the same individual. Then the 

will spread from the counterpart to its neighbors under the effect of layer-switching cost

is introduced to describe the effect of layer-switching cost. Then the transmissibility can be 

,                                                                                                                                             

is the fundamental transmissibility, and α is necessarily always in the range 

switching cost, describing the overburden or surcharge for transmissions that proceed by crossing different layers 

compared to those proceeding as confined to the same layer. For example, when one received new information

online social medium, say Twitter, he would more likely spread it again through Twitter as it is the handiest, than would do 

mail, let alone to an offline social network, as it would require additional effort an

accompany spatiotemporal delay in switching the medium. In Figure 1(a), the information propagates between two layers 

switching cost. The nodes of different colors indicate that the individuals receive i

 
(a): Schematic Illustration of the Information Diffusion 

Process with Layer-Switching Cost on the Multilayer Networks

 

Figure 1(b): Schematic Illustration of the Adjusted  

Transmissibility in the Information Diffusion Process 

In real social networks, people usually refer to or follow the views of the surrounding during the process of the 

spreading. To generate a more realistic scenario, we propose a framework that the acceptance of a node is not 

he fundamental transmissibility T, but also influenced by the state of its neighbors. 

an example of the information diffusion process, the green nodes represent the infected individuals, and then we use 

instead of the fundamental transmissibility T of the diffusion process 
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1(a) shows an example of the information diffusion process takes place on multilayer networks.                        

All individuals in the system are ignorant of the information at the initial stage. The diffusion process begins by randomly 

individual in source layer as the source of information. Then the information will spread from this node to its 

When a connection node accepts the information and 

nterpart in another layer will be activated because they present the same individual. Then the 

switching cost[24]. Here, the                

switching cost. Then the transmissibility can be 

                                                                                                                  (2) 

is necessarily always in the range 10 ≤≤ α . The presence of 

switching cost, describing the overburden or surcharge for transmissions that proceed by crossing different layers 

compared to those proceeding as confined to the same layer. For example, when one received new information on an 

online social medium, say Twitter, he would more likely spread it again through Twitter as it is the handiest, than would do 

mail, let alone to an offline social network, as it would require additional effort and 

1(a), the information propagates between two layers 

switching cost. The nodes of different colors indicate that the individuals receive information 

Schematic Illustration of the Information Diffusion  

Switching Cost on the Multilayer Networks 

In real social networks, people usually refer to or follow the views of the surrounding during the process of the 

spreading. To generate a more realistic scenario, we propose a framework that the acceptance of a node is not 

, but also influenced by the state of its neighbors. Figure 1(b) shows 

an example of the information diffusion process, the green nodes represent the infected individuals, and then we use Ta 
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N
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a TTT
−

×= 2

1

,                                                                                                                                                      (3) 

Where Ni is the number of infected neighbors and Na is the number of all neighbors of the destination node 

respectively. This means that the destination node will be more likely to accept the information when more than half of its 

neighbors are already infected, and the probability increases from the proportion of the infected neighbors. On the contrary, 

the information will be more difficult to be accepted. 

SIMULATIONS AND ANALYSIS 

To further assist understanding the proposed model, we give a set of simulations based on the scale-free networks. 

Scale-free networks can excellently model a great number of real world systems where the degree distribution follows a 

power-law rule as γ−∝ kPk  with γ being the scaling exponent. The parameters used to generate the Barabasi-Albert (BA) 

scale-free network[ 25] are: 410=N , 30 == mm  and 6=k . All the simulations contain 105 realizations in this 

paper. 

In Figure 2, results of the stationary fraction of recovered individuals on a single network are presented.                       

The simulation results show that our model with the adjusted transmissibility has a higher threshold. The value of threshold 

increases from 105.0=cT to 188.0=cT . This indicates the consideration about the state of individuals will suppress the 

spread of information. 

 

Figure 2: Relations between R and T for General Model and Modified Model 

In the following part, we apply our model to the multilayer system, and the simulation results are presented. 

Figure 3(a) shows that connections between layers can substantially promote the fraction of propagation size, and the effect 

strengthens as the connection rate increases. In addition, we can see that the threshold decreases with the increase of 

connection rate. Figure 3(b) gives the simulation results of the threshold of the multilayer system. From the result,                      

we summarize the following equation: 

2θϕθϕ cb
c aeT += ,                                                                                                                                                      (4) 

where 188.0=a , 558.0−=b , 158.0=c and αϕ −= 1 . It will allow us to predict the threshold of the 

multilayer system when connection rate and layer-switching cost ratio are determined. From Eq. (4), when 0=θ  or 

1=α , the threshold value of the system reaches the maximum 188.0=cT . That is to say, the system is equivalent to a 

single isolated network, so the information can not be propagated to the non-source layer. 
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Figure 3(a): Relations between R and T for Different Connection Rate, 1.0=α  

 

Figure 3(b): Relations between Tc and θ for Different Layer-Switching Cost Ratio 

In scale-free networks, there are two types of special nodes: low-degree and high-degree nodes. Low-degree 

nodes refer to the nodes with a few neighbors and the number of this type of the whole network is large, just like the 

general users in real online social networks; High-degree nodes are very few nodes in the networks which have a large 

number of neighbors, as the so-called elite users. 

In Figure 4, we show the impact on high-degree and low-degree nodes as the connection nodes on the multilayer 

networks. As we have mentioned above, the high-degree nodes are few in number in the system. Here, we pick out only a 

few nodes in each layer as the connection nodes. In Figure 4(a), it can be seen that the non-source layer with high-degree 

nodes as the connection nodes has better propagation characteristics, representing as lower threshold and larger 

propagation size. The results shown in Figure 4(b) that the type of connection nodes has little effect on the source layer.            

In our opinion, the connection nodes are the initial sources of information on the non-source layer. Therefor, the 

propagation results of non-source layer are more sensitive to the types of connection nodes. 

               

Figure 4: Relations between R and T for Different Type of Degree-Degree  

Connection between Source Layer and non-source Layer on the 

(a)Non-Source Layer, (b) Source Layer, 1.0=α  

Figure 5(a) and 5(b) show the simulation results in the cases of different parameter� in each layer respectively. 

Apparently, changing the structure of source layer has a greater impact on the propagation results. The variation on 

threshold value of case (I) is about 1.42 times of case (II). And the variation on propagation size of case (I) is over 2 times 

of case (II). 



42                                                                                                                     Qiang Huang, Yanyao Lan, Yazai Xie, Weizhang & Jingtai Tang 

 
Impact Factor (JCC): 4.6723                                                                                                                     NAAS Rating 3.17 

 

Figure 5: Relations between R and T for (a) Case (I): Different � of  

Source Layer, (b) Case (II): Different m of Non-Source Layer, 2.0=θ , 2.0=α  

In Figure 6, simulation results of source layer and non-source layer in different cases are presented. It can be seen 

from the results that the change of structure of one network will change the propagation characteristics of this network and 

influence the other network. Remarkably, in Figure 6(b) and 6(d), we can find that for non-source layer, changing the 

parameter � of source layer is a more effective way to change the propagation results than changing the non-source layer’s 

directly. The variation on propagation size of case (I) is at most 4 times of case (II). This illustrates that the structure of 

source layer plays a dominant role in the multilayer system. 

 

 

Figure 6: Relations between R and T for Case (I) On the (a) Source Layer, (b) Non-Source Layer;  

Relations between R and T for Case (II) On the (c) Source Layer, (d) Non-Source Layer, 2.0=θ , 2.0=α  

CONCLUSIONS 

In this paper, we have proposed a model in which the transmissibility is adjusted to the state of individuals and 

investigate information spreading on multilayer scale-free networks. It has been shown that connections between layers can 

substantially promote the fraction of propagation size, and the effect strengthens as the connection rate increases.                 

In addition, considering the effect of layer-switching cost, the threshold equation is established so that we can predict the 

threshold of the multilayer system when connection rate and layer-switching cost ratio are determined. Furthermore, we 

have proved that the types of connection nodes can effectively affect the propagation results of the non-source layer but 

have little effect on the source layer. It has been shown that the structure of source layer plays a dominant role in the 

system of multilayer networks. 
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