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ABSTRACT

People usually use multiple social networks simmdtausly, and can share the information they leafred one
social network to another. In this paper, we sttidyinformation spreading on multilayer networksl gmopose a model
that the acceptance of information is not only deteed by the information itself (fundamental tramssibility), but also
influenced by the state of the individuals. In fmattr, layer-switching cost is taken into consat®mn in our model.
The numerical results indicate that multilayer rate have the lower threshold and the larger prafpag size than the
single network. Furthermore, we get the threshajdagion from the simulation results and prove tiwat structure of

source layer plays a dominant role in the multitagyestem.
KEYWORDS: Information Propagation, Multilayer Networks, Se#&lree, Threshold
INTRODUCTION

Many real world systems can be modeled as netwaeks,sets of interconnected entities. A typicedraple is
represented by online social networks, where in&diom can move from one user to the other throegh, friendship or
following connections. In recent years, the infotiom diffusion process of complex networks has baerextensively
discussed topic [1-4].

Although spreading processes of networks had bleeroughly studied during the last decade, real asping
phenomena are seldom constrained into a singleonketwn online social networks, individuals usuallye different social
platforms at the same time, and can share thenvdton they have learned from one platform to a@otRor example,
users of online social networks are often facedh aivariety of options to choose from, e.g., Faoc&bdwitter, in which
they learn and spread information. In addition ticdes on single-layer networks, increasing attentias been paid to
epidemic and information diffusion on multilayertwerks [5-8]. Buonet al. present a study of epidemic diffusion
process of partially overlapped multiplex networikswhich nodes belonging to both layers help ume the epidemic
threshold of the multiplex system[9]. Saumell-Maoldiet al. propose a model of epidemic spreading on topwaf t
interconnected networks, and suggest that globdeagpc may arise even the disease is incapabledpagate in either
network separately[10]. Also, Yaret al. found that overlaying social-physical networka cspeed up information
diffusion [11]. The study of epidemic and infornmatidiffusion on multilayer networks shows richeepbmenology and

additional interdependencies, compared to the dprggrocess that takes place on a single network.

Relevant studies on complex networks are occadjocahducted analogously to the epidemic spreadinogess

[12-15]. Epidemic models describing distinct diseapreading mechanisms are proposed, the mostsastnstudied
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ones including SI[16], SIS[17], SIR[18-20] moddis.the SIR model, each node of the network hasadribree possible
states: susceptible (S), infected (1), and recal/€R). The SIR diffusion process of a single-lagetwork is equivalent to
bond percolation with bond occupation probability the transmissibility[14]. Suppose that the averagection rate

between two individuals is, and the infected one remains the infective statea timezr, then the probability that the

disease will not be propagated from the infectefividual to the other ig_1 = Iim(1—rat)%‘ =7, SO the probability of
&-0

transmission isT =1-e™"". We call T the “transmissibility”, which denotes an infectidlividual infects its neighbors

before recovery.

As in the SIR model, an individual cannot be reitdel, the disease spreads through branches otiorfetbat
have a tree-like structure, and thus can be destrilsing a generating function formalism[21, 22jttholds in the
thermodynamic limit. In the generating functionrrawork, the relevant magnitude that provides inftian about the
process is the probabiliythat a branch of infection can extend throughbet network[23].When a branch of infection
reaches a node of connectiviky across one of its links, the branch can only edptimough its remaining—1

connections. Thus the probability that a node afinestivity k belongs to a branch of infection is proportional t
k[1- @-Tf)*™?], since the probability to reach a node throughlais proportional to its connectivity. Thiisverifies
the self-consistent equatioh =1-G, (1—Tf) in isolated networks, wherg, (x) :Zk kP(x)/(k)x"‘1 is the generating

function of the underlying branching process[22([x) is the degree distribution, artk> is the average degree of the
network. In the steady state of the epidemicsphtla@ches of infection from a single cluster of rered individuals made

up of nodes that were infected by some of its cotimes. Thus the fraction of nodes in the clusteinfection of an
isolated network is given iR =1-G,(L-Tf ), where G,(X) = Zk P(k)x* is the generating function of the degree

distribution. Within this formalism, the self-cost@nt equation has a nontrivial solution abovecttitical transmissibility

T. =Y (x -1), wherex = <k2>/<k> is the branching factor artk®> is the second moment B(K).

METHOD AND MODEL

However, the derivations above are based on a pecthat the transmissibility is constant. In redire social
networks, the propagation of information usuallpgaeds with complicated ways determined by manyambehavioral
and psychological factors. In this paper, we prepasmodel with the adjusted transmissibility todgtthow the
connections between layers affect the spreadinmpfofmation. We start by defining the specific setof our model.
The multilayer system consists of a source layel amon-source layer with each layer representm@rdine social
network. The two layers of the same shkteepresent two different groups of user accourgpeetively. The layers have
different connectivities with a random degree fackenode, and we incorporate no degree correlatietvgeen the layers.
In the multilayer system, the connections betweemnlayers in Figure 1(a) show that a part of indiddls own an account
on both networks, allowing them (connection nodesparticipate in the information diffusion process both layers.

Here, the fraction of connection nodes in eachrlagéled connection rate, denote y can be expressed by
g=—=% , (1)

WhereN_, is the number of connections, aXig the total number of nodes in each layer.
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Figure 1(a) shows an example of the information diffusiprocess takes place on multilayer netwo
All individuals in the system are ignorant of tmformation at the initial stage. The diffusion pess begins by random
choosing anndividual in source layer as the source of infaiiora Then the information will spread from thisdeoto its
neighbors with the transmissibilifyand propagate on the netwc When a connection node accepts the information
becomes infected, its coterpart in another layer will be activated becatlssy present the same individual. Then
information will spread from the counterpart to its neighborgler the effect of lay-switching cog24]. Here, the
layer-switching cost ratia is introduced to describe the effect of le-switching cost. Then the transmissibility can
expressed by

T, = -a)xT, @

WhereT is the fundamental transmissibility, ¢ « is necessarily always in the ranO< g <1. The presence of
the layerswitching cost, describing the overburden or sunghdor transmissions that proceed by crossingufit layer:
compared to those proceeding as confined to thes dayer. For example, when one received new infGom on an
online social medium, say Twitter, he would mokely spread it again through Twitter as it is tlaadiest, than would ¢
it over other online media, such asneil, let alone to an offline social network, asvibuld require additional effort d
accompany spatiotemporal delay in switching theiomac In Figurel1(a), the information propagates between two la
under the effect of the layswitching cost. The nodes of different colors irdécthat the individuals receivnformation

on different layers.
Source of information

T N ™ o -
(a) = W o ,‘S' Source layer

Non-source layer

Figure 1(a): Schematic lllustration of the Information Diffusion

Process with Laye-Switching Cost on the Multilayer Networks

(b) Nl

[

@ B

Node 1: Infected node Node 2: Destination node
Figure 1(b): Schematic lllustration of the Adjusted

Transmissibility in the Information Diffusion Process

In real social networks, people usually refer tdfallow the views of the surrounding during the q@aes of the
informationspreading. To generate a more realistic scenaggnapose a framework that the acceptance of a isoutst
only determined byhe fundamental transmissibiliT, but also influenced by the state of its neighbFigure 1(b) shows
an example of the information diffusion proces® ¢fieen nodes represent the infected individuald,then we usiT,

instead of the fundamental transmissibiT of the diffusion process
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N;
T,=TxT? "N, 3)

Where N, is the number of infected neighbors aNglis the number of all neighbors of the destinatime
respectively. This means that the destination neitldoe more likely to accept the information whewre than half of its
neighbors are already infected, and the probabilityeases from the proportion of the infected hleays. On the contrary,

the information will be more difficult to be accept
SIMULATIONS AND ANALYSIS

To further assist understanding the proposed medgegive a set of simulations based on the scake+ietworks.
Scale-free networks can excellently model a greaber of real world systems where the degree bigidn follows a

power-law rule asR, [0 k™ with y being the scaling exponent. The parameters usgerterate the Barabasi-Albert (BA)
scale-free network| 25] areN =107, m, =m=3 and <k> =6. All the simulations contain fQrealizations in this
paper.

In Figure 2, results of the stationary fraction retovered individuals on a single network are presk

The simulation results show that our model withdad@usted transmissibility has a higher thresh®tee value of threshold
increases froni, = 0105toT, = 0188. This indicates the consideration about the si&iadividuals will suppress the

spread of information.

Figure 2: Relations betweerk and T for General Model and Modified Model

In the following part, we apply our model to the Itidayer system, and the simulation results aresgnéed.
Figure 3(a) shows that connections between layersabstantially promote the fraction of propagatize, and the effect
strengthens as the connection rate increases.diticarj we can see that the threshold decreasds tivé increase of
connection rate. Figure 3(b) gives the simulatiesuits of the threshold of the multilayer systemonk the result,

we summarize the following equation:
T, = ag®®+o¥’ “)
C 1

where a= 0188, b=-0558 c= 0158andg =1-a. It will allow us to predict the threshold of the

multilayer system when connection rate and laydtefing cost ratio are determined. From Eq. (4)ewld =0 or
a =1, the threshold value of the system reaches themmam T, = 0188. That is to say, the system is equivalent to a

single isolated network, so the information canb®propagated to the non-source layer.
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Figure 3(a): Relations betweerR and T for Different Connection Rate,a = 0.1
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Figure 3(b): Relations betweerT, and @ for Different Layer-Switching Cost Ratio

In scale-free networks, there are two types of ighamdes: low-degree and high-degree nodes. Layvede
nodes refer to the nodes with a few neighbors &ednumber of this type of the whole network is éarpst like the
general users in real online social networks; Higlaree nodes are very few nodes in the networkshMmave a large

number of neighbors, as the so-called elite users.

In Figure 4, we show the impact on high-degree landdegree nodes as the connection nodes on thtayet
networks. As we have mentioned above, the highedegodes are few in number in the system. Hergiekeout only a
few nodes in each layer as the connection nodésigure 4(a), it can be seen that the non-sounger haith high-degree
nodes as the connection nodes has better propagekiaracteristics, representing as lower thresteid larger
propagation size. The results shown in Figure #{h) the type of connection nodes has little eftecthe source layer.
In our opinion, the connection nodes are the inisiaurces of information on the non-source layehneréfor, the

propagation results of non-source layer are mansitee to the types of connection nodes.

1ol
(2)
0.8 [
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Figure 4: Relations betweerR and T for Different Type of Degree-Degree

Connection between Source Layer and non-source Layen the

(a)Non-Source Layer, (b) Source Layerd = 01
Figure 5(a) and 5(b) show the simulation resultthan cases of different parametem each layer respectively.
Apparently, changing the structure of source ldlyas a greater impact on the propagation results. vmiation on

threshold value of case (1) is about 1.42 timesask (II). And the variation on propagation sizeade (1) is over 2 times

of case ().
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Figure 5: Relations betweerR and T for (a) Case (I): Differentm of

Source Layer, (b) Case (Il): Differentm of Non-Source Layerf = 02 a =02

In Figure 6, simulation results of source layer and-source layer in different cases are preseittedn be seen
from the results that the change of structure ef mgtwork will change the propagation charactesstif this network and
influence the other network. Remarkably, in Figé{e) and 6(d), we can find that for non-source faphanging the
parametern of source layer is a more effective way to chathgepropagation results than changing the non-sdaser’s
directly. The variation on propagation size of cf3ds at most 4 times of case (Il). This illugaa that the structure of

source layer plays a dominant role in the multitagyestem.

Figure 6: Relations betweerRk and T for Case (l) On the (a) Source Layer, (b) Non-Souge Layer;
Relations betweerR and T for Case (1I) On the (c) Source Layer, (d) Non-Souwre Layer, =02 a =02

CONCLUSIONS

In this paper, we have proposed a model in whiehttansmissibility is adjusted to the state of wdlials and
investigate information spreading on multilayerledace networks. It has been shown that connestimtween layers can
substantially promote the fraction of propagatiores and the effect strengthens as the connectd® increases.
In addition, considering the effect of layer-swita cost, the threshold equation is establishethabwe can predict the
threshold of the multilayer system when connectimie and layer-switching cost ratio are determift@dthermore, we
have proved that the types of connection nodesetfectively affect the propagation results of tten+source layer but
have little effect on the source layer. It has bskown that the structure of source layer play®midant role in the

system of multilayer networks.
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