

www.iaset.us editor@iaset.us

FOCUSED WEB CRAWLER DEVELOPMENT CHALLENGES: ECCRAWL ER

FURKAN GÖZÜKARA & SELMA AY ŞE ÖZEL

Department of Computer Engineering, Faculty of Engineering and Architecture,

Çukurova University, Balcalı, Sarıçam, Adana, Turkey

ABSTRACT

Nowadays, the importance of focused web crawlers is more than any time before. As the web has become massive

and spam my, it is now essential to have focused web crawlers that can crawl only the targeted websites and obtain the

necessary information. Instead of relying on the available public general web crawlers, today, developing a focused web

crawler for the targeted web pages is preferred to increase success of information retrieval. In this paper, the challenges

encountered and the proposed solutions to attempt these problems are presented, while developing an original hand-

crafted, full scale, robust and effective focused web crawler for E-commerce sites, named as EcCrawler, which is

developed in C# programming language by using .NET 4.5 framework and MS-SQL Server 2014 database management

system. Most of the crawling challenges have been discussed before in the literature, however in this paper, practical

implementation and .NET framework based solutions that includes thread pool initialization, exception handling, task

parallelism, HTTP compression, duplicate web page resolution, number of concurrent connections to the same host,

database communication, resource sharing between threads, etc. are presented and the proposed solutions are empirically

evaluated. The experimental evaluation shows that applying the proposed solutions improve EcCrawler’s crawling speed

over 400% and UI responsiveness over 100%. The proposed solutions may be applicable to any software that is developed

by using .NET framework.

KEYWORDS: NET Framework, Performance Tuning, Application Development, Multithreading, Web Crawling

INTRODUCTION

Web crawlers are software systems that are used to collect information from websites. Their main task is fetching

websites, processing fetched source code and extracting new target hyperlinks to crawl. General web crawlers start with

root URLs1 and continue until crawling all of the hyperlinks that they can find. However, this task is tedious and not

doable for small or even average scale applications. Only a fewlarge-scalecommercial general search engines (e.g. Google,

Bing, Yahoo, Yandex, and so on)can cope with the challenges and the massiveness of the entire web and keep their index

fresh. They need to use many different sources (e.g. being a member of ICANN2 and getting the list of newly registered

domains, and so on) to discover the new links and keep recrawling their existing URLs just tomaintain freshness. Because

of these very reasons, developing focused web crawlers are much more feasible and commonly practiced.

Focused web crawlers are specialized versions of general web crawlers that crawl only certain topics or certain

websites [1]. Even though they are much smaller scale than general web crawlers, still many challenges and tough tasks

1 URL is an acronym for Uniform Resource Locator and is a reference (an address) to a resource on the Internet,
http://docs.oracle.com/javase/tutorial/networking/urls/definition.html
2 The Internet Corporation for Assigned Names and Numbers, https://www.icann.org

International Journal of Computer Science
and Engineering (IJCSE)
ISSN(P): 2278-9960; ISSN(E): 2278-9979
Vol. 6, Issue 1, Dec - Jan 2017; 1-34
© IASET

2 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

await the developers who are going to build focused web crawlers [2]. In this paper,it is aimed to share experiences that are

gainedfrom the development of a full-scale, object oriented, robust, and fast focused web crawler that uses the latest

technologies with multithreaded implementation and has a very high success rate with hand-crafted rules. The development

is made in Visual C#3programming language based on the WPF4 programming model by using .NET 4.55 framework and

x64 platform. MS-SQL Server 20146is used for database management. For programming Visual Studio 20137 IDE is used.

The challenges for which possible solutions are proposed in this study are listed as below:

• Providing communication between user interface (i.e., the main thread) and background worker threads,

• Maintenance of responsive user interfaces while running thousands of threads,

• Collaboration and resource sharing between different threads,

• Unexpected error handling,

• Maintenance of URL repository,

• Robust web page fetching,

• Keeping logs for errors,

• Providing optimized database access for performance improvement,

• Being able to process erroneous HTML source,

• Handling different HTML source page structures for data extraction from different websites,

• Compressing HTML source files to save disk space,

• Saving bandwidthby HTTP compression,

• Management of the number of threads that run simultaneously.

Since focused webcrawlers are a specialized version of general web crawlers, many of the above challenges are

also the concern of general web crawlers as well. Therefore, we believe that this study can also help general web crawler

developers too.

The rest of the paper is organized as follows: in the next section, the related work for the web crawler

development is discussed. In the third section, the architecture of the proposed focused web crawler, and the possible

solutions for the problems encountered during the implementation of our crawler are presented. The fourth section

discusses the experimental results which show the effectiveness of the proposed methods, and finally, the last section

concludes the study.

3 Visual C# Resources, https://msdn.microsoft.com/en-us/vstudio/hh341490
4 Windows Presentation Foundation, https://msdn.microsoft.com/en-us/library/ms754130
5 .NET Framework and .NET SDK Downloads, https://msdn.microsoft.com/en-us/vstudio/aa496123.aspx
6 SQL Server 2014 | Microsoft, http://www.microsoft.com/en-us/server-cloud/products/sql-server/default.aspx
7 Visual Studio - Microsoft Developer Tools, https://www.visualstudio.com

Focused Web Crawler Development Challenges: Eccrawler 3

www.iaset.us editor@iaset.us

RELATED WORK

In the literature, the majority of the related works are about how to design a general web crawler [3-6] or how to

decide more relevant pages for a focused web crawler to reduce resource requirements such as space, bandwidth,

computation power, etc. in the crawling task [7-17]. To our knowledge, there is no study that explains the challenges and

the possible solutions for developing a (focused) web crawler from developers’ perspective by providing implementation

detail and being up-to-date. Additionally, the web has become so enormous and spam my that most of the previously

proposed approaches may fail today. Google8displays statistical data about spam page son the web and the domains that are

penalized by Google manually. These statistics clearly show an exponential increase of spam. Nowadays spammers are

able to generate more sense making spun content9 by using machine learning algorithms. They are also able to build highly

related link structures. Thus, depending solely upon link relations, semantic relevancy or content analysis can lead to a

failure. And for other than the multi-million budget having companies, it is not very possible to scan the entire web to

determine the authoritativeness of websites or obtain enormous golden data to weigh them accurately. For the reasons

outlined previously, if there is a need for a web crawler that requires high success rate, we propose that developing a task

oriented, new and hand-crafted focused crawler may be the best solution.

Nisha et al. [7] have proposed an approach to improve the selection of seed URLs by using user interest ontology.

Uzunet al.[8] have used decision tree learning10to automatically determine useful parts of the web pages. Different blocks

of the web pages are identified by using HTML tags in order to improve the efficiency of web crawling and data

extraction. Dahiwaleet al. [9] have proposed a crawler that utilizes link and content-based evaluation to improve the

precision of focused crawling. Yohaneset al. [10] have proposed a genetic algorithm by using methodology that employs

adaptive and heuristic methods to improve there levancy of the crawled pages. Papavassiliou et al. [11] have developed a

system for harvesting topic specific data from the web for both monolingual and bilingual pages. Liet al. [12] have

proposed a framework that uses divide and conquer strategy by using double step page classifier, link evaluation, when to

stop crawling strategy, etc. to enhance the focused crawling success. Kumar et al. [13]have developed an algorithm that is

based on term frequency–inverse document frequency (TF*IDF) which improves the precision of topic targeted crawling

in consecutive crawling phases. Liu et al. [14] have proposed a framework that calculates the distance of the newly

discovered URLs from the topic by using Maximum Entropy Markov Model and Linearchain Conditional Random Field

probabilistic models by exploiting multiple features such as anchor text, etc. Bedi et al. [15] have proposed the Dynamic

Semantic Relevance system, which uses terms and links to improve crawling efficiency and precision of focused web

crawlers. Maimunah et al. [16] have proposed a system that uses relations between parent, sibling, target, child and spouse

(which links to child) documents to improve precision and recall of focused web crawling. Liu et al. [17] have developed

an approach that uses Semantic Similarity Vector Space Model by utilizing TF*IDF and semantic similarities to calculate

relevancy of the uncrawled URLs. Such related works list some efficient crawling strategies and show that system scan be

extended, however, our aim in this study is different. In this research, our aim is to start crawling from a static root web

site, and crawl all the pages except particular ones (e.g., blocked by robots protocol11 or ignored by manually crafted rules,

etc.) from the root domain with high success rate. To achieve this goal, we propose practical implementation based

8 Fighting Spam – Inside Search – Google, https://www.google.com/insidesearch/howsearchworks/fighting-spam.html
9Article spinning – Wikipedia, https://en.wikipedia.org/wiki/Article_spinning
10Decision tree learning – Wikipedia, https://en.wikipedia.org/wiki/Decision_tree_learning
11A Standard for Robot Exclusion - Robotstxt, http://www.robotstxt.org/orig.html

4 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

solution methods which involve fine tuning of some .NET framework based parameters, and we show the performance of

our proposed solutions experimentally.

Boldiet al.[3] have proposed a scalable web crawler called as Ubi Crawler which is similar to our study. In [3],

every task is tried to be decentralized as much as possible. The system is implemented by using Java programming

language, however, details about how to improve programming language related performance issues were not discussed.

Also, UbiCrawler does not guarantee 100%prevention from duplicate crawling, and the system may have problems to

achieve continuous crawling when it is restarted or at total application crash. Also, how to distribute crawling hosts to the

agents were not explained in detail. Due to their system design, even distribution of the workload among agents is difficult

to achieve. The number of the URLs among the agents is assumed to be evenly distributed during the big crawls, however,

our experiments indicate that this assumption may not be valid every time. Also, due to the decentralization of the agents,

they cannot communicate with the each other to access the disk, and this may cause a restriction to be put on the number of

active agents to prevent hard drive from speed throttling. In EcCrawler, on the other hand, every agent is centrally

controlled, thereforedistribution of the workload among agents is highly achieved and the crashes or the application restarts

do not cause any problem for continuous crawling. EcCrawler’s design, capability, features, and programming language

that is used are highly different from UbiCrawler.

Gomes and Silva [4] have proposed a generalized web crawler and discussed some of the challenges they have

encountered. Java programming language is used for implementing the crawler but no programming language related

problems, their solutions, and optimizations are mentioned. Their main focus is more about explaining problems that are

encountered while crawling the web and the structure of their crawler.

Heydon and Najork [5] have proposed a highly-scalable general web crawler system and discussed the

fundamental problems of a general web crawler development. Their proposed system has been developed in Java

programming language. However, implementation details to solve problems encountered during the crawler design were

not provided.Shkapenyuk and Suel [6] have presented a system architecture of a distributed web crawler that runs on

multiple connected servers. The primary concern of the study is I/O and network efficiency, and solutions for performance

bottlenecks and how to obtain high performance when bulk crawling are discussed. C++ and Python programming

languages are used to develop the crawler. However, implementation details and solutions for coding related problems and

tunings are not discussed. Edward set al.[18] have developed a fully distributed general web crawler model which mainly

focuses on an efficient incremental crawling strategy. Olston and Najork [19] have made an extensive review of the web

crawling literature. They have covered the majority of the web crawling topics such as crawler architecture, crawl ordering,

avoiding undesirable content, and so on.

Our study is different from the previous studies that have been made in this area such that we provide source

codes to solve challenging problems that may be encountered during crawler implementation. Additionally, we provide

extensive empirical performance analysis for the proposed solutions.

THE PROPOSED CRAWLER SYSTEM

This section explains the general architecture of the EcCrawler as well as the challenges encountered during the

development of the EcCrawler and possible solutions to these problems.

Focused Web Crawler Development Challenges: Eccrawler 5

www.iaset.us editor@iaset.us

The Architecture of EcCrawler

EcCrawler starts by initializing public static variables, functions, and classes. In the second stage, main tasks that

are URL Handler, Crawler, Pages Processor, and Global Statistics Handler are started independently from the main thread

and thus obtain better overall application performance and the user interface (UI) responsiveness12. The UI thread and the

main thread are the same thread in this study and this is the default setup of WPF(Windows Presentation

Foundation)applications in .NET framework. Figure 1shows the workflow of EcCrawler. In the following subsections,

implementation details of the main tasks such as initialization, main thread, URL handler, URL crawler, database

communication, pages processor, etc. are presented.

Initialize Variables, Functions and Classes

URL Handler

Crawler
Pages Processor

Global Statistics
Handler

Check URL

Repository Count

Load From Database

DBMS

Get

Crawling

URLs

Check Number of

Running Tasks

Less

than

Threshold

Process Fetched Result

and Save

Check Number of

Running Tasks

Less
than

Threshold

Fetch Waiting To

Be Processed

Documents and
Process

Get Waiting To

Be Processed

 Documents Information

Update User

Interface

Less than Threshold

Task
Termination

Greater

than

Threshold

Greater

than

Threshold

Task

Termination

Start New

Task Start New

Task Start New

Task

Greater
than

Threshold

Figure 1: Flowchart of EcCrawer

Initialization

Initialization process sets up the global variables; manages continuously running Tasks13and functions; performs

thread pool initialization; controls global unhandled exception handler; and runs close handlers.

URL Handler, Crawler, Pages Processor, and Global Statistics handler are Tasks that run continuously. These

Tasks continuously start new Tasks in a pre determined time interval, and they continue to operate until application

termination.

12Chapter 6 — Using Multiple Threads, https://msdn.microsoft.com/en-us/library/ff649143.aspx
13Task Class. Represents an asynchronous operation. Microsoft Developer Network, https://msdn.microsoft.com/en-
us/library/system.threading.tasks.task

6 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

Thread Pool Initialization

.NET framework determines the number of threads that is spawned automatically according to the application

demand. However, this may yieldpoor results if the software is running on apowerful hard ware when the hardware

demand is high. To be able to start a pre-determined number of threads and utilize the system resources better, we propose

to set the thread pool count manually before spawning the threads as shown in Code Snippet 1.

ThreadPool .SetMaxThreads(100000, 100000);

ThreadPool .SetMinThreads(100000, 100000);

Code Snippet 1: How to initialize the Thread Pool

SetMax Threads sets the maximum number of threads for the thread pool, and if there is more demand than the

pre-determined maximum count, the demands are queued until the thread pool becomes available. SetMin Threads sets the

minimum number of threads for the thread pool before switching an algorithm to manage the thread pool. In both functions

that are shown in Code Snippet 1,the first parameter is the number of worker threads in the thread pool, and the second

parameter is the number of asynchronous I/O threads in the thread pool. Worker threads are used for the active works done

in the thread pool while I/O threads are more likely to wait for an external operation to complete such as a data receive

from the network. We propose to set both SetMax Threads and SetMin Threads to anequal high number to obtain

maximum available resources for the thread management system.

Exception Handling

Setting up proper exception handling enables developers to discover not properly handled errors during the

program run. While our software is running in a real case scenario, we propose always to setup global exception handling

to prevent from accidental application crashes. Moreover, errors are need to be properly logged for future analyses. Close

handlers are also necessary to ensure that no data is lost when the application is terminated by running a command or

clicking the close button at the right top of the UI. Moreover, close handlers can be set to run when an unexpected

application termination happens for preventing any possible data loss. Code Snippet 2shows how to setup global unhandled

exception handling and application of close handlers.

AppDomain currentDomain = AppDomain .CurrentDomain; //set the event domain

Application .Current.DispatcherUnhandledException += new

//setup crashing event handler for sub threads

DispatcherUnhandledExceptionEventHandler (

CloseCrashHandlers .AppDispatcherUnhandledException);

currentDomain.UnhandledException += new

//setup crashing event handler for main thread

 UnhandledExceptionEventHandler (CloseCrashHandlers .CrashCloseHandler);

Closing += new CancelEventHandler (CloseCrashHandlers .CloseHander);

//setup closing event handler

Code Snippet 2: How to Setup Global Unhandled Exception Handler and Close Handlers

Focused Web Crawler Development Challenges: Eccrawler 7

www.iaset.us editor@iaset.us

UI Independent Tasks

Executing every task independently from the main thread can ensure application responsiveness, because none of

the tasks would block the main thread. The best way to achieve this is to start a new independent Task for every process

that application is going to do. We propose that only UI updates should run in the main thread by using polling

methodology. Thus, Task. Factory method as shown in Code Snippet 3to spawn new threads can be used. This method is

one of the most optimal ways of doing multi-threading in C# WPF applications when using .NET 4.5 because Tasks are

more light weighted when they are compared to Threads14. Additionally, using Task Scheduler. Defaultparameter will

ensure that all of the spawned Tasks will be independent of themain thread.

 Task .Factory.StartNew(() =>

 {
 StartTasks();
 }, CancellationToken .None, TaskCreationOptions .LongRunning,
 TaskScheduler .Default);

Code Snippet 3: How to Start New Threads Independently from the Main Thread

Timer-Based Polling Methodology

We propose that polling methodology based system design provides both performance and robustness. Polling

based system can be achieved by starting all of the tasks as different threads from the main thread during the initialization

phase, and doing timer-based function calls in these child threads as shown in Code Snippet 4. Timer15 method also starts

another Task and even if this spawned Task is terminated unexpectedly, the method continues to spawn new Tasks.

Therefore, unexpected errors do not cause the application gets terminated, and unexpectedly terminated Tasks are properly

eliminated.

private static Timer _timer;

private static int howManySeconds = 1;

public static void func_StartCrawlingWaitingUrls()

{
 _timer = new Timer (wrapper_func_CheckWaitingUrls, null ,

PublicSettings .irTimers_Delayed_Start_MiliSeconds,

howManySeconds * 1000);

}

Code Snippet 4: How to Start Timer-Based Polling Functions

Main Thread

Main thread is important for developers or clients to manage the crawling process. Displaying various statistics in

the UI helps us greatly during the development of the crawler. Some developers may find that it is not essential for a web

crawler to have a fancy UI. However, our proposed system can be applied to all kinds of software that require highly

responsive UI. Running all of the tasks separate from the main thread can ensureUI responsiveness. However, updating the

screen still requires accessing the UI thread. How to start polling threads from the main thread and refresh the interface

properly without blocking the UI thread for a period of time are shown in Code Snippet 5. The _timer object ensures UI is

updated with an interval and the Dispatcher event in this method ensures UI is not blocked. This methodology can

minimize the risk of UI blockage.

14Task Parallelism (Task Parallel Library), https://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx
15Timer Class – MSDN, https://msdn.microsoft.com/en-us/library/system.timers.timer(v=vs.110).aspx

8 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

In EcCrawler, a global static class is designed to store the events (e.g. URLs of the latest crawled pages, number

of page-processing tasks that are running, how many crawling errors that happened, and so on). Polling threads constantly

check this global static class and update the user interface without blocking the UI thread. However, even if this

methodology is followed, UI freeze can still happen under certain situations. We noticed that this problem happens due to

the Garbage Collector (GC) ofthe .NET framework. When the GC runs in the default mode which is workstation, if there

are too many objects being constructed and destructed in the running software, it may pause all of the threads, including

the main thread for along time, and thus cause UI freeze, and software performance degrades. During the development of

the EcCrawler, figuring out and solving this problem has taken some time. A possible solutiontoperformance degradation

issue is to set GC mode to server which does not pause all of the threads and support multi-threaded garbage collection.

This setting is especially useful when the software is running on a system that has multi-core CPU. Code Snippet 6shows

how to set GC mode. After this mode change, according to our observations, even if thousands of Task srun at the same

time, UI responsiveness is not affected as long as there are sufficient system resources to update the UI. Also, changing the

GC mode improves overall performance significantly. Experiments about this modification are presented in section 0.

private static System.Threading. Timer _timer;

_timer = new Timer (updateGlobalStatistics, null ,

PublicSettings .irTimers_Delayed_Start_MiliSeconds,

PublicSettings .ir_RefreshUI_MS); //Start polling thread

object updateLock = new object ();

 private void updateGlobalStatistics(object sender)

 {
 if (Monitor.TryEnter(updateLock))

 {
 try

 {
 Application .Current.Dispatcher.Invoke(new Action (() =>

 {
 //Get data from global static cla ss and update the interface

 }));
 }
 finally

 {
 UiRefreshed();
 Monitor.Exit(updateLock);
 }
 }
 }

Code Snippet 5: How to Refresh the User Interface Without Causing UI Freeze

<configuration >

 < runtime >

 < gcAllowVeryLargeObjects enabled =" true " />

<!—If the application uses over 2GB objects -->

 < gcServer enabled =" true " /> <!-- Set garbage collector mode -->

 </ runtime >

</ configuration >

Code Snippet 6: How to Set Garbage Collector Mode

URL Handler

Focused Web Crawler Development Challenges: Eccrawler 9

www.iaset.us editor@iaset.us

One of the main components of a web crawler is a URL handling system [20]. The main job of this system is to

queue which URLs will be crawled next. Using MS-SQL server makes easy to build the URL handler system and

itprovides some benefits which are explained in the below paragraphs.

Several key aspects are observed when designing a URL handler system:

• Both the original URL sand their normalized versions that can be obtained by applying some methods like

SHA256, should be stored since some websites work with case-sensitive URLs.

• Newly discovered URLs should be saved to the hard disk as batches in order to obtain better performance in terms

of disk access time. Both versions of the URLs should be kept in a properly designed data structure such as

hashsets or dictionaries until they are written to disk. Not-properly designed structures can reduce performance of

the crawler.

• Since different threads concurrently access to the data structure that store URLs, using private read only objects to

lock the data structure can ensure thread safety and data consistency. An example of such case can be seen in

Appendix Code Snippet 7.

• URLs that are failed to be crawled for a particular time should be disabled to prevent crawler trapping at the same

URLs. Disabling the failed URLs must be done both in the database and in the URL repository of the software. In

EcCrawler, we have set a variable which is called as retry count to 3 to solve this problem. In our crawler, after

three consecutive failures, the URL is disabled for 24 hours. We did not conduct extensive experiments to find

optimal parameters for these settings. Therefore, optimal value for retry count can be determined as future work.

• Another vital point is to provide load balance between the different E-commerce websites. Size and capacity of

each site are distinct from each other, so the number of the crawling tasks for each website should be different and

this value should be determined separately for each site to ensure both politeness and maximum performance of

the crawling task. One of the major mistakes that were made during the early development stage of EcCrawler

was the nonexistence of any load balancing system between the E-commerce websites. The URL handler was

fetching the next batch of the crawling URLs from the database by the earliest discovery date. Simply doing

breadth-first search [21] which is one of the very first proposed approaches [22] in the literature, caused that a few

huge sized E-commerce sites get all of the available crawling agents and thus decrease the overall application

performance and violate the politeness rule of the crawling. One methodology proposed to solve this problem is to

use the completion time of the previous crawling session [21]. By considering the crawling speed of each website

individually, the number of agents for each website and the pause period for each consequent crawling can be

individually determined. This approach requires determining threshold values for these parameters. This method

favors very fast websites, and this may result in several enormous and very fast websites to get the majority of the

available agents. One of the possible ways of solving this problem is to assign a unique static number for the

maximum number of fetching agents at a time for each one of the E-commerce sites. When retrieving next

crawling URLs from the database, a specified number of links for each E-commerce site is retrieved according to

the pre-determined thresholds. The URL handler must also keep track of the list of URLs that are crawled

currently to maximize the number ofcrawling agents for each website. When the crawler asks the URL handler to

send the next batch of the queued links, a pre-determined number of URLs need to be provided for each website

10 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

to accomplish load balancing. We defined different number of links to be crawled for each website according to

our empirical analysis of early crawling results. Additionally, public search engines can be used to determine

these values. All the main search engines (e.g. Google, Yahoo, Bing, Yandex, and so on) support

“site:mysite.com” queries which provide the number of estimated results each of which can be considered as a

different page. Although these results are not very accurate and reliable (e.g. they don’t display exact statistics, or

some sites could have duplicate pages because of incorrect URL structures, and so on), they can be used to

roughly estimate the size of the crawled websites and determine the number of crawling agents proportionally for

each site (e.g., if there are 100 available agents at a time, distribute them according to these size values).

private static readonly object _lockObject = new object ();

//object to use for locking

public static void funcitonName(object inPut)

{
 lock (_lockObject)

//lock the object so non-thread safe objects are now thread-safe

 {
//execute necessary procedures on non-thread safe objects such
as dictionaries

 }
}

Code Snippet 7: An Example for Usage of Data Structures and Locking to Ensure Thread Safety and Data
Consistency

• After load balancing strategy is decided, the question arises which links should be crawled next. Several different

techniques have been proposed in the literature to determine which links should be the next. These methods can

be summarized as follows:(a) First discovered is first crawled [21];(b) Giving priority by using the count of

incoming hyperlinks [23] to crawl more relevant pages first; This technique is now obsolete due to the massive

amount of link spamming; (c) Giving priority by some page scoring such as Page Rank [23-28]. However, most of

the advanced page ranking algorithms may perform poorly against current web pages because of the newly

developed advanced search ranking manipulation techniques16 (e.g., link schemes, sneaky redirects, affiliate

programs, paid links, and so on). Google uses over 200 different factors17 to determine the Page Rank of web

pages today to fight against these techniques and deliver high-quality search results. Since in our work, the

websites that are going to be crawled are pre-determined, and there is a finite number of pages; we did not use any

page ranking algorithm to give priority to pages which are crawled first. Instead of some page ranking

mechanism, we have employed manually constructed filtering rules to prevent crawling unnecessary pages. For

example for the E-commerce site VatanBilgisayar, if the newly discovered URLs contain “/webapp/”or “ search

Query=” strings, they are discarded. Because, a URL, which contain these two strings, cannot be a category page

or a product page. For our task, we only need to crawl and process the category pages which list the product

pages, and the product pages themselves. Currently, a domain expert analyses the discovered URLs and decides

which strings are used for filtering the web pages. Whenever structures of the product and category pages are

changed, we need to update our rules which can determine the product and category pages. Therefore, automatic

16Quality guidelines – Google, https://support.google.com/webmasters/topic/6001971
17 Google Inside Search, Algorithms, https://www.google.com/insidesearch/howsearchworks/algorithms.html

Focused Web Crawler Development Challenges: Eccrawler 11

www.iaset.us editor@iaset.us

determination of product pages and category pages is needed and this can be done by employing a classifier. As

our main aim in this study is to show .NET framework implementation based solutions for the problems

encountered, we plan to include a classifier to our crawler as a future work.

URL Crawler

URL crawler (i.e., page fetching) is another core part of a web crawler [19]. Tasks of a URL crawler can be

summarized as follows: crawling the given link, extracting the hyperlinks from the crawled page, and returning both the

extracted links and the source code of the crawled page. In the EcCrawler, only product pages are processed so the crawler

checks whether the page is a product page or not. If it is not a product page, the source code is not saved. Also, all of the

extracted URLs are processed by applying techniques like “replace words”, “ignore words”, “trimming”, “not allowed

types” (e.g., PNG, JPG, PDF, and so on), “disallowed by robots protocol”, and so on. Some of these techniques are

manually defined after inspection of the targeted E-commerce websites. Eliminating unnecessary pages (e.g., duplicate

pages, irrelevant pages, etc.) from processing makes a huge impact on the overall performance of crawling. When the

crawler tasks complete their operation, they return the discovered URLs and the source of the crawled page to the URL

handler so that they can be saved in the database system; and the discovered new URLs can be added to the crawling

queue.

The performance of the web crawlers is highly depended on the used settings. However, in most cases these

settings are not mentioned in the related literature (e.g.,[6, 18, 19]). To possibly obtain better performance, we adviseusing

Http Web Request class in .NET framework because this class allows tuning of many different parameters. From these

parameters Headers18, Encoding19 of the Stream Reader, KeepAlive and the Response Uri are necessary. Headers are used

to enable HTTP compression20 when fetching pages from the server and thus significantly reduce the network usage.

HTTP compression is achieved by adding gzip21 and deflate22 parameters to the headers by using “Accept-Encoding” key

as shown in Code Snippet 8.Encoding of the stream is essential for parsing of the fetched source code properly.It is

provided to the Stream Reader23function, and it determines the character encoding of the fetched source code24. Keep

alive25 feature may significantly affect the overall network performance according to the crawling scenario. When the Keep

alive feature is enabled, it uses a persistent HTTP connection26 to the crawled server for multiple HTTP requests instead of

establishing a new connection session when each time a page is fetched. The only disadvantage of Keep alive is, it causes

extra memory usage (especially for the web server) therefore, when there is multiple access to the server, the Keep alive

feature should be enabled.

Also, there will be many pages that redirect to another page. Therefore,it is important for acrawler to handle the

redirected URLs for achieving proper crawling and preventing duplicate crawling.HttpWebRequestclass by default allows

automatic redirections. So if any redirection happens during the HTTP request to the server, it is handled by Http Web

18 Headers, https://msdn.microsoft.com/en-us/library/system.net.httpwebrequest.headers(v=vs.110).aspx
19Encoding Class – MSDN, https://msdn.microsoft.com/en-us/library/system.text.encoding(v=vs.110).aspx
20HTTP compression – Wikipedia, https://en.wikipedia.org/wiki/HTTP_compression
21 Gzip – Wikipedia, https://en.wikipedia.org/wiki/Gzip
22DEFLATE – Wikipedia, https://en.wikipedia.org/wiki/DEFLATE
23 StreamReader – MSDN, https://msdn.microsoft.com/en-us/library/system.io.streamreader(v=vs.110).aspx
24Character encoding – Wikipedia, https://en.wikipedia.org/wiki/Character_encoding
25KeepAlive – MSDN, https://msdn.microsoft.com/library/system.net.httpwebrequest.keepalive(v=vs.110).aspx
26HTTP persistent connection – Wikipedia, https://en.wikipedia.org/wiki/HTTP_persistent_connection

12 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

Request class automatically, and the final crawled URL can be obtained from Response Uri .Absolute Uri parameter of the

Web Response class.

All settings can be done as shown in Code Snippet 8. Also, EcCrawler shows respect to the canonical URLs27

system of Google. Canonical URLs show absolute links of pages to prevent duplicate pages28. If the source code has

canonical URL parameter and the URL of the fetched page does not match with the canonical URL, then the URL handler

only returns the canonical URL of the fetched page. If this returned canonical URL has been seen before by the crawler,

the fetched URL is marked as “duplicate by canonical”. For example, assume that the discovered URL is

“http://www.buroteknik.com/Cross-883-3-Atx-Bazalt-Siyah-Versatil_151274.html” while the canonical URL in the page

source is “http://www.buroteknik.com/en-ucuz-cross-883-3-atx-bazalt-sc4b0yah-versatc4b0l-fiyati-

ozellikleri_151274.html”. As can be seen, the URLs are different however they are the same pages.

One other critical problem is infinite-URLs generation. Some websites use bad link structure which results in

generating infinite amount of URLs. Infinite-URLs generation happens by adding more directory level to the URLs. The

following URL can be given as an example of such case: http://www.mysite.com/toys/computers/toys/computers. To

possibly overcome this problem, a maximum directory depth for each website can be set manually after a domain expert

inspects URL structure of each website. However, this may cause false rejects if the URL itself contains “/” character

instead of for directory level. On the other hands, the gainsthat have been obtained by setting a max directory depth value

are much greater than these very rare false rejects when developing EcCrawler. As many E-commerce websites generate an

infinite number of links they cause crawling of too many duplicate pages.

HttpWebRequest request = (HttpWebRequest) WebRequest .Create(srUrl);

//init request

request.KeepAlive = true ; //keep connection alive

request.Accept =
"text/html,application/xhtml+xml,application/xml;q= 0.9,*/*;q=0.8" ;

//set request headers
WebHeaderCollection myWebHeaderCollection = request.Headers;

myWebHeaderCollection.Add("Accept-Language" , "en-gb,en;q=0.5");

myWebHeaderCollection.Add("Accept-Encoding" , "gzip, deflate");

//set accepting http compression

request.AutomaticDecompression = DecompressionMethods .Deflate |

DecompressionMethods .GZip; //enable automatic decompression

using (WebResponse response = request.GetResponse()) //start response

{
 using (Stream strumien = response.GetResponseStream())

 {
 Encoding myEncoding; string srContentType = "" ;

 if (response.ContentType != null)

 {
 srContentType = response.ContentType;
 if (srContentType.Contains(";"))

 {
 srContentType = srContentType.Split (';')[1];

 }
 srContentType = srContentType.Replace("charset=" , "");

 srContentType = //try to auto get encoding type

 PublicStaticFunctions .func_Process_Html_Input(srContentType);

 }
 try { myEncoding = Encoding .GetEncoding(srContentType); }

 catch { myEncoding = irCustomEncoding == 0 ? Encoding .UTF8 :

 Encoding .GetEncoding(irCustomEncoding); }

//set recognized encoding

 using (StreamReader sr = new StreamReader (strumien, myEncoding))

 {
 srBody = sr.ReadToEnd(); //read the response

 srFinalUrl =
 PublicStaticFunctions .Return_Absolute_Url(

response.ResponseUri.AbsoluteUri.ToString(),
response.ResponseUri.AbsoluteUri.ToString());

 }
 }
}

Code Snippet 8: A Shortened Version of EcCrawler’s Fetching Function

In today’s web,there is a vast amount of web pages to crawl and the number of web pages also increases

27 Use canonical URLs, https://support.google.com/webmasters/answer/139066
28Duplicate content – Google, https://support.google.com/webmasters/answer/66359

Focused Web Crawler Development Challenges: Eccrawler

www.iaset.us

exponentially.To crawl all these pages,more concurrent connections

multiple crawling agents. However, when

connections concurrently to the same server

protocol in 1997. At that time, when the

can be considered as reasonable. However,

increased. Additionally, sizes of websites

obtain better crawling performance we need to

be increased. Moreover, many of the modern web browsers already

host (e.g. Mozilla Firefox allows six current

limit per host can be increased by setting

framework when using C#. This parameter

parameter at the start of the application.

Figure 2: Default Max Persistent Connections

ServicePointManager .UseNagleAlgorithm =
//https://msdn.microsoft.com/en
us/library/system.net.servicepointmanager.usenaglea lgorithm
//Used to reduce network traffic by buffering
// and transmitting them as a single packet

ServicePointManager .Expect100Continue =
//Setting this false will more likely to improve pe rformance because
// some servers does not support it

ServicePointManager .CheckCertifica
//If certificate revocation is not important for de veloped crawler
// setting this false more likely to improve perfor mance

ServicePointManager .DefaultConnectionLimit = 1000;
//This sets to maximum number of concurrent

Code Snippet 9: How to Increase the
the Fetching Performance

For further analysis, we have examined

29Hypertext Transfer Protocol -- HTTP/1.1

Focused Web Crawler Development Challenges: Eccrawler

more concurrent connections are neededto be opened to the same host

when the default settings are used, .NET framework only allow

server. Two connections concurrently are the default limit defined by

At that time, when the capabilities of web server hardware and software are

However, nowadays, the power of web server hardware and software

websites have been exponentially increased. As a consequence of the

we need to use multiple crawling agents to the same host,

many of the modern web browsers already allow more than two persistent connections

current connections by default as it can be seen in Figure

setting up Default Connection Limit parameter as shown in

parameter must be set before the web request is made

.

Max Persistent Connections per Server Settings for Mozilla Firefox

.UseNagleAlgorithm = true ;

//https://msdn.microsoft.com/en -
us/library/system.net.servicepointmanager.usenaglea lgorithm

//Used to reduce network traffic by buffering small packets of data
// and transmitting them as a single packet

.Expect100Continue = false ;

//Setting this false will more likely to improve pe rformance because
// some servers does not support it

.CheckCertifica teRevocationList = false ;

//If certificate revocation is not important for de veloped crawler
// setting this false more likely to improve perfor mance

.DefaultConnectionLimit = 1000;

//This sets to maximum number of concurrent connections to same host

the Maximum Number of Concurrent Connections to the
Fetching Performance of the Crawler by Tuning the Network Configuration

examined statistics of the top 10 Turkish E-commerce websites in

HTTP/1.1, https://www.w3.org/Protocols/rfc2616/rfc2616.html

 13

 editor@iaset.us

opened to the same host by spawning

NET framework only allows having two

the default limit defined by HTTP/1.129

are taken into account, this limit

hardware and software has significantly

As a consequence of the sestated reasons, to

multiple crawling agents to the same host, therefore this limit needs to

persistent connections for each

Figure 2). Concurrent connection

shown in Code Snippet 9 for .NET

is made hence; EcCrawler sets this

for Mozilla Firefox Version 44.0.2

small packets of data

//Setting this false will more likely to improve pe rformance because

//If certificate revocation is not important for de veloped crawler

connections to same host

to the Same Host and Improve
Configuration

ommerce websites in Turkey by using

https://www.w3.org/Protocols/rfc2616/rfc2616.html

14 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

Alexa30 and Google services to see whether maximum two simultaneous persistent connection for each host is suitable or

not. Our aim in this analysis is to test whether these targeted E-commerce websites’ daily fresh content could be obtained

while obeying concurrent connection count limitation of the HTTP/1.1 protocol. So estimated index size for each website

is collected by querying “site:mysite.com” from Google. Then, average loading speed of each of these websites are

gathered from Alex a which calculates page loading speed by computing how long does it take the user’s browser to load

DOM (i.e., the structure of the page which does not include images or CSS styles) of the page. Loading speed of browser

can be slower than page source fetching of the crawler however, since Alex a takes only DOM loading into consideration

and has enormous statistical data about these websites, we believe that this measure can give an overall idea. According to

the Cho and Garcia-Molina [29], more than 40% of the pages in the .com31domain changes every day. So to keep the

freshness of the E-commerce websites, we have calculated minimum number of daily page crawling requirement for each

site and this is computed by multiplying the estimated page count of the site by 40%.Moreover,we have calculated how

many pages can be crawled for each E-commerce website as follows:

 �������� =
		×	�	×		×	��	

�����
,

where �������� is the number of pages that can be crawled for the selected E-commerce website in a day, � is

hours in a day (i.e., 24), � is minutes in a hour (i.e., 60), � is seconds in a minute (i.e., 60), �� is the concurrent

connection count (i.e., 2), and ������ is the average load speed in seconds of the selected E-commerce website which is

directly taken from the Alexa’s statistics. The results are displayed in the Table 1where estimated index size is provided by

Google and the coverage is
������

	�������
 where ������ is the minimum #of page to be crawled per day to re-crawl the updated

content each day.

Table 1: Statistical Analysis of Concurrent Connection Limit on E-Commerce Websites

E-commerce Site
Estimated
Index Size

Average
Load Speed

(������)

#of Pages to be
Crawled per Day

��� ����

How Many Pages
can be Crawled per
Day �!��"�����

Coverage

Gittigidiyor 788,000 1.682 315,200 102,734 %32.59

N11 781,000 1.079 312,400 160,148 %51.26

Hepsiburada 778,000 1.605 311,200 107,663 %34.59

Vatanbilgisayar 3,230,000 1.758 1,292,000 98,293 %7.60

Trendyol 570,000 2.053 228,000 84,169 %36.91

Teknosa 1,070,000 3.153 428,000 54,804 %12.80

Markafoni 473,000 1.999 189,200 86,443 %45.68

Sanalpazar 552,000 0.986 220,800 175,253 %79.73

Kitapyurdu 627,000 1.088 250,800 158,823 %63.32

Tozlu 1,110,000 1.141 440,000 151,446 %34.41

When the results in Table 1areanalyzed, it can be concluded that two concurrent connections at a time are not

enough to keep up daily content freshness in today’s web. However, these are rough estimations, and detailed experiments

may be required to obtain more accurate results because of several reasons:

30 An Amazon company that provides public statistics about websites, http://www.alexa.com/
31COM = Commercial, any commercial related domains meeting the second level requirements,
http://tools.ietf.org/html/rfc920#page-2

Focused Web Crawler Development Challenges: Eccrawler 15

www.iaset.us editor@iaset.us

• Google statistics are not entirely accurate thus, there may be more pages;

• Statistics that are provided by Alexaare estimations of various parameters, and they may not be very accurate;

• Page crawling speed is highly depended on the network connection speed and the time of the day when the web

server is accessed;

• It is not possible to crawl only updated pages without re-crawling the other pages as well;

• 40% update estimation is based on the experiments conducted in 1999 and today it may be very different percent;

• In some cases not daily but hourly, even minutely freshness may be required, which means crawling for more

pages may be necessary;

• There are some websites that contains much more content and thus requires much more frequent crawling

sessions (e.g. Amazon32 has 161,000,000 estimated index size, and so on).

Even though these statistics are not perfect, it is clear that only twoconcurrent connections is not sufficient

currently, and it should be increased according to the tasks that are running, and the system resources used by the tasks.

Therefore, we have set this limit to a large number which is equal to 1000. On the other hands, to prevent any bottleneck

on the E-commerce websites, wemake sure that we have never exceed 50 concurrent connections, as our maximum

crawling agent count per website has been set to 50.We have set this number based on our empirical analysis of the

crawling speed by testing several different values.

Database Communication

In EcCrawler, all of the database queries are executed by using a single database handler class. Using single class

makes database handling system easier to manage. Several different functions are written to handle specific cases

according to EcCrawler requirements. One of the database management functions designed for EcCrawler is shown in

Code Snippet 10.In the displayed function there are several key parameters:

• when integrated security=SSPI is used, no user ID or password is required since the Windows’s current

credentials is used for authentication;

• Max Pool Size=20000 sets the connection pool size of the SQL-Server for that client and if the application opens

a lot of concurrent connections to the SQL-Server this parameter should be set to a high number;

• enabling Pooling33 improves overall performance by preventing from opening a physical channel each time a new

connection is opened;

• Connection Timeout determines the timeout of connection opened before the connection is automatically closed

and this should be set to an appropriate value according to the scenario (e.g. if exhausting queries are being

executed, this timeout should be set to a high number in order to prevent connection problems);

• CommandTimeout is a different parameter than the Connection Timeout thus it should also be set to

anappropriate value.

32http://www.amazon.com/
33SQL Server Connection Pooling, https://msdn.microsoft.com/en-us/library/8xx3tyca(v=vs.100).aspx

16 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

Performance improvement of this function comes from using a single database connection for executing multiple

updates or insert operations. The function gets a list of parameters and objects of multiple queries and then save them in the

database by using Sql Command. This kind of batch inserts and updates may improve overall performance by preventing

multiple server connection authentications. To minimize the number of server connection authentication, as ingle static

connection is shared a mong all of the threads to prevent authentication overhead. However, SQL connection is not thread

safe and need to be locked each time it is accessed. Lock methodology can decrease overall performance when there are

too many threads and, therefore, it is better to use a new connection for each thread.

public static string srConnectionString = "server=localhost;database=dbBame;
integrated security=SSPI; Max Pool Size=20000; Pool ing=True;Connection
Timeout=3000;" ; //define connection string

public static bool batch_execute_CMD_update_delete(string srCommandText,
List <string > lst_Command_Variable_Names,

List <List <object >> lst_Command_Parameters, CommandType cdType)

//a generic function that can be called from any th read

 {
 bool blErrorHappened = false ;

 try

 {
 using (SqlConnection connection = //init SQL connection

 new SqlConnection (DbConnection .srConnectionString))

 {
 connection.Open(); //open SQL connection

 for (int i = 0; i < lst_Command_Parameters.Count; i++)

 {
 using (SqlCommand cmd =

 new SqlCommand(srCommandText, connection))

 {
 try //catch if any error happens

 {
 cmd.CommandTimeout = //set execution timeout

 PublicSettings .irCommandTimeOutSettings_Second;

 cmd.CommandType = cdT ype; //set command type

 for (int k = 0;

 k < lst_Command _Parameters[i].Count; k++)

 //add command variables with an order

 {
 cmd.Parameters.Ad dWithValue(
 lst_Command_Vari able_Names[k],
 lst_Command_Para meters[i][k]);
 }

 cmd.ExecuteNonQuery (); //execute SQL command

 }
 catch (Exception E) { //log errors here }

 }
 }
 }
 }
 catch (Exception E) { //log errors here }

 return !blErrorHappened;

 }

Code Snippet 10: A Shortened Version of Batch Command SQL Query Execution Function of EcCrawler

We present experiments on the effects of batch access to database and static connection performance in

section0.Additionally,it is a good practice to update the same tables from the same threads always. This methodology can

Focused Web Crawler Development Challenges: Eccrawler 17

www.iaset.us editor@iaset.us

prevent crucial table locks and improve the overall performance. However, select statements, in general, are directed to the

same table from different threads. Thus, there can be occasions that both select and update statements are executed on the

same table at the same time from possibly different connections. In such case, “transaction was deadlocked on lock

resources with another process and has been chosen as the deadlock victim” error may happen and SQL server always

undoes the least amount of work required by the transaction. By default, priority of select transactions is lower than

priority of update transactions, so select transactions are denied. The possible solutionto this problem is to check SQL

server errors and if there is a resource deadlock victim error when thes elect statement is executed, the same select

statement is repeated a pre-determined number of times with a delay. Moreover, every unexpected error should be logged

and handled in a proper way.

Pages Processor

Pages processor class processes pages, and translates the semi-structured data into the structured form. These

specific processors are also known as wrappers [30] in Information Retrieval (IR)area and they are one of the most

important parts of the focused web crawlers. General web crawlers also have page processing tasks (e.g., for link

extraction) however, when focused web crawling is made, the task is usually much more complex because the aim of

focused crawling is to obtain structured data from unstructured targeted domains.

Commercial systems usually require very high success rate of obtaining targeted data. Obtaining such success

rates by using automatic or semi-automatic wrapper generation methodologies (e.g. [31, 32]) are very hard to achievein

practice today because of various reasons: (i) browsers have become so robust in the recent years that they display even

very erroneous HTML source data correctly and thus data are not presented as structured as before; (ii) complexity of the

web pages has significantly increased and the amount of ordinary structured data (e.g., table usage, etc.) has

decreased.Therefore, in order to achieve a very high success rate, we decided to develop the wrappers manually for

EcCrawler and we obtained very high success rate (i.e., about 100%).As our crawler only visits a pre-determined set of e-

commerce websites, we can develop some rules by manually inspecting the source codes of the product pages to extract

information about the products. When the manual wrapper crafting methodology is chosen, the system design is extremely

important for rule generation. Proper system design makes the rule generator’s job extremely easy and improves the

software performance. For example, for VatanBilgisayar E-commerce website, if a nobject, that satisfies the below

conditions, exists in the source code of the crawled page, the page is determined as a candidate product page and it is

processed by page processor agent:

• HTML Object Type: span

• HTML Object Identifier: class

• HTML Object Identifier Name: aktKod

Main task of pages processor is to translate the desired information from raw HTML source code into a structured

form by using the wrappers. For this task, regular expressions34 (regex) can be utilized. However, due to the erroneous

nature of the source codes and the complexity of the regexes that are required, using an advanced HTML parsing library

34Regular expression – Wikipedia, http://en.wikipedia.org/wiki/Regular_expression

18 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

such as Html Agility Pack35 can be a better solution. Htm Agility Pack is capable of fixing HTML errors and generate

properly structured Document Object Model (DOM)36. It is open source and written in .NET framework. EcCrawler’s

wrappers use Html Agility Pack for information extraction task. The system design is completely up to the developer. For

EcCrawler, XPath37 queries are defined for each E-commerce website and executed iteratively to get all of the necessary

information (e.g., product title, product categories, etc.) in a structured way. There are several key aspects when building

HTML parser with Html Agility Pack framework. Html Document and Html Node are one of the most commonly used

classes and they are not System. I Disposable. Because of this reason, setting them to NULL when the object is not

necessary anymore, improves the overall performance. One other important aspect is, to check whether an object is NULL

or not before using it due to the unpredictable nature of the web crawlers. Additionally, in some cases, parsing JavaScript

Object Notation (JSON) data is also necessary. The usage of JSON significantly increases performance by providing more

asynchronous pages and better user experience. However, Html Agility Pack is not capable of parsing JSON data. For

parsing JSON data, another open source and free library Json.NET38 is used.

Collaboration and Resource Sharing Between Different Threads

Collaboration and resource sharing between different threads can be done either by using a database system as a

middleware or having public functions to access private variables. Using the database as middleware can degrade the

system performance due to connection authentication overhead and accessing to the hard disk instead of using RAM.

Resource sharing between different threads requires data access to the same objects from multiple threads at the same time.

Collaboration between multiple threads can be ensured by properly locking thenon-thread-safe objects before accessing

them.

There is a dedicated class in EcCrawler, which holds statistics and events’ logs to show on the user interface and

save to the hard disk. For keeping events’ logs, private static List objects are used and accessed via public functions. For

statistics such as how many pages are crawled, public static long objects are used. However, operations on the numerical

objects (e.g., integer, long, etc.) are also not-thread-safe, and thus, they need to be either locked or more properly

Interlocked method is needed to be used when accessing them for both read or update. Also, to ensure thread safety, it is a

necessity to use the same locking object for the same non-thread-safe objects. If multiple objects are used for locking to

ensure thread safety of a non-thread-safe object, this may result in either error or data inconsistency. It may even cause

deadlocks when a thread locks the first object and at the same time, another thread locks the secondobject, and no locks are

released until the same thread locks both of the objects.Code Snippet 11shows an example usage of Inter locked and

object-based locking method.

35“HtmlAgilityPack is an agile HTML parser that builds a read/write DOM and supports plain XPATH or XSLT” ,
https://htmlagilitypack.codeplex.com/
36 Document Object Model – Wikipedia, http://en.wikipedia.org/wiki/document_object_model
37XML Path Language (XPath) – W3C, https://www.w3.org/TR/xpath/
38 Popular high-performance JSON framework for .NET, http://www.newtonsoft.com/json

Focused Web Crawler Development Challenges: Eccrawler 19

www.iaset.us editor@iaset.us

Interlocked .Increment(ref GlobalStats .long_GlobalPageFetchFailCount);

//thread safe increment

Interlocked .Read(ref GlobalStats .long_GlobalPageFetchFailCount);

//thread safe read

private static readonly object _lockObject = new object ();

//read only object to have lightweight locking

private static void functionName ()

{
 lock (_lockObject) //ensures thread safety inside

 {
 //do operations here, they are thread safe

 }
}

Code Snippet 11: Examples for Proper Locking to Provide Thread Safety

Error Log System

In software development,unexpected errors can always happen and in the worst cases they may cause unexpected

application terminations. Alsoit is very hard to test the application for all cases and fix all of the possible errors before the

public release. In order to minimize these possible errors, software developers tend to follow software release life cycle39

(e.g., alpha, beta, release candidate, etc.).Therefore, logging every error, and handling unexpected errors are crucial and

important. In EcCrawler, an entire class is designed for error-logging. This class uses Stream Writer40class to log errors

into the text files. The database system can also be used to log errors however for faster logging we have used text files.

Stream Writer object is not a thread safeobject and does not Flush41 after every write automatically by default. So locking

is necessary when accessed by multiple threads. Also, it has to be either manually flushed or auto-flush mustbe set to true

not to lose any data in case of unexpected application terminations.

Thread Count Management System

The thread count management system is an important part of developing a multi-threaded software. The

importance increases when particular tasks need a certain number of active threads constantly. For example, to keep a

steady number of active crawling agents for each host individually, we propose that one possible solution is to use the

polling methodology by timer based checks. In this method, spawned threads are kept in a thread list. Whenever the timer

ticks, the number of unfinished threads is checked, and the required number of new threads are started as shown in Code

Snippet 12. This strategy properly ensures that at any given time there exist a certain number of active threads for the task.

For multi-threading in .NET 4+, two different classes which are Task42and Thread43classes can be used. Managing and

starting Tasks are relatively easier and have better performance44 than using Threads. Thus, Task class is preferred starting

from .NET 4+ when writing multi-threaded applications. Therefore, EcCrawler uses Task class instead of Thread class.

39Software release life cycle – Wikipedia, https://en.wikipedia.org/wiki/Software_release_life_cycle
40Stream Writer Class – MSDN, https://msdn.microsoft.com/library/system.io.streamwriter(v=vs.110).aspx
41“Clears all buffers for the current writer and causes any buffered data to be written to the underlying stream”40
42Task Class – MSDN, https://msdn.microsoft.com/en-us/library/system.threading.tasks.task(v=vs.110).aspx
43Thread Class – MSDN, https://msdn.microsoft.com/en-us/library/system.threading.thread(v=vs.110).aspx
44Task Parallelism – MSDN, https://msdn.microsoft.com/en-us/library/dd537609(v=vs.110).aspx

20 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

private Timer _timer;

private void Button_Click(object sender, RoutedEventArgs e)

{
 Task .Factory.StartNew(() => //start task as a background thread

 {
 startCheckingTimer();
 }, CancellationToken .None, TaskCreationOptions .LongRunning,

 TaskScheduler .Default);

 //TaskScheduler.Default ensures seperate than main thread

}

private void startCheckingTimer()

{
 _timer = new Timer (doStuffParallel, null , 100, 1000);

//constantly starts new separate than the main thre ad tasks

//with a timed interval even if error happens in th e started task

}

private List <Task > startedTaskList = new List <Task >(); //init task list

private int irMaximumNumberOfParallelTasks = 100; //set # of parallel tasks

private void doStuffParallel(Object state)

{
 startedTaskList.RemoveAll(tsk => tsk.Status == //remove completed tasks

 TaskStatus .RanToCompletion);

 for (int i = 0;

i < irMaximumNumberOfParallelTasks - startedTaskLis t.Count; i++)

 {
 Task myTask = Task .Factory.StartNew(() =>

 {
 //do operation here

 }, CancellationToken .None, TaskCreationOptions .LongRunning,

 TaskScheduler .Default);

 myTask.ContinueWith(t => LogError("log error here"),

 TaskContinuationOptions .OnlyOnFaulted);

//even if unhandled error happens it will be handle d and
//application continue to run

 startedTaskList.Add(myTask);
 }
}

Code Snippet 12: An Example for Multi-Thread Management System that Ensures Responsiveness of the UI

EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section experiments performed and their results are presented to evaluate the efficiency and the

performance of the proposed methods. All of the experiments are performed on a personal home computer having the

below configurations:

• Operating System: Windows 8.1 (6.3) Enterprise Edition 64-bit (Build 9600)

• CPU: Intel Core i7-2600K CPU @ 3.40GHz, 1 CPU - 4 Cores - 8 Threads, Frequency4544.05 MHz (45 * 100.98

Focused Web Crawler Development Challenges: Eccrawler 21

www.iaset.us editor@iaset.us

MHz) (Information received by CPU-Z45 1.72 x64)

• RAM : 32768 MB, DDR3-1346 - Dual Channel, Frequency 673.2 MHz (1:5), Timings 9-9-9-24 (Information

received by CPU-Z 1.72 x64)

• Hard Disk: 2x OCZ Vertex 4, Raid 0 setup with stripe size 64KB, Write-Cache Buffer Flushing: Enabled, Cache

mode: Write back, Sequential read 742 MB/s, write 772 MB/s, Random 512 KB read 482 MB/s, write 486 MB/s.

Tests are done at CrystalDiskMark46 3.0.4 x64. Access time: 0.127 milliseconds (access time tested by HD Tune

Pro47 5.50). Other than from synthetic tests, when reading a large amount of data (30 GB+) from the SQL server,

the windows task manager displayed630 MB/s read speed with 6000 milliseconds average response time

• Internet Connection (Network Speed): 50 Mbit/s download, 5 Mbit/s upload, personal home fiber connection,

provider: Turkcell Superonline48

• Best Performance Settings: HTTP compression is enabled, initialization of the thread pool is enabled, garbage

collector mode is set to server, and concurrent connections limit is increased.

All of the tests (except source code compression) are executed for 30 minutes and in each minute statistics of the

conducted tests are collected. In order to collect network traffic statistics, Fiddler49 framework is used. The RAM usage

and the CPU usage statistics are collected by using Performance Counter class and1-second polling methodology which are

also used by Windows Task Manager. We use a measure which we call as “UI responsiveness” to evaluate the

performance of our system. The main task of our system is called as UI and there fore UI responsiveness is the response

rate of the UI to the UI changes. UI responsiveness is a direct indication of the system performance when all of the tasks

are started independent from the UI thread since UI may lag only when the application itself is throttling in such scenario.

The UI responsiveness is measured by the following strategy:(i) only a class is used to refresh UI by Monitor. TryEnter

locking strategy as shown in Code Snippet 5; (ii)after each UI refresh is completed, the time of the refresh is recorded;

(iii)the UI is updated per 0.5 seconds. We have chosen updating per 0.5 seconds because “high update speed” profile of

Windows Task Manager also uses0.5seconds interval to refresh the statistics. So after the application is started, each

second has exactly 2 times UI refresh process. If the corresponding second has any missing refresh, it is counted as UI

freeze, if the second has more than 2 times UI refresh, it is counted as UI lag (delayed update consecutively). The total

responsiveness of the UI is measured as the number of correct UI refresh matches in each second divided by the number of

total expected UI refresh. So if the UI is refreshed 2 times within each second, the UI responsiveness is 100%. Refresh

count over than 2 or less than 2 in a second means there is either UI lag or UI freeze which both reduce UI responsiveness.

Average application threads count is calculated by using1-second polling methodology and Process. GetCurrent

Process().Threads. Count50 method. Maximum 300 concurrent crawling agents are used for experiments and maximum

crawling count for each website is limited individually. We have used 50 different E-commerce sites for the experiments

45CPU-Z is a freeware that gathers information on some of the main devices of your system,
http://www.cpuid.com/softwares/cpu-z.html
46 CrystalDiskInfo is a HDD/SSD utility software (open source) which supports S.M.A.R.T and a part of USB-HDD,
http://sourceforge.jp/projects/crystaldiskinfo/
47 http://www.hdtune.com
48http://www.superonline.net/kesfet/fiber-internet
49 The free web debugging proxy for any browser, system or platform, http://www.telerik.com/download/fiddler
50 MSDN, https://msdn.microsoft.com/en-us/library/system.diagnostics.process.getcurrentprocess(v=vs.90).aspx

22 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

and some of them are listed in Table 1.When we have tested the limit for the default number of connections per host, a

single website is used for experimenting so that the soft ware can possibly reach the number of concurrent connections per

host threshold. Every crawled page is processed to extract URLs in the crawled page, determine the status of crawled page

as canonical or a product page or not, etc. However, page processing that is applied to product pages involves extraction of

product title, product categories, product features, product comments, etc. To determine type of the page that is processed,

EcCrawler needs to determine whether the crawled pages are “a product page” or “not” and this is decided at the link

extraction phase by applying manually generated rules. If the page is not a product page, it is not saved for further

processing. During the tests, the number of page processing tasks’ count was set to 100.

The tests, other than the source code compression, depend on the network capacity, the hard disk performance,

and the SQL-Server caching. Because of the sere asons, all of these experiments are conducted after 1 am local time for

politeness and more objectivity. In addition, before the test, the database is reset (returned to initial values), the computer’s

IP address is changed and the computer is restarted. These actions were taken in order to solve the following possible

issues:

• It can be expected that the E-commerce websites’ server load will be lower after the midnight due to decreased

visitors’ activity. After midnight crawling also improves the chances of not harassing the crawled websites.

• Both home’s internet connection network load and the crawled E-commerce websites’ server network load

changes throughout the day. Because of this reason, making all such network load based tests after 1 AM local

time should improve the reliability of the experiments.

• Windows 8.1’s disk system, SQL-Server, and Windows 8.1’s DNS system make heavy caching of many different

requests to improve the performance. Conducting experiments consequently can yield unfairness among the

various tests because of these caching. After each one of the tests, the computer is restarted to conduct the tests in

equal conditions.

• Since the home network is used to carry out the tests and the ISP provides dynamic IP address, the IP address is

changed after each one of the tests to prevent any possible IP blockage. However, this may not have been

necessary becausewhile conducting the experiments, we did not notice any IP blockage or we did not receive any

complaint from any of the crawled web servers’ administrators. Not receiving any complaints or not getting

blocked may show that the methods used are sufficient to handle multiple connections from each client without

any trouble.

Database Communication

In order to verify the effectiveness of the proposed database connection system, we have conducted the following

3 different tests: (i) in the first test scheme, no batch database access is used, and for each database access a new

connection session is opened and closed; (ii) in the second test scheme, batch database access methodology is used and for

multiple database accesses, a single connection session is used and closed; (iii) in the third test scheme, a static connection

is employed for all of the database accesses between all of the different threads by using locking methodology to ensure

thread safety, and it is never closed. The difference from the batch database access mode is, it uses a single connection to

execute multiple different queries. So it should not be confused with batch SQL queries. Therefore, it reduces overhead of

SQL-Server connection session handling.

Focused Web Crawler Development Challenges: Eccrawler

www.iaset.us

Database communication experiments

significant difference between these three

heavy system demanding tasks when compared to

database connection procedures to observe

the EcCrawler were already heavily tuned to obtain maximum performance.

conduct synthetic tests that will heavily use

In order to carry out the synthetic tests, a new table is

column. The numbers between 1 and 10

to execute the tests. This software spawned 250 Tasks (each one

Tasks continues to work constantly until

single Data Row from the synthetic test

Tasks are counted cumulatively. In the batch database

Task is used 50 times before it is closed

The reason for choosing such a high number of Tasks

are not optimal values for the best system performance

database connection performance rather than

shown in Table 2.

Figure

Table 2: Experimental

Test Scheme

Scheme 1 - Single Query
Database Connection

Focused Web Crawler Development Challenges: Eccrawler

Database communication experiments are conductedon the EcCrawler system. However

three modes. The reasons for this observation may be that the

tasks when compared to the database session generation and there

observe the effectiveness of the proposed systems. Additionally

the EcCrawler were already heavily tuned to obtain maximum performance. Because of these reasons

conduct synthetic tests that will heavily use the database connections.

synthetic tests, a new table is designed which have a single

column. The numbers between 1 and 10,000 are inserted into this table as primary keys. Then a new software

to execute the tests. This software spawned 250 Tasks (each one is separate from the main

to work constantly until the application is terminated. These Task squeries

synthetic test table by generating a random primary key predicate.

. In the batch database access methodology, a single new database connection for each

closed. The table and a sample query used in the experiments are presented

number of Tasks is to maximize the system resources usage in all cases. These

are not optimal values for the best system performance. Also, very simple database design

database connection performance rather than the database querying performance. The results of these experiments are

Figure 3: Table and Query Used in the Synthetic Tests

Experimental Results for Synthetic Database Connection

Average CPU
Usage of the

Test Software

Average CPU
Usage of the
SQL-Server

Average Number
Completed Queries

per Minute
Single Queryper

53.90% 45.12% 3,120,492

 23

 editor@iaset.us

However, we did not observe any

be that the system has a lot of very

database session generation and there may be not enough number of

Additionally, the executed queries in

Because of these reasons, we decided to

which have a single Integer 32(int) primary key

as primary keys. Then a new software is developed

separate from the main thread) and each one of these

queries the database and selects a

 Then database accesses of the

a single new database connection for each

query used in the experiments are presented in Figure 3.

the system resources usage in all cases. These values

database design is chosen to evaluate the

results of these experiments are

Synthetic Database Connection

Average Number of
Completed Queries

er Minute

3,120,492

24 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

Scheme 2 - Batch Mode –
Multiple Queriesper
Database Connection

51.21% 45.65% 3,982,170

Scheme 3- A Single Static
Connection for all of the
Threads and the Queries

99.17% 0.49% 58,891

When the results in Table 2areanalyzed, Scheme 2 is the best performer by almost equalizing the CPU utilization of

both software and SQL-Server. Thus, it also achieves to obtain highest number of queries per minute. When Scheme 1 and

Scheme 2are compared, the CPU usage of software in Scheme 1 is slightly higher than that of the Scheme 2. The possible

reason of this can be that the software spends more time to establish a new session for each query instead of using the same

session for multiple queries. When the results of Scheme 3are interpreted, we see that the test software uses a massive

amount of the available system resources, and SQL-Server utilization is poor. The possible reason of this is, each time a

Task demands a database access, it has to lock the static database connection. If the connection is already locked, it has to

wait. This locking process is significantly system demanding, and this is probably the main cause of unbalanced CPU

usage between the test software and the SQL-Server and results in a lower performance.

Source Code Compression

Page processing is a much more challenging task when it is compared to crawling pages and saving their source

code task. Because of this reason, page processing and page source saving task shave to be asynchronous. Since the

crawling task is much faster than the page processing task, to achieve asynchronous execution, source codes of the web

pages have to be kept until they are processed. However, storing the raw source code of the crawled pages takes huge

space both on the disk and in the RAM. Finding the optimal compression algorithm for the developed crawler can help to

reduce space requirement. If the disk space usage is more crucial than the CPU requirement for the developed software, a

more aggressive compression can be chosen. However, the obtained experimental results indicate that one of the

compression methods clearly surpasses every other method by the CPU_requirement/compression ratio.

For the compression tests, the dataset which is generated by EcCrawler is used. 100,000 pages are randomly

chosen from the dataset. The features of the pages in the dataset are as follows: maximum source code size (UTF-8) of a

single page is 8.54 Megabytes, the average size is 86.68 Kilobytes, the minimum size is 23.68 Kilobytes, and total size of

all uncompressed source codes size is 8.26 Gigabytes. When testing Gzip compression algorithm, .NET frame work is used

because it natively supports Gzip. For testing the other compression algorithms, 7-Zip51library is used with Compression

Level set to Normal. To use 7-Zip DLL file in C#, Seven Zip Sharp52is used as a wrapper.

The results of thecompression experiments are presented inTable 3 where Min ,Max,and Avg Compressed

Source Size are the minimum,the maximum, and average size of the compressed source code of acrawled page in

kilobytes;Min ,Max, and Avg Compression Time are the minimum,the maximum, and average elapsed time for

compressing source code of a crawled page in milliseconds;Min ,Max, and Avg Decompression Time are the

minimum,the maximum, and average elapsed time for decompressing source code of a crawled page in

milliseconds;Min ,Max, and Avg Compression Benefit are the minimum,the maximum, and averageof the percentage

difference between the size of the compressed andraw source codes of a crawled page;Avg CPU Usage is the average CPU

51Open source 7-Zip is a file archiver with a high compression ratio, http://www.7-zip.org
52 Managed 7-zip library written in C#, https://sevenzipsharp.codeplex.com/

Focused Web Crawler Development Challenges: Eccrawler 25

www.iaset.us editor@iaset.us

usage of the system while compression experiments are running.

Table 3: Comparison of the Compression Methods

Mode: Gzip BZip2 Deflate
Deflate

64
Lzma Lzma2 Ppmd

Min Compressed Source Size
(KB):

9.01 9.30 8.75 8.75 8.74 8.75 8.08

Max Compressed Source Size
(KB):

8,471 8,458 8,472 8,472 8,470 8,472 8,577

Avg Compressed Size (KB): 24.97 24.09 22.78 22.78 22.78 22.79 21.80
Min Compression Time
(milliseconds):

0 13 27 15 22 27 13

Max Compression Time
(milliseconds):

366 637 4,700 1,977 4,679 4,718 3,930

Avg Compression Time
(milliseconds):

1.53 42.03 61.27 39.20 57.99 62.07 38.37

Min Decompression Time
(milliseconds):

0 10 20 9 19 20 11

Max Decompression Time
(milliseconds):

178 732 541 527 567 538 4,369

Avg Decompression Time
(milliseconds):

0.39 31.14 57.93 30.57 57.49 57.15 30.66

Min Compression Benefit (%): 2.42 2.40 3.14 3.14 3.16 3.14 1.94

Max Compression Benefit (%): 91.77 93.33 92.93 92.93 92.93 92.93 93.50

Avg Compression Benefit (%): 71.18 72.20 73.70 73.70 73.71 73.70 74.84

Avg CPU Usage (%): 17.51 16.67 16.22 19.16 16.26 16.43 17.31

In Table 3, the best values for each performance evaluation parameter are written in bold face. According to the

results that are presented in Table 3, Gzip clearly outperforms the other methods when both the compression ratio and the

compression times are considered. Even though the Gzip obtains lower average compression ratio than all of the other

methods, it is at least 15 times faster than the other methods for the compression task and 78 times quicker than the other

methods for the decompression task. The compression performance gain of the other methods is extremely low when

compared with their increased time requirement and because of this reason EcCrawler uses Gzip.

Using Compression While Fetching Pages

Today, the majority of the web servers supports compressed data transferring, however by default, .NET does not

make the HTTP requests with compression enabled. Necessary headers are needed to be includedin the requests, and

automatic decompression needs to be enabled as shown in Code Snippet 8, to fetch web pages with HTTP compression.

The results of the HTTP compression enabled tests, and the default Http Web Request class tests are presented in Table 4

where the gray highlighted rows are the best performance settings (i.e., compression enabled) and the not highlighted

(white) rows are the results of the same settings when HTTP compression is deactivated.

In Table 4;Crawl Success is the number of successfully crawled web pages;Crawl Fail is the number of

unsuccessfullycrawled web pages;Avg # of Pages per Minute Crawlis the average number of successfully crawled web

pages per minute;Avg # of Processed Pages per Minute is the average number of processed pages per minute;Avg

Download Speed per Second is the average bandwidth in kilobytes used by the application per second to download web

pages;Avg Upload Speed per Secondis the average bandwidth in kilobytes used by the application per second to upload

26 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

data (upload is used for only connecting the websites) to the web servers;Discovered Unique URLsis thenumber of

discovered unique web pages. Other metrics used in the table are self-explanatory.

Table 4: The Effect of Compression Enabled HTTP Requests Experiment

HTTP Compression (Minutes) 5 10 15 20 25 30

Crawl Success
30,917 62,595 98,092 134,875 171,821 210,189

19,860 40,824 62,178 84,260 106,032 126,735

Crawl Fail
114 459 1,348 1,622 1,697 1,754

199 486 740 991 1,828 2,818

Avg# of Pages per Minute
Crawl

6,086 6,195 6,485 6,693 6,827 6,960

3,914 4,046 4,115 4,184 4,213 4,198

Avg# of Processed Pages per
Minute

815 805 780 738 715 704

701 722 699 693 679 670

Avg Download Speed Per
Second (KiloBytes)

2,536 2,550 2,665 2,633 2,631 2,660

5,645 5,759 5,790 5,769 5,791 5,805

Avg Upload Speed Per Second
(KiloBytes)

38 39 42 44 44 45

21 21 21 22 22 22

Discovered Unique URLs
153,994 207,914 259,737 309,515 346,910 383,869

115,564 168,024 211,293 236,519 261,804 291,895

Avg RAM Usage (MegaBytes)
1,003 1,106 1,177 1,229 1,275 1,292

1,031 1,118 1,153 1,179 1,198 1,215

Avg CPU Usage (%)
59.74 62.07 63.36 63.89 64.35 64.71

32.78 32.45 33.01 33.01 33.11 33.04

Avg# of Threads Spawned
542 555 553 554 558 562

623 644 663 696 725 756

UI Responsiveness (%)
98 98.41 98.22 97.95 97.83 97.80

98.5 98.58 98.66 98.62 98.56 98.61

UI Freeze (%)
2 1.58 1.77 2.04 2.81 2.19

1.5 1.41 1.33 1.37 2.16 1.38

UI Lag (%)
0.33 0.16 0.11 0.16 0.2 0.16

0 0.08 0.05 0.08 0.06 0.05

When Table 4 is analyzed the benefit of HTTP compression is clearly observed. As mentioned in the testing

platform specifications, the maximum download speed of the internet connection was 50 Mb its per second, which is

roughly equal to 6400 Kilo Bytes per second. Once the HTTP compression was disabled, the testing system network load

was maximized, and this hindered the number of pages fetched per minute. Enabling HTTP compression increases the

number of pages crawled per minute by 65.79% and decreases the bandwidth usage by 54.17%. Another important aspect

of these tests is the number of processed pages per minute. In the first 5 minutes, the number of processed pages per minute

is significantly higher than the HTTP compression disabled mode. However, this difference decreases as the time passes.

The reason of this is, at the beginning, there are not enough product pages to process until the page processing tasks

Focused Web Crawler Development Challenges: Eccrawler 27

www.iaset.us editor@iaset.us

countis maximized. Thus, the faster page crawling mode is obtained by processing more pages. However, as more pagesare

crawled, the number ofobtained product pages increases and the maximum capacity of the page processing tasks are

surpassed and the gapis closed and theaverage number of pages processed per minute for both modes almost becomes

equal.

The reason of having differencebetween the two modes in terms of average number of threads spawned is that,

when the HTTP compression is enabled, it fetches pages faster. Thus, the operation is completed faster, and the crawler

thread is terminated quicker than the HTTP compression is disabled mode. When the HTTP compression is enabled, the UI

responsiveness reduces slightly due to the fact that, in the case of compression, more pages are processed, thus heavier

processing is done.

Initialization of Thread Pool

By default, .NET framework spawns a certain number of threads by the pre-defined heuristics to maximize system

performance. However,.NET framework heuristics may result in lower performance by using as mallerportion of the

available resources. Hence, initialization of thread pool manually may improve the system performance greatly. The

initialization of the thread pool is shown in Code Snippet 1. In Table 5,the results of the initialization of the thread pool

experiment are presented. In the table, the gray highlighted rows include results of the best performance settings in which

thread pool is initialized, and the not highlighted (white) rows display results of the same settings except that the thread

pool is not initialized.

Thread pool experiment clearly shows the performance gain at the UI responsiveness. Even though the number of

active threads increasesover the time as the framework optimizes the count of the activethreads, the performance loss of

the default settings is still significant. Initialization of the thread pool utilizes the application for using the system resources

more efficiently and achieves better performance.

Table 5: Result of the Thread Pool Initialization Experiment

Thread Pool (Minutes) 5 10 15 20 25 30

Crawl Success
30,917 62,595 98,092 134,875 171,821 210,189

16,727 45,068 71,034 97,986 121,094 131,132

Crawl Fail
114 459 1,348 1,622 1,697 1,754

110 252 547 715 969 1,182

Avg# of pages per Minute Crawl
6,086 6,195 6,485 6,693 6,827 6,960

3,017 4,260 4,550 4,744 4,691 4,244

Avg# of Processed Pages per Minute
815 805 780 738 715 704

377 585 678 692 701 664

Discovered Unique URLs
153,994 207,914 259,737 309,515 346,910 383,869

99,360 155,312 195,540 228,970 252,695 263,187

Avg RAM Usage (Mega Bytes)
1,003 1,106 1,177 1,229 1,275 1,292

838 1,056 1,139 1,186 1,210 1,236

Avg CPU Usage (%)
59.74 62.07 63.36 63.89 64.35 64.71

36.68 40.88 40.41 39.67 38.14 34.14

Avg # of Threads Spawned
542 555 553 554 558 562

358 417 448 466 478 500

UI Responsiveness (%) 98 98.41 98.22 97.95 97.83 97.80

28 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

41.5 58.33 64.66 68.04 69.46 67.47

UI Freeze (%)
2 1.58 1.77 2.04 2.81 2.19

58.5 41.66 35.33 31.95 30.53 32.52

UI Lag (%)
0.33 0.16 0.11 0.16 0.2 0.16

22.33 19.25 17.33 17.20 17.16 18.47

Garbage Collector Mode Experiment

By default, the garbage collector mode is set to workstation, however, this mode is designed for the single core

processors. Nowadays, the majority of the computers sold in the market have multi-core processors. We did not have any

single-core computer to test the mode difference, however, on the testing platform, changing workstation mode to server

mode improves overall performance significantly. The garbage collector mode is set as shown in Code Snippet 5. In

Table 6,the gray highlighted rows present results for the best performance settings in which garbage collector mode is set

to server and the not highlighted rows include results for the same settings except garbage collector mode is workstation.

If all of the tasks are running as background threads, the UI thread is not used for any processes, and if there exist

senough system resources to refresh the UI, there should not be any UI responsiveness problem. However, if the

application utilizes many threads and these threads heavily uses system resources as in EcCrawler, default settings may fail

to supply necessary system resources to the application, and this may cause the UI to freeze or lag. We propose that this

problem can be solved by manual initialization of the thread pool and setting the garbage collector mode.

Table 6: Results of the Garbage Collector Mode Experiment

Garbage Collector Mode (Minutes) 5 10 15 20 25 30

Crawl Success
30,917 62,595 98,092 134,875 171,821 210,189
7,811 17,563 25,740 32,789 39,868 48,147

Crawl Fail
114 459 1,348 1,622 1,697 1,754
29 85 104 121 131 162

Avg# of Pages per Minute Crawl
6,086 6,195 6,485 6,693 6,827 6,960
1,529 1,730 1,690 1,616 1,568 1,580

Avg# of Processed Pages per Minute
815 805 780 738 715 704
518 622 627 633 619 618

Avg Download Speed Per Second
(KiloBytes)

2,536 2,550 2,665 2,633 2,631 2,660
518 550 545 510 495 498

Avg Upload Speed Per Second
(KiloBytes)

38 39 42 44 44 45
9 10 10 10 10 10

Discovered Unique URLs
153,994 207,914 259,737 309,515 346,910 383,869
70,157 102,738 126,387 139,490 149,314 163,116

AvgRAM Usage (MegaBytes)
1,003 1,106 1,177 1,229 1,275 1,292
643 648 666 699 734 751

Avg CPU Usage (%)
59.74 62.07 63.36 63.89 64.35 64.71
25.64 28.21 28.60 28.20 28.22 28,72

Avg# of Threads Spawned
542 555 553 554 558 562
598 606 617 624 627 632

UI Responsiveness (%)
98 98.41 98.22 97.95 97.83 97.80

75.33 71.25 67.94 64.70 62.43 61.61

UI Freeze (%)
2 1.58 1.77 2.04 2.81 2.19

24.66 28.75 32.05 35.29 37.56 38.38

UI Lag (%)
0.33 0.16 0.11 0.16 0.2 0.16
2.5 3.08 2.94 2.62 2.53 2.36

Focused Web Crawler Development Challenges: Eccrawler 29

www.iaset.us editor@iaset.us

The experimental results that are presented in Table 6 clearly display the huge performance improvement when

we set garbage collector mode to server. The gray highlighted rows present the results obtained when garbage collector

mode is set to server, and other rows show the results for the default case. As it can be seen from the table, this mode

change boosts the number of crawled URLs by 336%, and improves the UI responsiveness by 58.74%.

Concurrent Connections Limit Experiment

In .NET framework the limit for the number of concurrent connection sper host is two by default. However,

crawlers are more likely to need more than two connections at the same time for each host when craw ling gigantic

websites. EcCrawler distributes crawling tasks for each host individually by using pre-assigned values which are10 by

default. However with having 10crawling tasks per host, it is quite hard to reach maximum consistent two connections per

host limitation because of the application processing delays. Therefore, for this experiment, one of the biggest E-

commercewebsites alone is used with 300concurrentcrawling agents.

Table 7: Results for the Concurrent Connection Limit Experiment

Concurrent Connections Limit
(Minutes)

5 10 15 20 25 30

Crawl Success
36,804 76,486 118,736 145,322 175,070 203,082

24,841 54,223 83,540 110,386 138,644 178,467

Crawl Fail
57 76 95 100 104 105

0 3 4 4 4 4

Avg# of Pages per Minute Crawl
7,265 7,588 7,865 7,221 6,961 6,731

4,898 5,375 5,532 5,488 5,517 5,919

Avg# of Processed Pages per
Minute

968 823 761 708 695 676

781 779 734 698 680 674

Avg Download Speed Per Second
(KiloBytes)

1,582 1,643 1,699 1,558 1,501 1,450

1,075 1,167 1,194 1,182 1,185 1,269

Avg Upload Speed Per Second
(KiloBytes)

47 48 49 45 43 41

30 32 33 33 33 35

Discovered Unique URLs
87,375 126,071 154,488 174,936 200,291 222,008

70,057 110,788 136,557 156,776 176,680 203,628

AvgRAM Usage (MegaBytes)
763 798 829 862 884 903

734 797 839 859 870 882

Avg CPU Usage (%)
54.84 54.18 54.16 47 44.01 41.26

31.08 33.89 33.98 33.46 33.11 36.67

Avg # of Threads Spawned
568 567 558 565 567 570

571 569 569 570 570 563

UI Responsiveness (%)
98 98.08 98 97.91 97.86 97.86

98.83 98.66 98.72 98.79 98.8 98.8

UI Freeze (%)
2 1.91 2 2.08 2.13 2.13

1.66 1.33 1.27 1.2 1.2 1.194

UI Lag (%)
0 0 0 0.08 0.06 0.08

0 0.16 0.16 0.12 0.13 0.11

How to increase the maximum limit and the other parametersare shown in Code Snippet 9. The results of this

experiment are given in Table 7, where gray highlighted rows show the results of the best performance settings

30 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

(i.e., maximum consistent connections per host limit is 1000) and the other rows display results of the same settings except

that the connection limit is 2.When the results given in Table 7areanalyzed, there is a significant performance boost in the

first 5 minutes. Then, this performance gain decreases gradually, because, the number of the URLs to be discovered

decreases as a greater portion of the website is crawled. At the 30th minute, since the majority of the sites were already

crawled, the number of the crawled pages almost become equal for the two methods because there were not left many

pages to crawl.

All Default Settings Experiment

In the final experiment, the application is run without any advanced optimizations to show the effects of the

proposed methods. To disable all of the optimizations, HTTP Compression and KeepAlivefacilities are removed from the

web page fetcher function; thread pool initialization and the limit on the maximum consistent connection per host are

removed; and finally, garbage collector mode setup is removed from the APP. config. The results of this experiment are

presented in Table 8 where the gray highlighted rows display the results of the best performance settings whi lethe other

rows show the results of alldefault settings.

When Table 8 is analyzed, a lot of significant improvements in the application performance can be observed. The

proposed configurations in this paper increase the number of crawled pages by 472%, decrease the UI freeze by 95.77%,

reduce the UI lag by 96.39%, and improve the UI responsiveness by 102% with respect to default settings. Overall

application performance isimproved and the application is able to utilize the available system resources.

Table 8: Results for all Default Settings Experiment

All Default Settings (Minutes) 5 10 15 20 25 30

Crawl Success
30,917 62,595 98,092 134,875 171,821 210,189

4,232 8,628 14,546 21,628 29,445 36,728

Crawl Fail
114 459 1,348 1,622 1,697 1,754

57 81 105 151 233 325

Avg # of Pagesper Minute Crawl
6,086 6,195 6,485 6,693 6,827 6,960

800 818 934 1,038 1,127 1,173

Avg # of Processed Pages per Minute
815 805 780 738 715 704

295 395 463 514 547 555

Avg Download Speed Per Second
(KiloBytes)

2,536 2,550 2,665 2,633 2,631 2,660

1,146 1,117 1,233 1,348 1,437 1,458

Avg Upload Speed Per Second
(KiloBytes)

38 39 42 44 44 45

3 3 4 4 5 5

Discovered Unique URLs
153,994 207,914 259,737 309,515 346,910 383,869

45,317 62,624 79,247 90,788 103,691 110,341

AvgRAM Usage (MegaBytes)
1,003 1,106 1,177 1,229 1,275 1,292

787 942 918 880 856 869

Avg CPU Usage (%)
59.74 62.07 63.36 63.89 64.35 64.71

17.80 19.74 21.64 23.15 24.29 24.66

Avg # of Threads Spawned
542 555 553 554 558 562

369 450 470 483 488 497

UI Responsiveness (%)
98 98.41 98.22 97.95 97.83 97.80

18.16 20.08 32.22 40.66 45.43 48.19

Focused Web Crawler Development Challenges: Eccrawler 31

www.iaset.us editor@iaset.us

UI Freeze (%)
2 1.58 1.77 2.04 2.81 2.19

81.83 79.91 66.77 59.33 54.56 51.80

UI Lag (%)
0.33 0.16 0.11 0.16 0.2 0.16

9.5 8.91 6.66 5.54 5.03 4.44

CONCLUSIONS

The methods we have presented in this study for the focused web crawler development process can significantly

help .NET developers for any software development. According to our experiments, using .NET framework without fine

tuning can significantly hinder the potential application performance and decrease the utilization of system resources.

There can be even more performance tunings, however during EcCrawler development, source code compression, HTTP

compression while fetching web pages, initialization of the thread pool, garbage collector mode setup and the maximum

concurrent connection limit are the major ones that are discovered and applied. The proposed methods and experimental

results presented in this study will help .NET developers to boost their software performance and save their time to figure

the bottlenecks that can affect the expected performance of their application. For the future work, EcCrawler design and

implementation may be modified to make it compatible for running on a cluster of computers rather than on a single

machine. Additionally, a classifier may be embedded to the EcCrawler to determine product pages automatically.

ACKNOWLEDGEMENTS

This work was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK)

scholarship 2211-C.

REFERENCES

1. Chakrabarti S, Berg MVD, Dom B. Focused crawling: a new approach to topic-specific Web resource discovery.

Computer Networks 1999;31:1623–40. DOI:10.1016/s1389-1286(99)00052-3.

2. Gupta, Satinder Bal. The Issues and Challenges with the Web Crawlers. International Journal of Information

Technology & Systems 2012;1 (1):1-10.

3. Boldi P., Codenotti B., Santini M., and Vigna S. Ubicrawler. A scalable fully distributed web crawler. Software:

Practice and Experience 2004; 34(8): 711–726. DOI:10.1002/spe.587

4. Gomes D., and Silva M.J. The Viúva Negra crawler: an experience report. Software: Practice and Experience

2008; 38(2): 161–188. DOI:10.1002/spe.v38:2

5. Heydon, Allan, and Marc Najork. Mercator: A scalable, extensible web crawler. World Wide Web 2.4 (1999):

219-229. DOI:10.1023/A:1019213109274

6. Shkapenyuk Vladislav, and Torsten Suel. Design and implementation of a high-performance distributed web

crawler. Data Engineering, 2002. Proceedings. 18th International Conference on. IEEE,

2002.DOI:10.1109/icde.2002.994750.

7. Nisha J, and Sundareswari K. Clustered Based User-Interest Ontology Construction for Selecting Seed URLs of

Focused Crawler. International Journal of Innovative Research in Computer and Communication Engineering

2015; 3 (2): 827–830.

32 Furkan Gözükara & Selma Ayşe Özel

Impact Factor (JCC): 4.6723 NAAS Rating 1.89

8. Uzun E., Güner E.S., Kılıçaslan Y., Yerlikaya T., and Agun H.V. An effective and efficient Web content extractor

for optimizing the crawling process. Software: Practice and Experience 2014; 44(10): 1181–1199.

DOI:10.1002/spe.2195

9. Dahiwale P., Raghuwanshi M.M., and Malik L. PDD Crawler: A focused web crawler using link and content

analysis for relevance prediction. In the Proceedings of SEAS-2014 – Third International Conference on Software

Engineering and Applications November 7–8, 2014, Dubai, UAE. arXiv preprint arXiv:1411.4366

10. Yohanes B.W., Handoko H., and Wardana H.K. Focused Crawler Optimization Using Genetic Algorithm.

TELKOMNIKA Telecommunication, Computing, Electronics and Control 2011; 9(3): 403–410.

DOI:10.12928/telkomnika.v9i3.730

11. Papavassiliou V., Prokopidis P., and Thurmair, G. A modular open-source focused crawler for mining

monolingual and bilingual corpora from the web. In the Proceedings of the Sixth Workshop on Building and

Using Comparable Corpora August 8, 2013, Sofia, Bulgaria, pp.43–51.

12. Yanni L., Wang Y., and Du J. E-FFC: an enhanced form-focused crawler for domain-specific deep web databases.

Journal of Intelligent Information Systems 2013; 40 (1): 159–184. DOI:10.1007/s10844-012-0221-8

13. Kumar M., and Vig R. Focused crawling based upon tf-idf semantics and hub score learning. Journal of Emerging

Technologies in Web Intelligence 2013; 5(1): 70–77. DOI:10.4304/jetwi.5.1.70-77

14. Liu H., and Milios E. Probabilistic models for focused web crawling. Computational Intelligence 2012; 28 (3):

289–328. DOI:10.1111/j.1467-8640.2012.00411.x

15. Bedi P., Thukral A., Banati H., Behl A., and Mendiratta V. A multi-threaded semantic focused crawler. Journal of

Computer Science and Technology 2012; 27(6): 1233–1242. DOI:10.1007/s11390-012-1299-8

16. Maimunah S., Sastramihardja H.S., Widyantoro D.H., Kuspriyanto K. CT-FC: more Comprehensive Traversal

Focused Crawler. TELKOMNIKA Telecommunication, Computing, Electronics and Control 2012; 10(1): 189–

198. DOI:10.12928/telkomnika.v10i1.777

17. Liu W., and Du Y. An improved topic-specific crawling approach based on semantic similarity vector space

model. Journal of Computational Information Systems 2012; 8(20): 8605–8612.

18. Edwards, Jenny, Kevin McCurley, and John Tomlin. An adaptive model for optimizing performance of an

incremental web crawler. Proceedings of the 10th international conference on World Wide Web. ACM, 2001.

DOI:10.1145/371920.371960

19. Olston, Christopher, and Marc Najork. Web crawling. Foundations and Trends in Information Retrieval 2010;4

(3): 175-246. DOI:10.1561/1500000017

20. Castillo, Carlos. Effective Web Crawling. Ph.D. thesis (2004).

21. Najork, Marc, and Janet L. Wiener. Breadth-first crawling yields high-quality pages. Proceedings of the 10th

international conference on World Wide Web. ACM, 2001. DOI:10.1145/371920.371965

22. Pinkerton, Brian. Finding what people want: Experiences with the WebCrawler. Proceedings of the Second

International World Wide Web Conference. Vol. 94. 1994.

Focused Web Crawler Development Challenges: Eccrawler 33

www.iaset.us editor@iaset.us

23. Cho, Junghoo, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through URL ordering. (1998).

24. Cho, Junghoo, and Hector Garcia-Molina. Effective page refresh policies for web crawlers. ACM Transactions on

Database Systems (TODS) 28.4 (2003): 390-426. DOI:10.1145/958942.958945

25. Cho, Junghoo, and Uri Schonfeld. Rankmass crawler: a crawler with high personalized pagerank coverage

guarantee. Proceedings of the 33rd international conference on Very large data bases. VLDB Endowment, 2007.

26. Abiteboul, Serge, Mihai Preda, and Gregory Cobena. Adaptive on-line page importance computation. Proceedings

of the 12th international conference on World Wide Web. ACM, 2003. DOI:10.1145/775152.775192

27. Baeza-Yates, Ricardo, et al. Crawling a country: better strategies than breadth-first for web page ordering. Special

interest tracks and posters of the 14th international conference on World Wide Web. ACM, 2005.

DOI:10.1145/1062745.1062768

28. Chien, Steve, et al. Link evolution: Analysis and algorithms. Internet mathematics 1.3 (2004): 277-304.

DOI:10.1080/15427951.2004.10129090

29. Cho, Junghoo, and Hector Garcia-Molina. "The Evolution of the Web and Implications for an Incremental

Crawler." In Proceedings of the 26th International Conference on Very Large Data Bases, pp. 200-209. Morgan

Kaufmann Publishers Inc., 2000.

30. Kushmerick, Nicholas. Wrapper induction for information extraction. Diss. University of Washington, 1997.

31. Doorenbos, Robert B., Oren Etzioni, and Daniel S. Weld. A scalable comparison-shopping agent for the world-

wide web. Proceedings of the first international conference on Autonomous agents. ACM, 1997.

DOI:10.1145/267658.267666

32. Yang, Jaeyoung, et al. A More Scalable Comparision Shopping Agent. In Proc'EIS2000 Engineering of Intelligent

Systems. 2000.

