

Iranian Journal of Energy & Environment

Journal Homepage: www.ijee.net

IJEET an official peer review journal of Babol Noshirvani University of Technology, ISSN:2079-2115

Synthesis of Fe₃O₄/Eggshell Nanocomposite and Application for Preparation of Tetrahydrobenzo[b]Pyran Derivatives

M. Naghizadeh*, P. Mohammadi, H. Sheibani, M. A. Taher

Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 76169, Iran.

PAPER INFO

ABSTRACT

This work is reported on the synthesis of Fe₃O₄/eggshell nanocomposites in the absence of any stabilizer or surfactant.Fe₃O₄ magnetic nanoparticles were established on the egg shell nano-Paper history: composite. The nanocompositeshave shown high catalytic activities in the synthesis of Received 12 May 2017 Tetrahydrobenzo[b]pyran. These derivatives were synthesized via an one-pot three-component Accepted in revised form 27 July 2017 condensation of aromatic aldehydes with malononitrile and dimedonewith excellent yields in the presence of Fe₃O₄/eggshell nanocomposites as a highly efficient heterogeneous catalyst. The obtained Keywords: catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), Field emission Fe₃O₄/eggshell scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD) and Vibrating sample Tetrahydrobenzo[b]pyran derivatives magnetometer (VSM). The developed technique of nano-composite synthesis is energy efficient since Nano composite the reactions carried out in single step. The present catalyst is possible to be used for the production of biodiesel.

doi: 10.5829/ijee.2017.08.02.06

INTRODUCTION

Single step multicomponent reactions(MCRs) by advantage of their convergence, usefulness, facile extinction and generally high yield of productshave attracted significant attention from thepoint ofview of ideal synthesis [1]. The first MCR was initiatedby Strecker in 1850 for the synthesis of amino acids [2] However, in past decades there was greatdevelopments in MCRsand significant efforts were made tofind and MCRs [3]. Tetrahydrobenzo[b]pyran form new derivatives are a significant category of heterocyclic with effective biological compounds and pharmacological properties. These compounds have been widely used as anticoagulant, antitumor, spasmolytic, antibacterial, diuretic, potassium channel activator and insulin-sensitizing activity [4-9]. Several methods for the synthesis of tetrahydrobenzo[b]pyran derivatives have been reported for instance 4H-benzo[b]pyrans were synthesized from α -cyanocinnamonitrile derivatives in a single step reaction which is catalyzed by acid or base [10-12]. Several methods stated for the synthesis of these compounds in the presence of catalysts such as sodium hexadecyldimethylbenzylammonium bromide [13], bromide [14], tetramethylammonium hydroxide [15], diammonium hydrogen phosphate [16], fluoride ions

[17], magnesium oxide [18], sodium selenite [19], iodine $[20], H_6P_2W_{12}O_{62}\cdot H_2O$ [21], tetrabutylammonium bromide [22], cerium(III) chloride [23]. However, each of the above-mentioned method has a drawback such as: long reaction time, severe reaction conditions, use of toxic reagents and low reaction yield. Thus, the development of fast, suitable, and environmentally friendly methods for the synthesis of tetrahydrobenzo[b]pyrans remains essential strategy to overcome stated problems. The strategy of the use of waste materials has an amazing upsurge of good intention in the application of bio-waste materials such as eggshell waste. Low-cost eggshell waste has been widely used as a possible bone substitute, catalyst, support, and efficient bio-templates due to their high catalytic activity, ease of handling, reusability and benign character [24-39]. The eggshell is an inexpensive and easily available biomaterial; it has porous structure that is related to its natural content. According to the literature, chemical compounds found in egg shell are calcium carbonate (94%), magnesium carbonate (1%), calcium phosphate (1%) and organic matter (4%) [40]. It is individually attractive for synthesizing metal nanoparticles due to strong metal-protein bonding can be readily employed [24-39]. Nowadays, waste shell of egg support have been employed as a catalyst for biodiesel synthesis, lactose isomerization and preparation of dimethyl carbonate [41-

^{*} Corresponding author: M. Naghizadeh

E-mail: matin.naghizadeh@yahoo.com

44]. Magnetic nanoparticles have been used in various fields for example drug delivery, magnetic resonance imaging contrast enhancement, data storage, targeted drug, magnetic bio separationbecause of their excellent properties of super paramagnetism, low toxicity, high magnetic susceptibility, biocompatibility, and high saturation magnetization [45-52]. In this work, an attempt was made to investigate catalytic activity of Fe₃O₄/eggshell nanocomposite from waste chicken eggshell on synthesis of tetrahydrobenzo[b]pyrans. More synthesized importantly, the Fe₃O₄/eggshell nanocompositepossessed good magnetic property, which is easily separated from the reaction mixture using a magnet. Utilization of such property would be useful and reused for 5 cycles without loss of its catalytic activity, indicative of a potential application in industry.

MATERIAL AND METHODS

All materials were purchased from Merck (Germany) and Aldrich chemical (USA). The chemicals were used without further purification; eggs from hens were purchased from a local supermarket. FT-IR spectra were recorded on a Nicolet 370 FT-IR spectrometer (Thermo Nicolet, USA) using pressed KBr pellets. The natural zeolite used in this study was originated from local market. X-ray diffraction (XRD) measurements were carried out using a Philips powder diffractometer type PW 1373 goniometer (Cu K α = 1.5406 A°). The scanning rate was 2° /min in the 2θ range from 10 to 80° . Scanning electron microscopy (SEM) was performed on a Cam scan MV2300. EDS (S3700N) was utilized for chemical analysis of prepared nanostructures. VSM (Vibrating sample magnetometer) measurements were performed by using a SQUID magnetometer at 298 K (Quantum Design MPMS XL). NMR spectra were recorded using a BrukerAvance DRX 400 MHz instrument. The spectra were measured in DMSO-d6 relative to tetramethylsilane (0.00 ppm).

Preparation of Fe₃O₄ magnetite doped eggshell membrane

The crushed fresh eggshell was incubated in diluted 1% acetic acid at 22 °C for 1 h. Afterward the eggshell membrane (EM) was easily separated and cut into small pieces (1 cm²). It was cleaned with copious amount of twice distilled water. Then, the preparation of Fe₃O₄ magnetic doped eggshell membrane was placed on dissolving FeCl₃.6H₂O (11.68 g) and FeCl₂.4H₂O (4.30 g) in 200 mL deionized water. This solution was stirred with magnetic stirrer (2000 rpm) at 50 °C for 1 h. Nitrogen gas was continuously bubbled through this solution for theremoval of dissolved oxygen. Then, the EM was immersed in solution following that, 10 mL of 25% NH₃ was rapidly added to the solution. After that, the color of bulk solution turned immediately from

orange to black. The magnetite eggshell membrane(MESM) were collected by a magnet after washing several times with deionized water and ethanol solution. Finally, the products were dried in oven at 50 °C for 12 h.

General procedure for synthesis of tetrahydrobenzo[b]pyran derivatives

A mixture of an aromatic aldehyde (1.1 mmol), malononitrile (1.0 mmol), dimedone (1.0 mmol), and catalyst (50 mg), was dissolved in H₂O-EtOH (1:1) and was stirred at 60 °C. The progress of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was cooled to room temperature (RT), and diluted with water. The catalyst was easily separated from the reaction mixture with an external magnet. The crude products were recrystallized from ethanol and pure products were obtained.

RESULTS AND DISCUSSION

The structure and morphology of Fe₃O₄/eggshell magnetic nanocatalyst were analyzed by XRD and SEM. Figure 1 shows a characteristic XRD pattern of the Fe₃O₄/eggshell, the main peak was observed at 20=29.5 and other peaks were observed at 20=36.2, 40.1, 44.2, 48.7, 57.7 and 62.1. Corresponds to the (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 4 0) and (5 1 1) are readily recognized from the XRD pattern; which could be indexed to a face-centered cubic of CaCO₃ (JCPDS, no. 5-0586). Further, diffraction peaks at 20 = 36.1°, 43.7°, 54.6°, 58.1° and 61.4° appear in the XRD pattern of the Fe₃O₄/eggshell, which can be assigned to the diffraction of (3 1 1), (4 0 0), (4 2 2), (5 1 1) and (4 4 0) planes of the cubic Fe₃O₄. These peaks were compared to the Joint Committee on Powder Diffraction Standards (JCPDS no. 19-629) file.

The average crystallite/grain size is estimated using Debye-Scherrer formula $[D=k\lambda/\beta\cos(\theta)]$ where D is average crystal size, k is the Scherrer coefficient (0.9), λ is the X-ray wavelength (λ =1.54A0), β is the full width half maximum intensity (FWHM) and θ is the diffraction angle [28]. From the Scherrer equation the average crystalline/grain size of Fe₃O₄-nano particle (NP) is 24 nm.

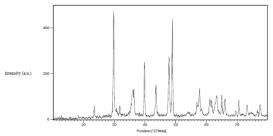


Figure 1.XRD pattern of the Fe₃O₄/eggshell Catalyst.

The magnetic properties of Fe₃O₄/eggshell were characterized by a vibrating sample magnetometer (VSM). The saturation magnetization of Fe₃O₄ NPs at room temperature, with the field sweeping from -10000 to +10000 Oe. As shown in Figure 2, the value of magnetic saturation for the Fe₃O₄/eggshell is 65.5 emu g⁻¹, the catalyst can be efficiently separated from the solution with an external magnetic force.

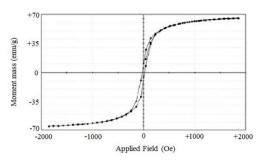


Figure 2. VSM Curve for Fe₃O₄/eggshell at room temperature.

FT-IR analysis of Fe₃O₄/eggshell was performed and is shown in Figure 3. A thorough study on FT-IR spectra has been reported by Engin et al. [53],where in the catalyst the major absorption bands occurred at 1415, 879, and 700 cm⁻¹, which are attributed to asymmetric stretch, out of plane bend and in plane bend vibration modes, for CO₃²⁻ molecules.The absorption bands situated at 3000–2500 cm⁻¹ marked with asterisks in spectrum were also attributed to organic matter[53], The peakscentered around 3400 cm⁻¹ and 1620 cm⁻¹ are, respectively, assigned to the O-H stretching and deforming vibrations of Fe₃O₄ and the peak at 578 cm⁻¹ are corresponding to the Fe-O vibration.

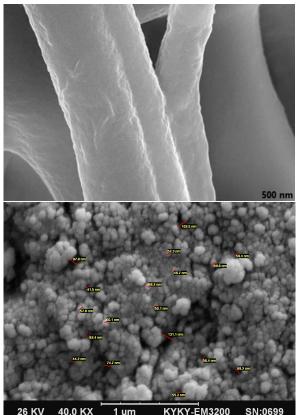



Figure 3. FT-IR Spectra of Fe₃O₄/eggshell.

The morphology of the sample was investigated with scanning electron microscopy (SEM). Figure 4 shows spherical structure Fe₃O₄/eggshell catalyst.

Optimization for the catalyst synthesis

In order to optimize the reaction conditions, the reaction of benzaldehyde (1 mmol), malononitrile (1 mmol), and dimedone (1 mmol) were carefully investigated. Tables 1 and 2 summarized the different ratio of solvent (H_2O , EtOH) and the various amount of catalyst were experimented. The best results were obtained at 70 $^{\circ}$ C in the presence of 60 mg catalyst in H₂O-EtOH (1:1).

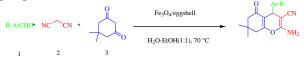
26 KV 40.0 KX 1 um KYKY-EM3200 SN:0699 Figure 4. TEM & SEM Images of Fe_3O_4 /eggshell.

	-			
TABLE 1.	Effect of amount of cataly	st on synt	hesis	

Entry	Solvent	Time(min)	Yield(%) ^b
1	H ₂ O	120	45
2	EtOH	80	65
3	EtOH/H ₂ O	60	70
	(1/2)		
4	EtOH/H ₂ O	50	80
	(2/1)		
5	EtOH/H ₂ O	40	98
	(1/1)		

^aReaction conditions: 2,4 di-chlorobenzaldehyde (1 mmol), malononitrile (1 mmol), dimedone (1 mmol), and catalyst at 70 $^{\circ}$ C.

^bYields refer to isolated pure product.

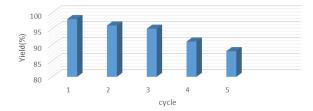

TABLE 2.Effect of amount of catalyst on synthesis of tetrahydrobenzo[b]pyran derivatives at 70 °C.^a

Entry	Catalyst (mg)	Yield (%) ^b
1	20	50
2	40	75
3	60	98
4	80	98

^aReaction conditions: 2,4 di-chlorobenzaldehyde (1 mmol), malononitrile (1 mmol), dimedone (1 mmol), and catalyst at 70 °C.

^bYields refer to isolated pure product.

The scope and efficiency of the reaction under optimum conditions were explored for the synthesis of a wide variety of substituted tetrahydrobenzo[*b*]pyran derivatives from aryl aldehydes, malononitrile, and dimedone (Figure 5). The results are summarized in Table 3. Substituents on the aromatic ring show electronic effects in terms of yields under these reaction conditions. The reactions proceeded smoothly and produce goodyields. The aromatic aldehydebearing electron-donating group such as OMe, reacted muchslower with malononitrile and dimedone than other aromatic aldehydessubstituted with electron withdrawing groups such as NO₂⁻ and Cl⁻.



R=H, 4-MeO, 4-NO2, 3-NO2, 2,4 di-Cl, 4-Cl

Figure 5. Single step synthesis of 4*H*-drobenzo[*b*]pyran derivatives catalyzed by Fe₃O₄/eggshell.

TABLE 3. Synthesis of tetrahydrobenzo[b]pyran derivatives via condensation of aryl aldehydes (1), malononitrile (2), and dimedone (3) in the presence of catalyst in H₂O-EtOH (1:1) at 70 $^{\circ}$ C.

Entry	Ar	Time (min)	Yield(%)
1	C_6H_5	50	80
2	4-MeOC ₆ H ₄	70	75
3	$3-NO_2C_6H_4$	30	92
4	$4-NO_2C_6H_4$	25	98
5	$2,4-ClC_6H_3$	30	92
6	$4-ClC_6H_4$	40	90

Figure 6. Reusability of catalyst. Reaction conditions: 2,4 di-chlorobenzaldehyde (1 mmol), malononitrile (1 mmol), dimedone and Fe₃O₄/eggshell (50 mg) at 70°C.

After the reaction was completed, the catalyst was recovered using an external magnet, and in order to be reused. The reused catalyst was washedwith ethanol for several times and then dried. The catalyst showed no significant losses catalytic activities for five cycles use (Figure 6).

CONCLUSION

In this work, we have developed a simple and efficient method for the synthesis of tetrahydrobenzo[*b*]pyran derivatives with different aldehydes using magnetic recoverable Fe₃O₄/eggshell at mild conditions. The catalyst is completely recoverable due to the superparamagnetic behavior of Fe₃O₄ and the efficiency of the catalyst remains unaltered even after 5 cycles used. The facile synthesis, excellent properties, alterable supports and low costs allow these nanocomposites to be used for the synthesis of tetrahydrobenzo[*b*]pyran derivatives.

Acknowledgements

The authors gratefully acknowledge the financial supports from the Department of Chemistry, Kerman, Iran and Young Researchers Society, both at Shahid Bahonar University of Kerman, Kerman, Iran.

REFERENCES

- Fang D, Zhang H, Liu Z. 2010, Synthesis of 4H-benzopyrans catalyzed by acyclic acidic ionic liquids in aqueous media. J Heterocycl Chem;47:63–7.
- [2] Mohamadpour F, Maghsoodlou MT, Heydari R, Lashkari M. A 2015, highly efficient synthesis of biologically active spiro [4Hpyran] derivatives with nano SiO2 as a mild catalyst under solvent-free conditions. J Chem Pharm Res;7:934–40.
- [3] Shestopalov AM, Emeliyanova YM, Shestopalov AA, Rodinovskaya LA, Niazimbetova ZI, Evans DH, 2002. One-Step Synthesis of Substituted 6-Amino-5-cyanospiro-4-(piperidine-4 ')-2 H, 4 H-dihydropyrazolo [3, 4-b] pyrans. Org Lett;4:423–5.
- [4] Chen L, Li Y, Huang X, Zheng W. N, 2009, N-Dimethylaminofunctionalized basic ionic liquid catalyzed one-pot multicomponent reaction for the synthesis of 4H-benzo [b] pyran derivatives under solvent-free condition. Heteroat Chem;20:91–4.
- [5] Hazeri N, Maghsoodlou MT, Mir F, Kangani M, Saravani H, Molashahi E. 2014, An efficient one-pot three-component synthesis of tetrahydrobenzo [b] pyran and 3, 4-dihydropyrano [c] chromene derivatives using starch solution as catalyst. Chinese J Catal;35:391–5.
- [6] Saini A, Kumar S, Sandhu JS., 2006. A new LiBr-catalyzed, facile and efficient method for the synthesis of 14-alkyl or aryl-14Hdibenzo [a, j] xanthenes and tetrahydrobenzo [b] pyrans under solvent-free conventional and microwave heating. Synlett;2006:1928–32.
- [7] Pandey G, Singh RP, Garg A, Singh VK. 2005, Synthesis of Mannich type products via a three-component coupling reaction. Tetrahedron Lett;46:2137–40.
- [8] Thompson R, Doggrell S, Hoberg JO. 2003, Potassium channel activators based on the benzopyran substructure: Synthesis and activity of the C-8 substituent. Bioorg Med Chem;11:1663–8.
- [9] Tang L, Yu J, Leng Y, Feng Y, Yang Y, Ji R. 2003, Synthesis and insulin-sensitizing activity of a novel kind of benzopyran derivative. Bioorg Med Chem Lett;13:3437–40.
- [10] Naghizadeh M, Taher MA, Abadi LZ, Moghaddam FH. 2017, Synthesis, characterization and theoretical investigation of magnetite nanoclay modified as a new nanocomposite for simultaneous preconcentration of lead and nickel prior to ETAAS determination. Environ Nanotechnology, Monit Manag;7:46–56.
- [11] Rahmati A, Khalesi Z. A 2012, one-pot, three-component synthesis of spiro [indoline-isoxazolo [4', 3': 5, 6] pyrido [2, 3-d] pyrimidine] triones in water. Tetrahedron;68:8472–9.
- [12] Dömling 2006, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev;106:17–89.

- [13] Tu SJ, Jiang H, Zhuang QY, Miao CB, Shi DQ, Wang XS, et al. 2003, One-pot synthesis of 2-amino-3-cyano-4-aryl-7, 7dimethyl-5-oxo-5, 6, 7, 8-tetrahydro-4H-benzo [b] pyran under ultrasonic irradiation without catalyst. Chinese J Org Chem;23:488–90.
- [14] Jin T-S, Wang A-Q, Shi F, Han L-S, Liu L-B, Li T-S. 2006, Hexadecyldimethyl benzyl ammonium bromide: an efficient catalystfor a clean one-pot synthesis of tetrahydrobenzopyran derivatives in water. Arkivoc;14:78–86.
- [15] Balalaie S, Sheikh-Ahmadi M, Bararjanian M. 2007, Tetramethyl ammonium hydroxide: An efficient and versatile catalyst for the one-pot synthesis of tetrahydrobenzo [b] pyran derivatives in aqueous media. Catal Commun;8:1724–8.
- [16] Abdolmohammadi S, Balalaie S. 2007, Novel and efficient catalysts for the one-pot synthesis of 3, 4-dihydropyrano [c] chromene derivatives in aqueous media. Tetrahedron Lett;48:3299–303.
- [17] Gao S, Tsai CH, Tseng C, Yao C-F. 2008, Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron;64:9143–9.
- [18] Seifi M, Sheibani H. 2008, High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3, 4-dihydropyrano [c] chromene derivatives in aqueous media. Catal Letters;126:275–9.
- [19] Hekmatshoar R, Majedi S, Bakhtiari K. 2008, Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo [b] pyran derivatives. Catal Commun;9:307–10.
- [20] Ren Y-M, Cai C. 2008, Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K2CO3 in aqueous medium. Catal Commun;9:1017–20.
- [21] Heravi MM, Jani BA, Derikvand F, Bamoharram FF, Oskooie HA. 2008, Three component, one-pot synthesis of dihydropyrano [3, 2-c] chromene derivatives in the presence of H6P2W18O62·18H2O as a green and recyclable catalyst. Catal Commun;10:272–5.
- [22] Khurana JM, Kumar S. 2009, Tetrabutylammonium bromide (TBAB): a neutral and efficient catalyst for the synthesis of biscoumarin and 3, 4-dihydropyrano [c] chromene derivatives in water and solvent-free conditions. Tetrahedron Lett;50:4125–7.
- [23] Sabitha G, Arundhathi K, Sudhakar K, Sastry BS, Yadav JS. 2009, Cerium (III) chloride–catalyzed one-pot synthesis of tetrahydrobenzo [b] pyrans. Synth Commun;39:433–42.
- [24] Stadelman WJ. 2000, Eggs and egg products. Encyclopedia of Food Science and Technology; Wiley and sons, Newyork.
- [25] Mezenner NY, Bensmaili A., 2009, Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chemical Engineering Journal;147:87–96.
- [26] Wei Z, Xu C, Li B. 2009; Application of waste eggshell as lowcost solid catalyst for biodiesel production. Bioresour Technol;100:2883–5.
- [27] Yoo S, Hsieh JS, Zou P, Kokoszka J. 2009; Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper. Bioresource Technology;100:6416–21.
- [28] Eisa WH, Abdel-Moneam YK, Shaaban Y, Abdel-Fattah AA, Zeid AMA. 2011, Gamma-irradiation assisted seeded growth of Ag nanoparticles within PVA matrix. Mater Chem Phys;128:109– 13.
- [29] Yang D, Qi L, Ma J. 2002, Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes. Adv Mater;14:1543–6.
- [30] Fan T-X, Chow S-K, Zhang D. 2009, Biomorphic mineralization: from biology to materials. Prog Mater Sci;54:542–659.
- [31] Zhang W, Zhang D, Fan T, Gu J, Ding J, Wang H, et al. 2008, Novel photoanode structure templated from butterfly wing scales. Chem Mater;21:33–40.

- [32] Valtchev V, Gao F, Tosheva L., 2008, Porous materials via eggconstituents templating. New J Chem;32:1331–7.
- [33] Tsai W-T, Hsien K-J, Hsu H-C, Lin C-M, Lin K-Y, Chiu C-H. 2008, Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresour Technol;99:1623–9.
- [34] Liao D, Zheng W, Li X, Yang Q, Yue X, Guo L, et al. 2010, Removal of lead (II) from aqueous solutions using carbonate hydroxyapatite extracted from eggshell waste. J Hazard Mater;177:126–30.
- [35] Viriya-Empikul N, Krasae P, Puttasawat B, Yoosuk B, 2010, Chollacoop N, Faungnawakij K. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour Technol;101:3765–7.
- [36] Sharma YC, Singh B, Korstad J. 2010, Application of an efficient nonconventional heterogeneous catalyst for biodiesel synthesis from Pongamia pinnata oil. Energy & Fuels;24:3223–31.
- [37] Afshar EA, Taher MA, Fazelirad H, Naghizadeh M. 2017, Application of dispersive liquid–liquid–solidified floating organic drop microextraction and ETAAS for the preconcentration and determination of indium. Anal Bioanal Chem;409:1837–43.
- [38] Gao Y, Xu C. 2012, Synthesis of dimethyl carbonate over waste eggshell catalyst. Catal Today;190:107–11.
- [39] Montilla A, Del Castillo MD, Sanz ML, Olano A. 2005, Egg shell as catalyst of lactose isomerisation to lactulose. Food Chem;90:883–90.
- [40] Cai W, Wan J. 2007, Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci;305:366–70.
- [41] Veisi H, Mohammadi P, Gholami J. 2014, Sulfamic acid heterogenized on functionalized magnetic Fe3O4 nanoparticles with diaminoglyoxime as a green, efficient and reusable catalyst for one-pot synthesis of substituted pyrroles in aqueous phase. Appl Organomet Chem;28:868–73.
- [42] Yan F, Li J, Zhang J, Liu F, Yang W. 2009, Preparation of Fe3O4/polystyrene composite particles from monolayer oleic acid modified Fe3O4 nanoparticles via miniemulsion polymerization. J Nanoparticle Res;11:289–96.
- [43] Gu S, Onishi J, Kobayashi Y, Nagao D, Konno M. 2005, Preparation and colloidal stability of monodisperse magnetic polymer particles. J Colloid Interface Sci;289:419–26.
- [44] Wang X, Ji H, Zhang X, Zhang H, Yang X. 2010, Hollow polymer microspheres containing a gold nanocolloid core adsorbed on the inner surface as a catalytic microreactor. J Mater Sci;45:3981–9.
- [45] Liao Z, Wang H, Lv R, Zhao P, Sun X, Wang S, et al. 2011, Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir;27:3100–5.
- [46] Naghizadeh M, Taher MA, Behzadi M, Moghaddam FH. 2015, Simultaneous preconcentration of bismuth and lead ions on modified magnetic core-shell nanoparticles and their determination by ETAAS. Chem Eng J;281:444–52.
- [47] Koch CC. 2002, Nanostructured Materials: Processing. Prop Potential Appl Taylor Fr.
- [48] Nakayama H, Arakaki A, Maruyama K, Takeyama H, Matsunaga T. 2003, Single-nucleotide polymorphism analysis using fluorescence resonance energy transfer between DNA-labeling fluorophore, fluorescein isothiocyanate, and DNA intercalator, POPO-3, on bacterial magnetic particles. Biotechnol Bioeng;84:96–102.
- [49] Jia H, Zhu G, Wang P. 2003, Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng;84:406–14.
- [50] Engin B, Demirtaş H, Eken M. 2006, Temperature effects on egg shells investigated by XRD, IR and ESR techniques. Radiat Phys Chem;75:268–77.

DOI: 10.5829/ijee.2017.08.02.06

Persian Abstract

چکیدہ

در این کار بر روی سنتز نانوذرات پوسته تخم مرغ / Fe₃O4 به صورت نانو کامپوزیت در غیاب هر گونه تثبیت کننده و یا سورفاکتانت گزارش شده است. نانوذرات مغناطیسی Fe₃O4 روی اسیدیته نانوکامپوزیت پوسته تخم مرغ ایجاد شده است. این نانوکامپوزیتها، فعالیت کاتالیزوری بالا در سنتز Tetrahydrobenzo [B] pyran نشان داده شده است. این مشتقات با استفاده از یک ترانس مولکولی سه جزء آلدهید آروماتیک با مالونونیتریل و دی میدون در تولید نانوکامپوزیت های پوسته تخم مرغ / Fe₃O4 به عنوان یک کاتالیزور ناهمگن بسیار کارآمد ساخته شده است. کاتالیست توسط طیف سنجی مادون قرمز فوریه (FT-IR)، میکروسکوپ الکترونی روبشی نشر میدانی (FE-SEM)، تجزیه پراش اشعه (XRD) و اندازه گیری خواص مغناطیسی (VSM) مشخص و تایید شد.