A NOTE OF NEIGHBOR-TOUGHNESS OF GRAPHS

Zongtian Wei and Yinkui Li

Abstract

In this note, we point out some mistakes in Kürkçü and Aksan (2016, [2]). We also give the correct definition of neighbor-toughness. Finally, some examples, comments and generalized results related to the computation of the parameter are presented.

1. Introduction

Let $G=(V, E)$ be a graph and $u \in V(G)$. We call $N(u)=\{v \in V(G) \mid u \neq v, u$ and v are adjacent $\}$ the open neighborhood of u, and $N[u]=N(u) \cup\{u\}$ the closed neighborhood of u. A vertex u of G is said to be subverted if its closed neighborhood $N[u]$ is deleted from G. A set of vertices $S \subseteq V(G)$ is called a vertex subversion strategy of G if each of the vertices in S is subverted from G. By G / S we denote the survival subgraph that remains after each vertex of S is subverted from G. A vertex set S is called a cut strategy of G if the survival subgraph G / S is disconnected, or is a clique, or is empty.

Kürkçü and Aksan [2] claim that they introduce a new vulnerability parameter, neighbor-toughness. The parameter is defined as

$$
N T(G)=\min \left\{\frac{|S|}{\omega(G / S)}: \omega(G / S) \geqslant 1\right\}
$$

where S is any vertex subversion strategy of G and $\omega(G / S)$ is the number of connected components in the graph G / S. By two examples, the authors assert that the neighbor-toughness is a better parameter than the neighbor scattering

[^0]number. This parameter, mentioned above is defined as [3]
$$
V N S(G)=\max _{S \subseteq V(G)}\{\omega(G / S)-|S|\}
$$
where the maximum is taken over all S, the cut-strategy of G, and $\omega(G / S)$ is the number of components of G / S.

We have sufficient reason to show that the above definition and statement in [2] are not proper. To the best of our knowledge, the concept of neighbor-toughness appeared firstly in [4]. In the next section, we will discuss and revise these items.

2. Main result

In 2013, Wei et al. [4] introduced the concept neighbor-toughness (for connected, non-complete graphs) as

$$
t_{V N}(G)=\min \left\{\frac{|S|}{\omega(G / S)}\right\}
$$

where S is any cut strategy of G and $\omega(G / S)$ is the number of components in G / S. A set $S^{*} \subseteq V(G)$ is called a $t_{V N}$-set of G if

$$
t_{V N}(G)=\frac{\left|S^{*}\right|}{\omega\left(G / S^{*}\right)}
$$

For the complete graph, subverting any one vertex will betray the entire graph, its neighbor-toughness is defined to be 0 .

The mistake of the definition in [2] is that S should be a cut strategy instead of a vertex subversion strategy.

Fig. 1. The cycle graph C_{6} and the Petersen graph $P(5,2)$
For example, consider the graph C_{6} in Figure 1. By the definition in [2], $\{u\}$ is a $t_{V N}$-set of C_{6}, since $\frac{|\{u\}|}{\omega(G /\{u\})}=1<2=\frac{|\{u, v\}|}{\omega(G /\{u, v\})}$. But in [2], the authors show that $t_{V N}\left(C_{6}\right)=2$, a contradiction. In fact, $\{u\}$ is not a $t_{V N \text {-set of } C_{6} \text {, because }}$ $C_{6} /\{u\}$ is P_{3}, a connected graph. Obviously, $\{u, v\}$ is a $t_{V N}$-set(cut strategy) of C_{6} and $t_{V N}\left(C_{6}\right)=2$.

On the other hand, consider the Petersen graph $P(5,2)$. Although $\frac{|\{x\}|}{\omega(P(5,2) /\{x\})}$ $=\frac{|\{x, y\}|}{\omega(P(5,2) /\{x, y\})}=1,\{x\}$ is not a $t_{V N}$-set of $P(5,2)$, since $P(5,2) /\{x\}$ is C_{6}, a connected graph. By the definition of neighbor-toughness in [4], $\{x, y\}$ is a real

It can be concluded from the above discussion and $[\mathbf{1}, \boldsymbol{6}]$ that the definition of neighbor-toughness in [2] is wrong, and the definition in [4] is correct.

As two new graph parameters, neighbor-toughness and neighbor scattering number can be used to measure the invulnerability of spy networks. Undoubtedly, although formally related, they are independent. Which is a better parameter? It can not be said simply by special examples. In fact, contrary to the author's examples (see [2], $\operatorname{VNS}\left(G_{1}\right)=V N S\left(G_{2}\right)=1$, but $N T\left(G_{1}\right)=\frac{2}{3}, N T\left(G_{2}\right)=\frac{1}{2}$), there are more examples to show that neighbor scattering number is "better" than neighbor-toughness. Both of the following two graphs are with order 12, and they have equal connectivity and neighbor connectivity 1 , as well as equal neighbortoughness $\frac{1}{2}$, but $\operatorname{VNS}\left(G_{1}\right)=1, \operatorname{VNS}\left(G_{2}\right)=2$.

Fig. 2. Two graphs with equal order 12
At last, we generalize a result about the neighbor-toughness of bipartite graphs given in [2]. For a bipartite graph $K_{m, n}$, Kürkçü and Aksan prove that

$$
t_{V N}\left(K_{m, n}\right)= \begin{cases}\frac{1}{m-1}, & \text { if } n<m \\ \frac{1}{n-1}, & \text { if } n \geqslant m\end{cases}
$$

We show that the above formula is a corollary of the following theorem 2.1 (it is obvious, so we omit the proof).

THEOREM 2.1. Let $K_{n_{1}, n_{2}, \cdots, n_{k}}$ be a complete k-partite graph, where $n_{1}+n_{2}+$ $\cdots+n_{k} \geqslant k+1$. Then

$$
t_{V N}\left(K_{n_{1}, n_{2}, \cdots, n_{k}}\right)=\frac{1}{\max \left\{n_{1}-1, n_{2}-1, \cdots, n_{k}-1\right\}} .
$$

A comet, denoted by $C_{n, k}$, is a graph by coincide an end point of path P_{n-k} with the center point of a star $S_{1, k}$, where $1 \leqslant k \leqslant n-2$ and $n \geqslant 4$. The order of comet $C_{n, k}$ is n.

Theorem 2.2. Let $C_{n, k}$ be a comet with order $n(\geqslant 5)$ and $k \leqslant n-2$. Then

$$
t_{V N}\left(C_{n, k}\right)= \begin{cases}\frac{1}{k+1}, & \text { if } k \leqslant n-4 \\ \frac{1}{k}, & \text { if } k=n-2 \text { or } n-3\end{cases}
$$

Proof. It is easy to know that the vertex in P_{n-k} which is adjacent to the
 the survival subgraph is a path P_{n-k-3} with k isolated vertex; when $k=n-2$ or $n-3$, the survival subgraph is k isolated vertex, the conclusion holds.

It is more meaningful to consider the neighbor-toughness computation of general graphs such as trees, Cartesian Product or composition of paths, cycles [1]. This is the work we are doing.

References

[1] G. Gunther. On the existence of neighbour-connected graphs. Proceedings of the seventeenth Southeastern international conference on combinatorics, graph theory, and computing (Boca Raton, Fla., 1986). Congr. Numer., 54(1986), 105-110.
[2] Ö. Kürkçü and H. Aksan. Neighbor toughness of graphs. Bull. Int. Math. Virtual Inst., 6(2)(2016), 135-141.
[3] Z. Wei, A. Mai and M. Zhai. Vertex neighbor scattering number of tree. Advances in Pure Mathematics, 1(4)(2011), 160-162.
[4] Z. Wei. A study of network invulnerability and facility system reliability. Dissertation for the Ph.D., Northwestern Polytechnical University, Xi’an, 2013.
[5] Z. Wei, et al., Neighbor-toughness of the Cartesian Product of paths and cycles. (To appear)
[6] S. S. Y. Wu and M. Cozzens. The minimum size of critically m-neighbour-connected graphs. Ars Combinatoria, 29(1990), 149-160.

Receibed by editors 23.02.2018; Revised version 02.03.2018; Available online 12.03.2018.
Zongtian Wei: School of Mathematics, Xi'an University of Architecture and Technology, Xi'an, 710055, China

E-mail address: ztwei@xauat.edu.cn
Yinkui Li: School of Mathematics and Statistics, Qinghai Nationalities University, Xining, 810000, China

E-mail address: lyk463@163.com

[^0]: 2010 Mathematics Subject Classification. 05C40; 68R10; 68M10.
 Key words and phrases. Neighbor-toughness, Path, Cycle, Comet, Petersen graph.
 Partially supported by NSFC (No. 11661066), SNSF (No. 2016JM1035) and QHFRP (No. 2017-ZJ-701).

