UNIFORM STATISTICAL CONVERGENCE OF DOUBLE SUBSEQUENCES

Fikret Čunjalo

Abstract

In the [3] is proven that sequence $S_{i j}$ uniformly statistically converges to L if and only if it there is a subset A of the set $\mathbb{N} \times \mathbb{N}$ uniform density zero and subsequence $S(x)$ defined by, $S_{i j}(x)=S_{i j}$ for $(i, j) \in A^{c}$, converges to L, in the Pringsheim's sense. In this paper it is proven that ana\log is valid for subsequence $S(x)$ provided that for each N and $i \leqslant N \vee j \leqslant N$ is a set of all $S_{i j}(x)$ finite set. Is generally valid: If the subsequence $S(x)$ uniformly statistically converges to L, then, there is a subset A of the set $\mathbb{N} \times \mathbb{N}$ uniform density zero and subsequence $S(y)$ defined by, $S_{i j}(y)=S_{i j}(x)$ for $(i, j) \in A^{c}$, converges to L, in the Pringsheim's sense. If there is a subset A of the set $\mathbb{N} \times \mathbb{N}$ uniform density zero and subsequence $S(y)$ defined by, $S_{i j}(y)=S_{i j}(x)$ for $(i, j) \in A^{c}$, such that $\lim _{i \rightarrow \infty}\left(\lim _{j \rightarrow \infty} S_{i j}(y)\right)=L$, then, the subsequence $S(x)$ uniformly statistically converges to L.

1. Introduction

The concept of the statistical convergence of a sequences of reals was introduced by H. Fast [12]. Furthemore, Gökhan et al. [15] introduced the notion of pointwise and uniform statistical convergent of double sequences of real-valued function. Çakan and Altay [4] presented multi dimensional analogues of the results presented by Fridy and Orhan [13, 14]. Dündar and Atay [5, 6, 7, 8, 9] investigated the relation between I-convergence of double sequences. Now, we recall that the definitions of concepts of ideal convergence and basic concepts. $[1,2,10,11,16]$.

The sequence $S_{i j}$ of real numbers converges to L in the Pringsheim's sense, if for any $\varepsilon>0$ there exists $K>0$ such that

$$
\left|S_{i j}-L\right| \leqslant \varepsilon
$$

for any $i, j \geqslant K$.

[^0]We write $\lim _{i, j \rightarrow \infty} S_{i j}=L$.
Let $K \subset \mathbb{N} \times \mathbb{N}$. Let $K_{n m}$ be the number of $(i, j) \in K$ such that $i \leqslant n, j \leqslant m$. If

$$
d_{2}(K)=\lim _{n, m \rightarrow \infty} \frac{K_{n m}}{n m}
$$

in the Pringsheim's sense. Then we say that K has double natural density. Let is sequence $S_{i j}$ of real numbers and $\varepsilon>0$. Let

$$
A(\varepsilon)=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|S_{i j}-L\right| \geqslant \varepsilon\right\} .
$$

The sequence $S=S_{i j}$ statistically converges to $L \in \mathbb{R}$ if

$$
(\forall \varepsilon>0)\left(d_{2}(A(\varepsilon))=0\right) .
$$

In this cese, we write $s t-\lim S_{i j}=L$.
Let is set $X \neq \emptyset$. A class I of subsets of X is said to be an ideal in X provided the following statements hold:
(i) $\emptyset \in I$
(ii) $A, B \in I \Rightarrow A \cup B \in I$
(iii) $A \in I, B \subset A \Rightarrow B \in I$.
I is nontrivial ideal if $X \notin I$. A nontrivial ideal I is called admissible if $\{x\} \in I$ for any $x \in X$.

In this paper the focus is put on ideal $I_{u} \subset 2^{\mathbb{N} \times \mathbb{N}}$ defined by: subset A belongs to the I_{u} if

$$
\lim _{p, q \rightarrow \infty} \frac{1}{p q}|\{i<p, j<q:(n+i, m+j) \in A\}|=0
$$

uniformly on $n, m \in \mathbb{N}$ in the Pringsheim's sense. That is subset A of the set $\mathbb{N} \times \mathbb{N}$ is uniformly density zero.

The sequence $S=S_{i j}$ uniformly statistically converges to L if for any $\varepsilon>0$

$$
\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left|S_{i j}-L\right| \geqslant \varepsilon\right\} \in I_{u} .
$$

That is sequence $S=S_{i j}$ uniformly statistically converges to L, if any $\varepsilon, \varepsilon^{\prime}>0$ there exists $K>0$ such that

$$
\frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon\right\}\right|<\varepsilon^{\prime}, \forall p, q \geqslant K, \forall n, m \in \mathbb{N}
$$

We write $U s t-\lim S_{i j}=L$.
We denote with X a set of all double sequences of 0's and 1's, i.e.

$$
X=\left\{x=x_{i j}: x_{i j} \in\{0,1\}, i, j \in \mathbb{N}\right\} .
$$

Let sequence $S=S_{i j}$ and $x \in X$. Then with $S(x)$ we denote a sequence defined following way

$$
S_{i j}(x)=S_{i j}, \text { for } x_{i j}=1
$$

which we refer to as subsequence of sequence S.
The subsequence $S(x)$ of sequence S uniformly statistically converges to L, if for any $\varepsilon, \varepsilon^{\prime}>0$ there exists $K>0$ such that for every $p, q \geqslant K$ and for all $n, m \in \mathbb{N}$ provided that $x_{n m}=1$ we have

$$
\frac{\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, x_{n+i, m+j}=1\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|} \leqslant \varepsilon^{\prime}
$$

We write $U s t-\lim S_{i j}(x)=L$.

2. New results

Theorem 2.1. Let notions and notations as in above. Then, we have

$$
\lim _{i, j \rightarrow \infty} S_{i j}=L \Longrightarrow U s t-\lim S_{i j}=L \Longrightarrow s t-\lim S_{i j}=L .
$$

Proof. If $\lim _{i, j \rightarrow \infty} S_{i j}=L$, then for any $\varepsilon>0$ there exists $K \in \mathbb{N}$ such that for all $i, j \geqslant K$, we have $\left|S_{i j}-L\right| \leqslant \varepsilon$. Then

$$
\begin{aligned}
& \frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon\right\}\right|= \\
& \frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, n+i<K \vee m+j<K\right\}\right|+ \\
& \frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, n+i, m+j \geqslant K\right\}\right|= \\
& \frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, n+i<K \vee m+j<K\right\}\right| .
\end{aligned}
$$

If $n, m<K$, then, $\forall \varepsilon, \varepsilon^{\prime}>0, \exists K_{1}$, such that for $\forall p, q \geqslant K_{1}$, we have

$$
\begin{aligned}
& \frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon\right\}\right| \leqslant \\
& \frac{1}{p q}[q(K-n)+p(K-m)] \leqslant \varepsilon^{\prime}, \forall p, q \geqslant K_{1} .
\end{aligned}
$$

If $n<K$, then, $\forall \varepsilon, \varepsilon^{\prime}>0, \exists K_{1}$, such that for $\forall p, q \geqslant K_{2}$, we have

$$
\frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon\right\}\right| \leqslant \frac{1}{p q} q(K-n) \leqslant \varepsilon^{\prime}, \forall p, q \geqslant K_{2}
$$

If $m<K$, then, $\forall \varepsilon, \varepsilon^{\prime}>0, \exists K_{1}$, such that for $\forall p, q \geqslant K_{2}$, we have

$$
\frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon\right\}\right| \leqslant \frac{1}{p q} p(K-m) \leqslant \varepsilon^{\prime}, \forall p, q \geqslant K_{3} .
$$

Hence, $\forall \varepsilon, \varepsilon^{\prime}>0, \exists K_{4}=\max \left\{K, K_{1}, K_{2}, K_{3}\right\}$ such that for $\forall p, q \geqslant K_{4}, \forall n, m \in \mathbb{N}$, we have

$$
\frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon\right\}\right| \leqslant \varepsilon^{\prime}
$$

respectively, $U s t-\lim S_{i j}=L$.
Let $U s t-\lim S_{i j}=L$, then, $\forall \varepsilon, \varepsilon^{\prime}>0, \exists K>0$ such that for $\forall p, q \geqslant K, \forall n, m \in$ \mathbb{N}, we have

$$
\frac{1}{p q}\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon\right\}\right| \leqslant \varepsilon^{\prime}
$$

Specially, for $n=m=1$ and for any $p, q \geqslant K$, we have

$$
\frac{1}{p q}\left|\left\{i \leqslant p, j \leqslant q:\left|S_{i, j}-L\right| \geqslant \varepsilon\right\}\right| \leqslant \varepsilon^{\prime}
$$

ie. $s t-\lim S_{i j}=L$.
Example 2.1. Let $S=S_{n m}$ defined as

$$
S_{n m}=\left\{\begin{array}{cc}
1, & 1+1+2+\cdots+k<n, m \leqslant 1+1+2+\cdots+k+k+1, \\
k=1,2, \cdots & \text { otherwise }
\end{array} .\right.
$$

Let

$$
\begin{gathered}
1+1+2+\cdots+k \leqslant p<1+1+2+\cdots+k+k+1 \\
1+1+2+\cdots+k<q
\end{gathered}
$$

Then, for any $\varepsilon, \varepsilon^{\prime}>0$, there exists $k_{0} \in \mathbb{N}$, such that for all

$$
p, q>1+\frac{k_{0}\left(k_{0}+1\right)}{2}
$$

is true

$$
\begin{aligned}
& \frac{1}{p q}\left|\left\{i \leqslant p, j \leqslant q:\left|S_{i, j}-0\right| \geqslant \varepsilon\right\}\right| \leqslant \\
& \frac{1}{p q}\left[2^{2}+3^{2}+\cdots+(k-1)^{2}+(p-1-1-\cdots-k)(k+1)\right]= \\
& \frac{1}{p q}\left[\frac{(k-1) k(2 k-1)}{6}-1+\left(p-1-\frac{k(k+1)}{2}\right)(k+1)\right] \leqslant \\
& \frac{(k-1) k(2 k-1)}{6}-1+\left(\frac{(k+1)(k+2)}{2}-\frac{k(k+1)}{2}\right)(k+1) \\
& \left(1+\frac{k(k+1)}{2}\right)\left(1+\frac{(k+1)(k+2)}{2}\right)
\end{aligned} \varepsilon^{\prime} .
$$

Hence, st $-\lim S_{i j}=0$.
For all $k \in \mathbb{N}$ and for any $\varepsilon>0, n=1+1+2+\cdots+k$, we have

$$
\frac{1}{(k+1)^{2}}\left|\left\{i, j<k+1:\left|S_{n+i, n+j}-0\right| \geqslant \varepsilon\right\}\right|=1 .
$$

Respectively, sequence $S=S_{n m}$ does not uniformly statistically converge.
In the [3] is proved theorem: If $S=S_{i j}$ is a double sequence, then

$$
U s t-\lim S_{i j}=L
$$

if and only if there exists $A \subset \mathbb{N} \times \mathbb{N}$ uniformly density zero, such that $\lim _{i, j \rightarrow \infty} S_{i j}=L$ in the Pringsheim's sense, for

$$
x_{i j}= \begin{cases}1, & (i, j) \notin A \\ 0, & (i, j) \in A\end{cases}
$$

Following theorem is a generalization of subsequences.
Let $x \in X$. Let is an ideal $I_{u}(x) \subset 2^{\mathbb{N} \times \mathbb{N}}$ defined by: the subset A of set $\left\{(i, j): x_{i j}=1\right\}$ belongs to the $I_{u}(x)$ if for all $\varepsilon>0$ there exists $K>0$ such that for all $p, q \geqslant K$ and for all $n, m \in \mathbb{N}$ provided that $x_{n m}=1$, we have

$$
\frac{|\{i<p, j<q:(n+i, m+j) \in A\}|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|} \leqslant \varepsilon .
$$

Theorem 2.2. (a) Let $x \in X$ and $U s t-\lim S_{i j}(x)=L$. Then there is a set $A \in I_{u}(x)$, such that subsequence $S(y)$ of the sequence S converges to L in the Pringsheim's sense, for

$$
y_{i j}= \begin{cases}1, & (i, j) \notin A, x_{i j}=1 \\ 0, & (i, j) \in A, x_{i j}=0\end{cases}
$$

(b) If there is a set $A \in I_{u}(x)$ such that for subsequence $S(y)$ of the sequence S valid $\lim _{i \rightarrow \infty}\left(\lim _{j \rightarrow \infty} S_{i j}(y)\right)=L$, for

$$
y_{i j}= \begin{cases}1, & (i, j) \notin A, x_{i j}=1 \\ 0, & (i, j) \in A, x_{i j}=0\end{cases}
$$

then $U s t-\lim S_{i j}(x)=L$.
Proof. a) Let $U s t-\lim S_{i j}(x)=L$. Then for all $k \in \mathbb{N}$ there exists $r_{k}>0$, such that for all $p, q \geqslant r_{k}$ and for all $n, m \in \mathbb{N}$ provided $x_{n m}=1$, we have

$$
\frac{\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \frac{1}{k}, x_{n+i, m+j}=1\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|} \leqslant \frac{1}{k^{2}} .
$$

Let $A=\bigcup_{k=2}^{\infty} \bigcup_{n, m=1}^{\infty}\{(n+i, m+j)$:

$$
\left.i, j \geqslant r_{k}, i<r_{k+1} \vee j<r_{k+1},\left|S_{n+i, m+j}-L\right| \geqslant \frac{1}{k}, x_{n+i, m+j}=1\right\}
$$

For all $\varepsilon>0$ there exists $k_{0} \in \mathbb{N}$ such that for $\forall k>k_{0}$ we have

$$
\sum_{k=k_{0}}^{\infty} \frac{1}{k^{2}} \leqslant \frac{\varepsilon}{2}, \frac{1}{\left(k_{0}-1\right)^{2}} \leqslant \frac{\varepsilon}{2}
$$

Then, for all $p, q \geqslant r_{k_{0}}$ and for all $n, m \in \mathbb{N}$ provided that $x_{n m}=1$, we have

$$
\begin{gathered}
\frac{|\{i<p, j<q:(n+i, m+j) \in A\}|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}= \\
\frac{\left|\left\{i<p, j<q: i, j \geqslant r_{k_{0}},(n+i, m+j) \in A\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}+ \\
\frac{\left|\left\{i<p, j<q: i<r_{k_{0}} \vee j<r_{k_{0}},(n+i, m+j) \in A\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|} \leqslant
\end{gathered}
$$

$$
\begin{gathered}
\frac{\left|\left\{i<p, j<q: i, j \geqslant r_{k_{0}},(n+i, m+j) \in A\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}+ \\
\frac{\left|\left\{i<p, j<q: i, j \geqslant r_{k_{0}+1},(n+i, m+j) \in A\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}+\ldots+ \\
\frac{\left|\left\{i<p, j<q: i<r_{k_{0}} \vee j<r_{k_{0}},(n+i, m+j) \in A\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|} \leqslant \\
\sum_{k=k_{0}}^{\infty} \frac{1}{k^{2}}+\frac{1}{\left(k_{0}-1\right)^{2}} \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
\end{gathered}
$$

Let

$$
y_{i j}=\left\{\begin{array}{ll}
1, & (i, j) \notin A, x_{i j}=1 \\
0, & (i, j) \in A, x_{i j}=0
\end{array} .\right.
$$

Then, for all $\varepsilon>0$ there exists $k_{0} \in \mathbb{N}$ such that for $y_{n+i, m+j}=1, n+i, m+j \geqslant r_{k_{0}}$ we have

$$
\left|S_{n+i, m+j}(y)-L\right|=\left|S_{n+i, m+j}-L\right| \leqslant \frac{1}{k_{0}} \leqslant \varepsilon
$$

which implies that for all $n, m \geqslant r_{k_{0}}$ we have

$$
\left|S_{n m}(y)-L\right| \leqslant \varepsilon .
$$

Respectively, $\lim _{i, j \rightarrow \infty} S_{i j}(y)=L$ in the Pringsheim's sense.
b) For all $\varepsilon>0$ there exists $n_{0}, m_{0} \in \mathbb{N}$ such that for $n \geqslant n_{0} \vee m \geqslant m_{0}$ we have

$$
\left|S_{n m}(y)-L\right| \leqslant \varepsilon .
$$

Then

$$
\begin{gathered}
\frac{\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, x_{n+i, m+j}=1\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}= \\
\frac{\left|\left\{i<p, j<q: n+i<n_{0}, m+j<m_{0},\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, x_{n+i, m+j}=1\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}+ \\
\frac{\left|\left\{i<p, j<q: n+i \geqslant n_{0} \vee m+j \geqslant m_{0},\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, x_{n+i, m+j}=1\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|} \leqslant . \\
\frac{n_{0} m_{0}}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}+\frac{|\{i<p, j<q:(n+i, m+j) \in A\}|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|}
\end{gathered}
$$

The first summand is smaller than $\frac{\varepsilon}{2}$ for all $p, q \geqslant N$ and for all $n, m \in \mathbb{N}$ such that $x_{n+i, m+j}=1$.

The second summand is smaller than $\frac{\varepsilon}{2}$ for all $p, q \geqslant M$ and for all $n, m \in \mathbb{N}$ such that $x_{n m}=1$. Therefore, for all $p, q \geqslant \max \{N, M\}$ and for all $n, m \in \mathbb{N}$ provided that $x_{n m}=1$ we have that

$$
\frac{\left|\left\{i<p, j<q:\left|S_{n+i, m+j}-L\right| \geqslant \varepsilon, x_{n+i, m+j}=1\right\}\right|}{\left|\left\{i<p, j<q: x_{n+i, m+j}=1\right\}\right|} \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
$$

it is $U s t-\lim S_{i j}(x)=L$.
We denote

$$
X^{\prime}=\left\{x \in X:\left\{(i, j): i \leqslant N \vee j \leqslant N, x_{i j}=1\right\} \text { is finite set for } \forall N \in \mathbb{N}\right\} .
$$

Corollary 2.1. Let sequence $S=S_{i j}$ and $x \in X^{\prime}$. Then, $U s t-\lim S_{i j}(x)=L$ if and only if there is a set $A \in I_{u}(x)$, such that subsequence $S(y)$ of the sequence S converges to L in the Pringsheim's sense, for

$$
y_{i j}=\left\{\begin{array}{ll}
1, & (i, j) \notin A, x_{i j}=1 \\
0, & (i, j) \in A, x_{i j}=0
\end{array} .\right.
$$

References

[1] B. Altay and F. Başar. Some new spaces of double sequences. J. Math. Anal. Appl., 309(1)(2005), 70-90.
[2] M. Balcerzak, K. Dems and A. Komisarski. Statistical convergence and ideal convergence for sequences of functions. J. Math. Anal. Appl., 328(1)(2007), 715-729.
[3] F. Čunjalo and F. Destović. Subsequence characterization of uniform statistical convergence of double sequences. Res. Comm. Math. Math. Sci., (accept at November 27, 2017).
[4] C. Çakan and B. Altay. Statistically boundedness and statistical core of double sequences. J. Math. Anal. Appl., 317(2)(2006), 690-697.
[5] E. Dündar. On rough I_{2}-convergence of Double Sequences. Numer. Funct. Anal. and Optimiz, 37(4)(2016), 480-491.
[6] E. Dündar and B. Atay. I_{2}-convergence of Double Sequences of Function. El. J. Math. Anal. Appl., 3(1)(2015), 111-121.
[7] E. Dündar and B. Atay. I_{2}-convergence and I_{2}-Cauchy of Double Sequences. Acta Math. Sci. Ser. B Engl. Ed., 34B(2)(2014), 343-353.
[8] E. Dündar and B. Atay. I_{2}-uniform convergence of double sequences of function. Filomat, 30(5)(2016), 1273-1281.
[9] E. Dündar and B. Atay. On some properties of I_{2}-convergence and I_{2}-Cauchy of double sequences. Gen. Math. Notes, 7 (1)(2011), 1-12.
[10] E. Dündar and C. Çakan. Rough convergence of double sequences. Gulf J. Math., 2(1)(2014), 45-51.
[11] E. Dündar and Y. Sever. Multipliers for bounded statistical convergence of double sequences. Int. Math. Forum, $\mathbf{7}(52)(2012), 2581-2587$.
[12] H. Fast. Sur la convergenc statistique. Collog. Math., 2(1951), 241-244.
[13] J. A. Fridy. On statistical convergence. Analysis, 5(4)(1985), 301-313.
[14] J. A. Fridy and C. Orhan. Statistical limit superior and inferior. Proc. Amer. Math. Soc., 125(12)(1997), 3625-3631.
[15] A. Gökhan, M. Güngör and M. Et. Statistical convergence of double sequences of real-valued function. Int. Math. Forum, 2(8)(2007), 365-374.
[16] E. Tas and T. Yurdakadmin. Characterization of uniform statistical convergence for double sequences. Miskolc Math. Notes, 13(2)(2012), 543-553.

Receibed by editors 24.10.2017; Revised version 18.12.2017; Available online 02.01.2018.
Department of Mathematics, Faculty of Natural Sciences and Mathematics, UniVersity of Sarajevu, Sarajevo, Bosnia and herzegovina

E-mail address: fcunjalo01@hs-hkb.ba

[^0]: 2010 Mathematics Subject Classification. Primary: 40B05. Secondary: 40A35, 40G15.
 Key words and phrases. multiple sequences, statistical convergence.

