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Abstract. The k-distance neighborhood polynomial (Nk-polynomial) of a
graph G is the ordinary generating function for the number of k-distance
neighborhood of the vertices of G and defined as

Nk(G, x) =

diam(G)∑
k=0

(
n∑

i=1

dk(vi)

)
xk,

where diam(G) is the diameter of G and dk(v) = |{u ∈ V (G) : d(v, u) = k}|.
In this paper, we establish the exact formulas of the Nk-polynomial for a

splitting graph S(G) of a graph G. The Nk-polynomials of some well-known
graphs as complete Kn, path Pn, cycle Cn, complete bipartite Kr,s and star
K1,n are presented.

1. Introduction

All the graphs G = (V,E) considered here are finite undirected with no loops
and multiple edges. As usual, we denote by n = |V | and m = |E| to the number
of vertices and edges in a graph G, respectively, unless we refer otherwise. The
distance d(u, v) between any two vertices u and v of G is the length of a minimum
path connecting them. For a vertex v ∈ V (G) and a positive integer k, the open k-
distance neighborhood of v in a graph G, denote Nk(v/G), (Nk(v), if no confuse),
is Nk(v/G) = {u ∈ V (G) : d(u, v) = k} and the k-distance degree of a vertex
v, denote dk(v/G), (dk(v), if no confuse), is dk(v) = |Nk(v)|. It is clearly that
d1(v) = d(v). A graph G is called non-trivial if it has at least one edge. The
complement of a graph G, denoted G, is a graph with vertex set V and edge set
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E, such that e ∈ E, if and only if e /∈ E. A graph G is self-complementary if
G is isomorphic to its complement. Kn is the empty or total disconnected graph
with n vertices, i.e., the graph with n vertices no two of which are adjacent. A
graph G is called d-regular graph if the degree d1(v) of each vertex v in G is equal
to d. For a vertex v of G, the eccentricity e(v) = max{d(v, u) : u ∈ V (G)}.
The radius of G is rad(G) = min{e(v) : v ∈ V (G)} and the diameter of G is
diam(G) = max{e(v) : v ∈ V (G)}. For any terminology or notation not mention
here, we refer the reader to the books [3, 4].

A graph can be characterized by a number (index), a matrix or a polynomial.
The characterization of graphs by a single topological index is usually impossible.
For example, it is possible to find infinite pairs of graphs with the same Wiener
index [13]. On the other hand, it is possible to characterize graphs by matrices. A
well-known example of such matrices is an adjacency matrix [4]. But the charac-
terization of graphs by polynomials is a new branch of research in modern graph
theory. For more details in the topological indices and polynomials of a graph, we
refer the reader to [1, 2, 5, 6, 9, 11, 13, 14, 15, 16, 17], and the references
therein.

1.1. Splitting Graph of a graph. A Splitting graph of a graph G, denoted
by S(G), were first introduced by Sampathkumar and Walikar [10], and were fur-
ther developed by Patil and Thangamani [8].

Definition 1.1. For a graph G of order n with vertex set v1, v2, ..., vn the
splitting graph of G, denoted by S(G), is obtained by adding a new vertex ui

corresponding to each vertex vi of G, i = 1, 2, ..., n and then join ui to all vertex of
G adjacent to vi.

The following results are some properties of splitting graph S(G) of a graph G
find in [10], which require to prove our main results.

Proposition 1.1. Let G be a graph of order n with vertex set v1, v2, ..., vn,
size m and diameter diam(G) > 1. Then

(1) |V (S(G))| = 2n and |E(S(G))| = 3m.
(2) d0(vi/S(G)) = d0(ui/S(G)) = d0(vi/G) = 1, d1(vi/S(G)) = 2d1(vi/G)

and d1(ui/S(G)) = d1(vi/G), where ui, for every i = 1, 2, ..., n is a new
vertex added a corresponding to each vertex vi of G to instruction S(G).

(3) diam(S(G)) =

 diam(G) + 1, if diam(G) ∈ {1, 2} and G ̸= K2;
diam(G) + 2, if G = K2;
diam(G), if diam(G) > 3.

.

1.2. The Nk-polynomial of a graph. Soner and Naji [7, 12], in (2016), have
been introduced a new type of graph topological polynomial, based on distance and
degree, called k-distance neighborhood polynomial of a graph. Which, for simplicity
of notion, referred as Nk-polynomial and defined by

Nk(G, x) =

e(vi)∑
k=0

(
n∑

i=1

|Nk(vi)|

)
xk
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where Nk(v) = {u ∈ V (G) : d(v, u) = k} and e(v) = max{d(v, u) : u ∈ V (G)}.
They have been obtained some basic properties of Nk-polynomial of graphs and
they presented the exact formulas for the Nk-polynomial of some well-known graphs
(namely, a path Pn, a cycle Cn, a complete graph Kn, a star graph Kn, a wheel
Wn, a complete bipartite Kr,s and a complete multipartite Kn1,...,nr ). They also
established theNk-polynomial for some graph operations namely cartesian product,
join, union, corona product of graphs and complement graph of some graph.

The following are some fundamental results which will be required for many of
our arguments in this paper and which are finding in [7, 12].

Proposition 1.2. Let G be a graph of order n, size m and diameter diam(G) >
1 and let Nk(G, x) = a0 + a1x+ a2x

2 + ...+ adx
d be an Nk-polynomial of G. then

(1) a0 = n.
(2) a1 = 2m.
(3) ai, for every i = 1, 2, ..., d, is an even integer number.
(4) The degree d of Nk(G, x) is equal to diam(G).

Proposition 1.3. For n > 1

(1) Nk(Kn, x) = n+ n(n− 1)x.

(2) Nk(Pn, x) = n+ 2

n∑
i=1

(n− i)xi.

(3) Nk(Cn, x) =


n+ 2n

n−1
2∑

i=1

xi, if n is odd;

n+ (2n

n
2∑

i=1

xi)− nx
n
2 , if n is even.

(4) Nk(Kr,s, x) = (r + s) + 2rsx+ [r(r − 1) + s(s− 1)]x2.

Proposition 1.4. For any graph G with n vertices, m edges and diam(G) = 2,
the Nk-polynomial of G is of the form

Nk(G, x) = n+ 2m+ (n2 − n− 2m)x2.

In this paper, We established the exact formulas of the Nk-polynomial for a
splitting graph S(G) of a graph G. The Nk-polynomials of splitting graph of some
well-known graphs as complete Kn, path Pn, cycle Cn, complete bipartite Kr,s and
star K1,n are presented.

2. Main Results

Theorem 2.1. For the complete graph Kn with n > 2, the Nk-polynomial of
the splitting graph S(Kn) of Kn is of the form

Nk(S(Kn), x) =

{
4 + 6x+ 4x2 + 2x3, if n = 2;
2n+ 3n(n− 1)x+ (n2 + n)x2, if n > 3.
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Proof. Let Kn be a complete graph with n > 2 vertices. Then by Proposition
1.1,
we have

|V (S(Kn))| = 2n, |E(S(Kn))| = 3n(n−1)
2 and diam(S(Kn)) =

{
3, if n = 2;
2, if n > 3.

Thus, we consider the following cases:

Case:1: If n = 2, then S(K2) = P4

v v v v
ff

K2 S(K2)
v1 v2

u1 u2

Figure 1: A graph K2 and its splitting graph S(K2).

Hence by Proposition 1.3, we obtain

Nk(S(K2), x) = 4 + 6x+ 4x2 + 2x3.

Case:2: If n > 3, then by applying Proposition 1.2 and Proposition 1.4, we
get

Nk(S(Kn), x) = |V (S(Kn))|+ 2|E(S(Kn))|x+ [|V (S(Kn))|2 − |V (S(Kn))|
− 2|E(S(Kn))|]x2

= 2n+ 2[3
n(n− 1)

2
]x+ [(2n)2 − 2n− 2(3

n(n− 1)

2
)]x2

= 2n+ 3n(n− 1)x+ (n2 + n)x2.

�

The following Corollary is showing the relationship between the Nk-polynomial
of the complete graph and its splitting graph.

Corollary 2.1. For n > 3

Nk(S(Kn), x) = 4Nk(Kn, x) + (n2 + n)x2 − n(n− 1)x− 2n.

Theorem 2.2. For the path graph Pn with n > 3, the Nk-polynomial of the
splitting graph S(Pn) of Pn is of the form

Nk(S(Pn), x) = 4Nk(Pn, x) + 2
(
x2 − 1

)(
(n− 1)x+ n

)
.

Proof. Let Pn be a path graph with n > 3 vertices and let v1, v2, ..., vn be
the set vertex of Pn and u1, u2, ..., un be the set of new vertices introduced in
construction of S(Pn). Figure 2, showing the splitting graph of Pn.
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v v v v v
f f f f f

v1 v2 v3 vn

u1
u2 u3 un−1 un

vn−1

Figure 2: Splitting graph of the path Pn.

For n > 3, we have by Proposition 1.1,

diam(S(P3)) =

{
3, if n = 3;
diam(Pn), otherwise.

Hence we consider the following cases:

Case:1: If n = 3, then by Propositions 1.1 and 1.2, we obtain

Nk(S(P3), x) =
3∑

k=0

( 6∑
i=1

dk(wi/S(P3))
)
xk, where wi = vi or ui, for i = 1, 2, ..., n

=
( 6∑

i=1

d0(wi/S(P3))
)
x0 +

( 6∑
i=1

d1(wi/S(P3))
)
x

+
( 6∑

i=1

d2(wi/S(P3))
)
x2 +

( 6∑
i=1

d3(wi/S(P3))
)
x3

= |V (S(P3))|+ 2|E(S(P3))|x

+
( 3∑

i=1

d2(vi/S(P3)) +
3∑

i=1

d2(ui/S(P3))
)
x2

+
( 3∑

i=1

d3(vi/S(P3)) +
3∑

i=1

d3(ui/S(P3))
)
x3

= 6 + 12x+ (3 + 1 + 3 + 3 + 1 + 3)x2 + (0 + 0 + 0 + 1 + 2 + 1)x3

= 6 + 12x+ 14x2 + 4x3.

Since, Nk(P3, x) = 3 + 4x+ 2x2, it follows that

Nk(S(P3), x) = 4Nk(P3, x) + 2(x2 − 1)(2x+ 3).

Case:2: If n > 4, we obtain for every i ∈ {1, 2, ..., n} that

d0(vi/S(Pn)) = d0(vi/Pn) and d0(ui/S(Pn)) = d0(vi/Pn)

d1(vi/S(Pn)) = 2d1(vi/Pn) and d1(ui/S(Pn)) = d1(vi/Pn)

d2(vi/S(Pn)) = 2d2(vi/Pn) + 1 and d2(ui/S(Pn)) = 2d2(vi/Pn) + 1

d3(vi/S(Pn)) = 2d3(vi/Pn) and d3(ui/S(Pn)) = 2d3(vi/Pn) + d1(vi/Pn)

d4(vi/S(Pn)) = 2d4(vi/Pn) and d4(ui/S(Pn)) = 2d4(vi/Pn)

.................................................................................................

dk(vi/S(Pn)) = 2dk(vi/Pn) and dk(ui/S(Pn)) = 2dk(vi/Pn),
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for every 5 6 k 6 n− 1. Hence,

Nk(S(Pn), x) =

n−1∑
k=0

( ∑
w∈V (S(Pn))

dk(w/S(Pn))
)
xk

=

n−1∑
k=0

( n∑
i=1

dk(vi/S(Pn))
)
xk +

n−1∑
k=0

( n∑
i=1

dk(ui/S(Pn))
)
xk

=
( n∑

i=1

d0(vi/S(Pn))
)
x0 +

( n∑
i=1

d1(vi/S(Pn))
)
x+ ...

+
( n∑

i=1

dn−1(vi/S(Pn))
)
xn−1

+
( n∑

i=1

d0(ui/S(Pn))
)
x0 +

( n∑
i=1

d1(ui/S(Pn))
)
x+ ...

+
( n∑

i=1

dn−1(ui/S(Pn))
)
xn−1

=

n∑
i=1

d0(vi/Pn) +
( n∑

i=1

2d1(vi/Pn)
)
x+

( n∑
i=1

(2d2(vi/Pn) + 1)
)
x2

+
( n∑

i=1

2d3(vi/Pn)
)
x3 +

( n∑
i=1

2d4(vi/Pn)
)
x4 + ...

+
( n∑

i=1

2dn−1(vi/Pn)
)
xn−1

+

n∑
i=1

d0(vi/Pn) +
( n∑

i=1

d1(vi/Pn)
)
x+

( n∑
i=1

(2d2(vi/Pn) + 1)
)
x2

+
( n∑

i=1

(2d3(vi/Pn) + d1(vi/Pn))
)
x3 +

( n∑
i=1

2d4(vi/Pn)
)
x4 + ...

+
( n∑

i=1

2dn−1(vi/Pn)
)
xn−1

= 4

[
n∑

i=1

d0(vi/Pn) +
( n∑

i=1

d1(vi/Pn)
)
x+

( n∑
i=1

d2(vi/Pn)
)
x2 + ...

+
( n∑

i=1

dn−1(vi/Pn)
)
xn−1

]
− 2

n∑
i=1

d0(vi/Pn)−
( n∑

i=1

d1(vi/Pn)
)
x

+
(
2

n∑
i=1

1
)
x2 +

( n∑
i=1

d1(vi/Pn)
)
x3

= 4Nk(Pn, x)− 2n− 2mx+ 2nx2 + 2mx3

= 4Nk(Pn, x)− 2n− 2(n− 1)x+ 2nx2 + 2(n− 1)x3

= 4Nk(Pn.x) + 2
(
x2 − 1

)(
(n− 1)x+ n

)
.

�
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Theorem 2.3. For a cycle graph Cn with n > 4 vertices, the Nk-polynomial of
S(Cn) is of the form

Nk(S(Cn), x) = 4Nk(Cn, x) + 2n(x3 + x2 − x− 1).

Proof. Let Cn be a cycle with n > 4 vertices and let v1, v2, ..., vn be the set
vertex of Cn and u1, u2, ..., un be the set of new vertices introduced in construction
of S(Cn). For n > 3, we have by Proposition 1.1,

diam(S(C3)) =

{
3, if n ∈ {4, 5};
diam(Cn), otherwise.

Hence we consider the following cases:

Case1:: If n = 4, then S(C4)) is shown in figure 3,

��������

u u
u u

e e

ee

v1 v2

v3v4

u1 u2

u3u4

Figure 3: Splitting graph of C4.

Nk(S(C4), x) =

3∑
k=0

( 8∑
i=1

dk(wi/S(C4))
)
xk, where wi = vi or ui, for i = 1, 2, ..., n

=
( 8∑

i=1

d0(wi/S(C4))
)
x0 +

( 8∑
i=1

d1(wi/S(C4))
)
x

+
( 8∑

i=1

d2(wi/S(C4))
)
x2 +

( 8∑
i=1

d3(wi/S(C4))
)
x3

= |V (S(C4))|+ 2|E(S(C4))|x

+
( 4∑

i=1

d2(vi/S(C4)) +

4∑
i=1

d2(ui/S(C4))
)
x2

+
( 4∑

i=1

d3(vi/S(C4)) +

4∑
i=1

d3(ui/S(C4))
)
x3

= 8 + 24x+ (3 + 3 + 3 + 3 + 3 + 3 + 3 + 3)x2

+ (0 + 0 + 0 + 0 + 2 + 2 + 2 + 2)x3

= 6 + 24x+ 24x2 + 8x3.
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Since, Nk(C4, x) = 4 + 8x+ 4x2, (see Proposition 1.3), it follows that

Nk(S(C4), x) = 4(4 + 8x+ 4x2) + 8(x3 + x2 − x− 1)

= 4Nk(C4, x) + 2(4)(x3 + x2 − x− 1).

Case2:: If n = 5, then similarly as in Case 1, we get

Nk(S(C5), x) = 10 + 30x+ 50x2 + 10x3.

Since, Nk(C5, x) = 5 + 10x+ 10x2, then

Nk(S(C5), x) = 4Nk(C5, x) + 2(5)(x3 + x2 − x− 1).

Case3:: If n > 6, we obtain for every i ∈ {1, 2, ..., n} that

d0(vi/S(Cn)) = d0(vi/Cn) and d0(ui/S(Cn)) = d0(vi/Cn)

d1(vi/S(Cn)) = 2d1(vi/Cn) and d1(ui/S(Cn)) = d1(vi/Cn)

d2(vi/S(Cn)) = 2d2(vi/Cn) + 1 and d2(ui/S(Cn)) = 2d2(vi/Cn) + 1

d3(vi/S(Cn)) = 2d3(vi/Cn) and d3(ui/S(Cn)) = 2d3(vi/Cn) + 2

d4(vi/S(Cn)) = 2d4(vi/Cn) and d4(ui/S(Cn)) = 2d4(vi/Cn)

......................................................................................................
dk(vi/S(Cn)) = 2dk(vi/Cn) and dk(ui/S(Cn)) = 2dk(vi/Cn),

for every 6 6 k 6 ⌊n
2 ⌋. Hence,

Nk(S(Cn), x) =

⌊n
2
⌋∑

k=0

( ∑
w∈V (S(Pn))

dk(w/S(Cn))
)
xk

=

⌊n
2
⌋∑

k=0

( n∑
i=1

dk(vi/S(Cn))
)
xk +

⌊n
2
⌋∑

k=0

( n∑
i=1

dk(ui/S(Cn))
)
xk

=
( n∑

i=1

d0(vi/S(Cn))
)
x0 +

( n∑
i=1

d1(vi/S(Cn))
)
x+ ...

+
( n∑

i=1

d⌊n
2
⌋(vi/S(Cn))

)
x⌊n

2
⌋

+
( n∑

i=1

d0(ui/S(Cn))
)
x0 +

( n∑
i=1

d1(ui/S(Cn))
)
x+ ...

+
( n∑

i=1

d⌊n
2
⌋(ui/S(Pn))

)
x⌊n

2
⌋

=

n∑
i=1

d0(vi/Cn) +
( n∑

i=1

2d1(vi/Cn)
)
x+

( n∑
i=1

(2d2(vi/Cn + 1)
)
x2

+
( n∑

i=1

2d3(vi/Cn)
)
x3 +

( n∑
i=1

2d4(vi/Cn)
)
x4 + ...

+
( n∑

i=1

2d⌊n
2
⌋(vi/Cn)

)
x⌊n

2
⌋
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+

n∑
i=1

d0(vi/Cn) +
( n∑

i=1

d1(vi/Cn)
)
x+

( n∑
i=1

(2d2(vi/Cn + 1)
)
x2

+
( n∑

i=1

(2d3(vi/Cn) + 2)
)
x3 +

( n∑
i=1

2d4(vi/Cn)
)
x4 + ...

+
( n∑

i=1

2d⌊n
2
⌋(vi/Cn)

)
x⌊n

2
⌋

= 4

[
n∑

i=1

d0(vi/Cn) +
( n∑

i=1

d1(vi/Cn)
)
x+ ...+

( n∑
i=1

d⌊n
2
⌋(vi/Cn)

)
x⌊n

2
⌋

]

− 2

n∑
i=1

d0(vi/Cn)−
( n∑

i=1

d1(vi/Cn)
)
x+

(
2

n∑
i=1

1
)
x2 +

( n∑
i=1

2
)
x3.

= 4Nk(Cn, x)− 2n− 2mx+ 2nx2 + 2mx3

= 4Nk(Cn, x)− 2n− 2nx+ 2nx2 + 2nx3.

Therefore, Nk(S(Cn), x) = 4Nk(Cn.x) + 2n
(
x3 + x2 − x− 1

)
. �

Theorem 2.4. For a complete bipartite graph Kr,s with partition vertex sets
V and U with r > 1 and s > 1 vertices, respectively, the Nk-polynomial of splitting
graph S(Kr,s) of Kr,s is of form

Nk(S(Kr,s, x) = 2(r + s) + 6rsx+
[
2r(r − 1) + 2s(s− 1)

]
x2 + rsx3.

Proof. Let Kr,s be a complete bipartite graph with partition vertex sets V =
{v1, v2, ..., vr} and U = {u1, u2, ..., us} and let the sets X = {x1, x2, ..., xr} and
Y = {y1, y2, ..., ys} be the new vertex sets introduced in construction a splitting
graph S(Kr,s) of Kr,s corresponding to partition sets V and U , respectively.

u u u u

u u u
g f f

e e e eu1
u2 u3

u4

y1
y2 y3 y4

v1
v2 v3

x1 x2
x3

Figure 4: Splitting graph of K3,4

Thus, by Proposition 1.1, |V (S(Kr,s))| = 2(r + s), E(S(Kr,s))| = 3rs and
diam(S(Kr,s)) = 3. Hence, by Proposition 1.2, we get
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w∈V (S(Kr,s))

d0(w/S(Kr,s)) = |V (S(Kr,s))| = 2(r + s) and

∑
w∈V (S(Kr,s))

d1(w/S(Kr,s)) = 2|E(S(Kr,s))| = 2(3rs) = 6rs.

Since,

d2(vi/S(Kr,s)) = 2r − 1 and d3(vi/S(Kr,s)) = 0

d2(ui/S(Kr,s)) = 2s− 1 and d3(ui/S(Kr,s)) = 0

d2(xi/S(Kr,s)) = 2r − 1 and d3(xi/S(Kr,s)) = s

d2(yi/S(Kr,s)) = 2s− 1 and d3(yi/S(Kr,s)) = r

Then

Nk(S(Kr,s), x) =

3∑
k=0

( ∑
w∈V (S(Kr,s))

dk(w/S(Kr,s))
)
xk

=
( ∑

w∈V (S(Kr,s))

d0(w/S(Kr,s))
)
x0

+
( ∑

w∈V (S(Kr,s))

d1(w/S(Kr,s))
)
x

+
( ∑

w∈V (S(Kr,s))

d2(w/S(Kr,s))
)
x2

+
( ∑

w∈V (S(Kr,s))

d3(w/S(Kr,s))
)
x3.
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Nk(S(Kr,s), x) = |V (S(Kr,s))|+ 2|E(S(Kr,s))|x

+
[ r∑

i=1

(
d2(vi/S(Kr,s)) + d2(xi/S(Kr,s))

)
+

s∑
i=1

(
d2(ui/S(Kr,s)) + d2(yi/S(Kr,s))

)]
x2 +

[ r∑
i=1

(
d3(vi/S(Kr,s))

+ d3(xi/S(Kr,s))
)
+

s∑
i=1

(
d3(ui/S(Kr,s)) + d3(yi/S(Kr,s))

)]
x3

= 2(r + s) + 6rsx+
[ r∑

i=1

(
(2r − 1) + (2r − 1)

)
+

s∑
i=1

(
(2s− 1) + (2s− 1)

)]
x2

+
[ r∑

i=1

(
0 + s

)
+

s∑
i=1

(
0 + r)

)]
x3

= 2(r + s) + 6rsx+
[
2r(r − 1) + 2s(s− 1)

]
x2 + 2rsx3.

�

Corollary 2.2. For a star graph K1,n with 1+n vertices, the Nk-polynomial
of a splitting S(K1,n) of a star K1,n is of form

Nk(S(K1,n), x) = 2(n+ 1) + 6nx+ (4n2 − 2n+ 2)x2 + nx3.
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[17] B. Zmazek and J. Žerovnik. On generalization of the Hosoya-Wiener polynomial. MATCH
Commun. Math. Comput. Chem., 55(2006), 359-362.

Received by editors 04.05.2017; Revised version 12.06.2017 and 07.12.2017;
Available online 18.12.2017.

Department of Studies in Mathematics, University of Mysore, Manasagangotri,,
Mysuru-570 006, India

E-mail address: ndsoner@yahoo.co.in & ama.mohsen78@gmail.com


