BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 8(2018), 301-314 DOI: 10.7251/BIMVI1802301C

> Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

INTERVAL VALUED FUZZY IDEALS OF GAMMA NEAR-RINGS

V. Chinnadurai and K. Arulmozhi

ABSTRACT. In this paper, we introduce the concept of interval valued fuzzy ideals of Γ -near-rings, We also characterize some of its properties and illustrate with examples of interval valued fuzzy ideals of Γ -near-rings.

1. Introduction

The notion of fuzzy sets was introduced by Zadeh [12] in 1965, and he [13] also generalized it to interval valued fuzzy subsets (shortly i.v fuzzy subsets), whose of membership values are closed subinterval of [0, 1]. Near-ring was introduced by Pilz [8] and Γ -near-ring was introduced by Satyanarayana [9] in 1984. The idea of fuzzy ideals of near-rings was presented by Kim *et al.* [6]. Fuzzy ideals in Gamma-near-rings was proposed by Jun *et al.* [5] in 1998. Moreover, Thillaigovindan *at al.* [10] studied the interval valued fuzzy quasi-ideals of semigroups. Chinnadurai *et al.* [3] characterized of fuzzy weak bi-ideals of near-rings. Thillaigovindan *et al.* [11] worked on interval valued fuzzy ideals of near-rings. Rao [7] carried out a study on anti-fuzzy k-ideals and anti-homomorphism of Γ -near-rings, which is a generalized concept of an interval valued fuzzy ideals of near-rings. We also investigate some of its properties and illustrate with examples.

2. Preliminaries

In this section, we list some basic definitions.

DEFINITION 2.1. ([13]) Let X be any set. A mapping $\eta : X \to D[0, 1]$ is called an interval valued fuzzy subset (briefly, an i.v fuzzy subset) of X, where D[0, 1]denotes the family of closed subintervals of [0, 1] and $\tilde{\eta}(x) = [\eta^-(x), \eta^+(x)]$ for all

²⁰¹⁰ Mathematics Subject Classification. Primary 16Y30; Secondary 03E72, 08A72.

Key words and phrases. $\Gamma\text{-near-rings},$ fuzzy ideals, interval valued fuzzy ideals, homomorphism and anti-homomorphism.

 $x \in X$, where $\eta^{-}(x)$ and $\eta^{+}(x)$ are fuzzy subsets of X such that $\eta^{-}(x) \leq \eta^{+}(x)$ for all $x \in X$.

DEFINITION 2.2. ([12]) An interval number \tilde{a} , we mean an interval $[a^-, a^+]$ such that $0 \leq a^- \leq a^+ \leq 1$ and where a^- and a^+ are the lower and upper limits of \tilde{a} respectively. The set of all closed subintervals of [0, 1] is denoted by D[0, 1]. We also identify the interval [a, a] by the number $a \in [0, 1]$. For any interval numbers $\tilde{a}_j = [a_j^-, a_j^+], \tilde{b}_j = [b_j^-, b_j^+] \in D[0, 1], j \in \Omega$ (where Ω is index set), we define

$$\begin{split} \max^{i} \{\tilde{a}_{j}, \tilde{b}_{j}\} &= [\max\{a_{j}^{-}, b_{j}^{-}\}, \max\{a_{j}^{+}, b_{j}^{+}\}],\\ \min^{i} \{\tilde{a}_{j}, \tilde{b}_{j}\} &= [\min\{a_{j}^{-}, b_{j}^{-}\}, \max\{a_{j}^{+}, b_{j}^{+}\}],\\ \inf^{i} \tilde{a}_{j} &= [\cap_{j \in \Omega} a_{j}^{-}, \cap_{j \in \Omega} a_{j}^{+}],\\ \sup^{i} \tilde{a}_{j} &= [\cup_{j \in \Omega} a_{j}^{-}, \cup_{j \in \Omega} a_{j}^{+}]. \end{split}$$

and let

(i) $\tilde{a} \leq \tilde{b} \Leftrightarrow a^- \leq b^-$ and $a^+ \leq b^+$, (ii) $\tilde{a} = \tilde{b} \Leftrightarrow a^- = b^-$ and $a^+ = b^+$, (iii) $\tilde{a} < \tilde{b} \Leftrightarrow \tilde{a} \leq \tilde{b}$ and $\tilde{a} \neq \tilde{b}$, (iv) $k\tilde{a} = [ka^-, ka^+]$, whenever $0 \leq k \leq 1$.

DEFINITION 2.3. ([10]) Let $\tilde{\eta}$ be an i.v fuzzy subset of X and $[t_1, t_2] \in D[0, 1]$. Then the set $\tilde{U}(\tilde{\eta} : [t_1, t_2]) = \{x \in X | \tilde{\eta}(x) \ge [t_1, t_2]\}$ is called the upper level subset of $\tilde{\eta}$.

DEFINITION 2.4. ([8]) A near-ring is an algebraic system $(R, +, \cdot)$ consisting of a non empty set R together with two binary operations called + and \cdot such that (R, +) is a group not necessarily abelian and (R, \cdot) is a semigroup connected by the following distributive law: $(x + z) \cdot y = x \cdot y + z \cdot y$ valid for all $x, y, z \in R$. We use the word 'near-ring 'to mean 'right near-ring '. We denote xy instead of $x \cdot y$.

DEFINITION 2.5. ([9]) A Γ - near-ring is a triple $(M, +, \Gamma)$ where

(i) (M, +) is a group,

(ii) Γ is a nonempty set of binary operations on M such that for each $\alpha \in \Gamma$, $(M, +, \alpha)$ is a near-ring,

(iii) $x\alpha(y\beta z) = (x\alpha y)\beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

In what follows , let M denote a Γ - near-ring unless otherwise specified.

DEFINITION 2.6. ([9]) A subset A of a Γ -near-ring M is called a left(resp. right) ideal of M if

(i) (A, +) is a normal divisor of (M, +), (i.e) $x - y \in A$ for all $x, y \in A$ and $y + x - y \in A$ for $x \in A, y \in M$

(ii) $u\alpha(x+v) - u\alpha v \in A$ (resp. $x\alpha u \in A$) for all $x \in A, \alpha \in \Gamma$ and $u, v \in M$.

DEFINITION 2.7. ([9]) Let M be a Γ -near-ring. Given two subsets A and B of M, we define $A\Gamma B = \{a\alpha b | a \in A, b \in B \text{ and } \alpha \in \Gamma\}$ and also define another operation * on the class of subset of M as

$$A\Gamma * B = \{a\gamma(a'+b) - a\gamma a' | a, a' \in A, \gamma \in \Gamma, b \in B\}.$$

DEFINITION 2.8. ([10]) Let I be a subset of a near-ring M. Define a function $\tilde{f}_I: M \to D[0,1]$ by

$$f_I(x) = \begin{cases} \tilde{1} \ if \ x \in I \\ 0 \ otherwise. \end{cases}$$

DEFINITION 2.9. ([4]) If $\tilde{\eta}$ and $\tilde{\lambda}, \tilde{\eta}_i (i \in \Omega)$ are i.v fuzzy subsets of X. The following are defined by

 $\begin{aligned} &(\mathrm{i})\tilde{\eta} \leqslant \tilde{\lambda} \Leftrightarrow \tilde{\eta}(x) \leqslant \tilde{\lambda}(x). \\ &(\mathrm{ii})\tilde{\eta} = \tilde{\lambda} \Leftrightarrow \tilde{\eta}(x) = \tilde{\lambda}(x). \\ &(\mathrm{iii}) \ (\tilde{\eta} \cap \tilde{\lambda})(x) = \min^{i} \{\tilde{\eta}(x), \ \tilde{\lambda}(x)\}. \\ &(\mathrm{iv}) \ (\tilde{\eta} \cup \tilde{\lambda})(x) = \max^{i} \{\tilde{\eta}(x), \ \tilde{\lambda}(x)\}. \\ &(\mathrm{v}) \bigcup_{i \in \Omega} \tilde{\eta}(x) = \sup^{i} \{\tilde{\eta}(x)|i \in \Omega\}. \end{aligned}$

(vi) $\bigcap_{i \in \Omega} \tilde{\eta}(x) = \inf^i \{ \tilde{\eta}(x) | i \in \Omega \}$ for all $x \in X$.

where $\inf^i \{\tilde{\eta}_i | i \in \Omega\} = [\inf_{i \in \Omega} \{\eta_i^-(x)\}, \inf_{i \in \Omega} \{\eta_i^+(x)\}]$ is the i.v infimum norm and $\sup^i \{\tilde{\eta}_i | i \in \Omega\} = [\sup_{i \in \Omega} \{\eta_i^-(x)\}, \sup_{i \in \Omega} \{\eta_i^+(x)\}]$ is the i.v supremum norm.

3. Interval valued fuzzy ideals of Γ -near-rings

In this section, we introduce the notion of i.v fuzzy left(right) ideal of M and discuss some of its properties.

DEFINITION 3.1. An i.v fuzzy subset $\tilde{\eta}$ in a Γ -near-ring M is called an i.v fuzzy left (resp. right) ideal of M if

(i) $\tilde{\eta}$ is an i.v fuzzy normal divisor with respect to addition,

(ii) $\tilde{\eta}(c\alpha(p+d) - c\alpha d) \ge \tilde{\eta}(p)$, (resp. $\tilde{\eta}(p\alpha c) \ge \tilde{\eta}(p)$ for all $p, c, d \in M$ and $\alpha \in \Gamma$.

The condition (i) of definition 3.1 means that $\tilde{\eta}$ satisfies:

(i) $\tilde{\eta}(p-q) \ge \min^{i} \{ \tilde{\eta}(p), \tilde{\eta}(q) \},\$

(ii) $\tilde{\eta}(q+p-q) \ge \tilde{\eta}(p)$, for all $p,q \in M$

Note that $\tilde{\eta}$ is an i.v fuzzy left (resp. right) ideal of Γ -near-ring M, then $\tilde{\eta}(0) \ge \tilde{\eta}(p)$ for all $p \in M$, where 0 is the zero element of M.

EXAMPLE 3.1. Let $M = \{0, a, b, c\}$ be a non-empty set with binary operation + and $\Gamma = \{\alpha, \beta\}$ be the non-empty set of binary operations as shown in the following tables:

+	0	a	b	С	α	0	a	b	С	β	0	a	b	С
0	0	a	b	С	0	0	0	0	0	0	0	0	0	0
a	a	0	c	b	a	a	a	a	a	a	0	0	0	0
b	b	c	0	a	b	0	0	b	b	b	0	a	c	b
c	c	b	a	0	c	a	a	c	c	c	0	a	b	c
						Ta	ble	1.						

Let $\tilde{\eta} : M \to D[0,1]$ be an i.v fuzzy subset defined by $\tilde{\eta}(0) = [0.8, 0.9]$, and $\tilde{\eta}(a) = [0.6, 0.7], \tilde{\eta}(b) = \tilde{\eta}(c) = [0.2, 0.3]$. Then $\tilde{\eta}$ is an i.v fuzzy ideal of M.

THEOREM 3.1. Let $\tilde{\eta} = [\eta^-, \eta^+]$ be an *i.v* fuzzy subset of a Γ -near-ring M, then $\tilde{\eta}$ is an *i.v* fuzzy left(right) ideal of M if and only if η^-, η^+ are fuzzy left (right) ideal of M.

PROOF. Let $\tilde{\eta}$ be an i.v fuzzy left ideal of M. For any $p, q, r \in M$. Now

$$\begin{split} [\eta^{-}(p-q), \eta^{+}(p-q)] &= \tilde{\eta}(p-q) \\ &\geqslant \min^{i}\{\tilde{\eta}(p), \tilde{\eta}(q)\} \\ &= \min^{i}\{[\eta^{-}(p), \eta^{+}(p)], [\eta^{-}(q), \eta^{+}(q)]\} \\ &= \min^{i}\{[\eta^{-}(p), \eta^{-}(q)]\}, \min^{i}\{[\eta^{+}(p), \eta^{+}(q)]\} \end{split}$$

It follows that $\eta^{-}(p) \ge \min^{i} \{\eta^{-}(p), \eta^{-}(q) \text{ and }$

$$\begin{split} [\eta^{-}(p\alpha q), \eta^{+}(p\alpha q)] &= \tilde{\eta}(p\alpha q) \\ \geqslant \min^{i}\{\tilde{\eta}(p), \tilde{\eta}(q)\} \\ &= \min^{i}\{[\eta^{-}(p), \eta^{+}(p)], [\eta^{-}(q), \eta^{+}(q)]\} \\ &= \min^{i}\{[\eta^{-}(p), \eta^{-}(q)]\}, \min^{i}\{[\eta^{+}(p), \eta^{+}(q)]\} \end{split}$$

Then

 $\eta^{-}(p\alpha q) \ge \min^{i} \{\tilde{\eta}(p), \tilde{\eta}(q)\}$

and

 $\eta^+(p\alpha q) \ge \min^i \{\tilde{\eta}(p), \tilde{\eta}(q).$

Now

$$[\eta^{-}(q+p-q), \eta^{+}(q+p-q)] = \tilde{\eta}(q+p-q) = \tilde{\eta}(p) = [\eta^{-}(p), \eta^{+}(q)].$$

It follows that $\eta^{-}(q+p-q)] = \eta^{-}(p)$ and $\eta^{+}(q+p-q)] = \eta^{+}(p)$. Also

follows that
$$\eta^{-}(q+p-q) = \eta^{-}(p)$$
 and $\eta^{-}(q+p-q) = \eta^{-}(p)$. A
$$[\eta^{-}(p\alpha q), \eta^{+}(p\alpha q)] \ge \tilde{\eta}(p\alpha q)$$

$$\begin{aligned} (p\alpha q), \eta^+(p\alpha q) & \geqslant \eta(p\alpha q) \\ & \geqslant \tilde{\eta}(q) \\ & = [\eta^-(q), \eta^+(q)] \end{aligned}$$

 So

$$\eta^{-}(p\alpha q) \ge \eta^{-}(q) \text{ and } \eta^{+}(p\alpha q) \ge \eta^{+}(q).$$

Now

$$[\eta^{-}((p+r)\alpha q - p\beta q), \eta^{+}((p+r)\alpha q - p\beta q)] = \tilde{\eta}((p+r)\alpha q - p\beta q)$$

$$\geqslant \tilde{\eta}(r)$$

$$= [\eta^{-}(r), \eta^{+}(r)].$$

It follows that $\eta^-((p+r)\alpha q - p\beta q) \ge \eta^-(r)$ and $\eta^+((p+r)\alpha q - p\beta q) \ge \eta^+(r)$.

Conversely, assume that η^-,η^+ are fuzzy left (right) ideals of $M.{\rm Let}\ p,q,r\in M$ Now

$$\begin{split} \tilde{\eta}(p-q) &= [\eta^{-}(p-q), \eta^{+}(p-q)] \\ &\geqslant \min^{i} \{ [\eta^{-}(p)\eta^{-}(q)] \}, \min^{i} \{ [\eta^{+}(p)\eta^{+}(q)] \} \\ &= \geqslant \min^{i} \{ [\eta^{-}(p)\eta^{+}(p)] \}, \min^{i} \{ [\eta^{-}(q)\eta^{+}(q)] \} \\ &= \min^{i} \{ [\tilde{\eta}(p), \tilde{\eta}(q)] \} \\ \tilde{\eta}(p\alpha q) &= [\eta^{-}(p\alpha q), \eta^{+}(p\alpha q)] \\ &\geqslant \min^{i} \{ [\eta^{-}(p)\eta^{-}(q)] \}, \min^{i} \{ [\eta^{+}(p)\eta^{+}(q)] \} \\ &= \geqslant \min^{i} \{ [\eta^{-}(p)\eta^{+}(p)] \}, \min^{i} \{ [\eta^{-}(q)\eta^{+}(q)] \} \\ &= \min^{i} \{ [\tilde{\eta}(p), \tilde{\eta}(q)] \} \\ \tilde{\eta}(q+p-q) &= [\eta^{-}(q+p-q), \eta^{+}(q+p-q)] \\ &= [\eta^{-}(p), \eta^{+}(p)] \\ &= \tilde{\eta}(p) \\ \tilde{\eta}(p\alpha q) &= [\eta^{-}(p\alpha q), \eta^{+}(p\alpha q)] \\ &\geqslant [\eta^{-}(q), \eta^{+}(q)] \\ &= \tilde{\eta}(q) \\ \tilde{\eta}((p+r)\alpha q - p\beta q) &= [\eta^{-}((p+r)\alpha q - p\alpha q), \eta^{+}((p+r)\alpha q - p\alpha q)] \\ &\geqslant [\eta^{-}(r), \eta^{+}(r)] \\ &= \tilde{\eta}(r) \end{split}$$

Hence $\tilde{\eta}$ is an i.v fuzzy left(right) ideal of M.

THEOREM 3.2. Let I be a left (right) ideal of Γ -near-ring M. Then for any $\tilde{c} \in D[0,1]$, there exists an i.v fuzzy left (right) ideal $\tilde{\eta}$ of M such that $\tilde{U}(\tilde{\eta}:\tilde{c}) = I$.

PROOF. Let I be a left (right) ideal of M. Let $\tilde{\eta}$ be an i.v fuzzy subset of M defined by

$$\tilde{\eta}(p) = \begin{cases} \tilde{c} & \text{if } p \in I \\ \tilde{0} & \text{otherwise.} \end{cases}$$

Then $\tilde{U}(\tilde{\eta};\tilde{c})=I.$ If $p,q\in I,$ then $p,q\in I$ and

$$\tilde{\eta}(p-q) = \tilde{c} = \min^{i} \{\tilde{c}, \tilde{c}\} = \min^{i} \{\tilde{\eta}(p), \tilde{\eta}(q)\}.$$

If $p,q\notin I,$ then $\tilde{\eta}(p)=\tilde{0}=\tilde{(}q)$ and thus

$$\tilde{\eta}(p-q) \ge \tilde{0} = \min^i \{ \tilde{0}, \tilde{0} \} = \min^i \{ \tilde{\eta}(p), \tilde{\eta}(q) \}.$$

Suppose that $p, q \in I$. Then

$$\tilde{\eta}(p-q) \ge \tilde{0} = \min^{i} \{\tilde{c}, \tilde{0}\} = \min^{i} \{\tilde{\eta}(p), \tilde{\eta}(q)\}.$$

If $p \in I$ and $q \in M$, then $q + p - q \in I$ and so $\tilde{\eta}(q + p - q) = \tilde{c} = \tilde{\eta}(p)$. If $p \notin I$ and $q \in M$, then $\tilde{\eta}(p) = \tilde{0}$ and thus $\tilde{\eta}(q + p - q) \ge \tilde{0} = \tilde{\eta}(p)$. If $q \in I$ and $p \in M$, then $p\alpha q \in I$ and so $\tilde{\eta}(p\alpha q) = \tilde{c} = \tilde{\eta}(q)$. If $q \notin I$ and $p \in M$, then $\tilde{\eta}(q) = \tilde{0}$ and thus $\tilde{\eta}(p\alpha q) \ge \tilde{0} = \tilde{\eta}(q)$.

If $r \in I$ and $p, q \in M$, then $((p+r)\alpha q - p\beta q) \in I$ and so $\tilde{\eta}((p+r))\alpha q - p\beta q) = \tilde{c} = \tilde{\eta}(r)$. If $z \notin I$ and $p, q \in M$, then $\tilde{\eta}(r) = \tilde{0}$ and $\tilde{\eta}((p+r))\alpha q - p\beta q) \ge \tilde{0} = \tilde{\eta}(r)$. Hence $\tilde{\eta}$ is an i.v fuzzy left(right) ideal of tha Γ -near-ring M.

THEOREM 3.3. Let M be a Γ -near-ring and $\tilde{\eta}$ is an i.v fuzzy left (right) ideal of M, then the set $M_{\tilde{\eta}} = \{p \in M | \tilde{\eta}(p) = \tilde{\eta}(0)\}$ is left (right) ideal of M.

PROOF. Let $\tilde{\eta}$ be an i.v fuzzy left ideal of M. Let $p, q \in M_{\tilde{\eta}}$. Then

$$\tilde{\eta}(p) = \tilde{\eta}(0), \tilde{\eta}(q) = \tilde{\eta}(0)$$

and

$$\tilde{\eta}(p-q) \ge \min\{\tilde{\eta}(p), \tilde{\eta}(q)\} = \min\{\tilde{\eta}(0), \tilde{\eta}(0)\} = \tilde{\eta}(0)$$

So $\tilde{\eta}(p-q) = \tilde{\eta}(0)$. Thus $p-q \in M_{\tilde{\eta}}$. For every $q \in M$ and $p \in M_{\tilde{\eta}}$ and $\alpha, \beta \in \Gamma$ we have $\tilde{\eta}(q+p-q) \ge \tilde{\eta}(p) = \tilde{\eta}(0)$. Hence $q+p-q \in M_{\tilde{\eta}}$ which shows that $M_{\tilde{\eta}}$ is a normal divisor of M with respect to the addition. Let $p \in M_{\tilde{\eta}}, \alpha \in \Gamma$ and $c, d \in M$. Then $\tilde{\eta}(c\alpha(p+d)-c\alpha d) \ge \tilde{\eta}(p) = \tilde{\eta}(0)$ and hence $\tilde{\eta}(c\alpha(p+d)-c\alpha d) = \tilde{\eta}(0)$.(i.e) $c\alpha(p+d) - c\alpha d \in M_{\tilde{\eta}}$. Therefore $M_{\tilde{\eta}}$ is a left ideal of M.

THEOREM 3.4. Let H be a non empty subset of a Γ -near-ring M and $\tilde{\eta}_H$ be an *i.v* fuzzy set M defined by

$$\tilde{\eta}_{H}(p) = \begin{cases} \tilde{s} \ if \ p \in H\\ \tilde{t} \ otherwise \end{cases}$$

for $p \in M$ and $\tilde{s}, \tilde{t} \in D[0, 1]$ and $\tilde{s} > \tilde{t}$. Then $\tilde{\eta}_H$ is an i.v fuzzy left(right) ideal of M if and only if H is a left ideal of M. Also $M_{\tilde{\eta}_H} = H$.

PROOF. $\tilde{\eta}_H$ be an i.v fuzzy left(right) ideal of M and let $p, q \in H$. Then $\tilde{\eta}_H(p) = \tilde{s} = \tilde{\eta}_H(q)$. Consider

$$\begin{split} \tilde{\eta}_H(p-q) &\ge \min^i \{ \tilde{\eta}_H(p), \tilde{\eta}_H(q) \} \\ &= \min^i \{ \tilde{s}, \tilde{s} \} \\ &= \tilde{s} \end{split}$$

and so $\tilde{\eta}_H(p-q) = \tilde{s}$ which implies that $p-q \in H$. For any $p \in H, \alpha \in \Gamma$ and $c, d \in M$. Then $\tilde{\eta}_H(c\alpha(p+d)-c\beta d) \ge \tilde{\eta}_H(p) = \tilde{s}$ (resp. $\tilde{\eta}_H(p\alpha c) \ge \tilde{\eta}_H(p) = \tilde{s}$) and hence $\tilde{\eta}_H(c\alpha(p+d)-c\beta d) = \tilde{s}$ (resp. $\tilde{\eta}_H(p\alpha c) = \tilde{s}$). This shows that M is a left(right) ideal of M.

Conversely assume that H is a left (right) ideal of M. Let $p, q \in M$, if at least one of p and q does not belong to H then $\tilde{\eta}_H(p-q) \ge \tilde{t} = \min^i \{\tilde{\eta}_p, \tilde{\eta}_q\}.$

If $p, q \in H$, then $p - q \in H$ and so $\tilde{\eta}_H(p - q) = \tilde{s} = \min^i \{ \tilde{\eta}_H(p), \tilde{\eta}_H(q) \}.$

If $p \in H$, then $q + p - q \in M$ and hence $\tilde{\eta}_H(q + p - q) = \tilde{s} = \tilde{\eta}_H(p)$.

Clearly $\tilde{\eta}_H(q+p-q) \ge \tilde{t} = \tilde{\eta}_H(p)$ for all $p \notin M$ and $q \in M$. This shows that $\tilde{\eta}_H$ is an i.v fuzzy normal divisor w.r.to addition. Now let $p, c, d \in M$ and $\alpha \in \Gamma$.

If $p \in H$, then $c\alpha(p+d) - c\alpha d \in A$ (resp. $p\alpha c \in A$) and thus $\tilde{\eta}_H(c\alpha(p+d) - c\beta d) = \tilde{s} = \tilde{\eta}_H(p)$ (resp. $\tilde{\eta}_H(p\alpha c) = \tilde{s} = \tilde{\eta}_H(p)$.

If $p \notin H$, then clearly

$$\tilde{\eta}_H(c\alpha(p+d) - c\beta d) = \tilde{t} \ge \tilde{\eta}_H(p)$$

respective

$$\tilde{\eta}_{H}(p\alpha c) \ge \tilde{t} = \tilde{\eta}_{H}(p).$$
Hence $\tilde{\eta}_{H}$ is an i.v fuzzy left(right) ideal of M . Also
$$M_{\tilde{\eta}_{H}} = \{p \in M | \tilde{\eta}_{H}(p) = \tilde{\eta}_{H}(0)\}$$

$$= \{p \in M | \tilde{\eta}_{H}(p) = \tilde{s}\}$$

$$= \{p \in M | p \in H\}$$

$$= H$$

The following theorem given the relation between fuzzy subsets and crisp subsets of a Γ -near-ring.

THEOREM 3.5. Let H be a subset of a Γ -near-ring M. The characteristic function $\tilde{\eta}_H : M \to D[0,1]$ is an i.v fuzzy left(right) ideal of M if and only if H is a left(right) ideal of M.

PROOF. Let H be a left ideal of M, using the theorem 3.4. Conversely, assume hat $\tilde{\eta}_H$ is an i.v fuzzy left(right) ideal of M.

Let $p, q \in H$, then $\tilde{\eta}_H(p) = \hat{1} = \tilde{\eta}_H(q)$ and so $\tilde{\eta}_H(p-q) \ge \min^i \{ \tilde{\eta}_H(p), \tilde{\eta}_H(q) \}$

$$\begin{aligned} \eta_H(p-q) & = \min\{\eta_H(p), \eta_H(q)\} \\ &= \min^i\{\tilde{1}, \tilde{1}\} \\ &= \tilde{1} \end{aligned}$$

so $\tilde{\eta}_H(p-q) = \tilde{1}$. Therefore $p-q \in H$. Hence H is an additive subgroup of M.

Let $p \in H$ and $q \in M$, then $\tilde{\eta}_H(q+p-q) = \tilde{\eta}_H(p) = \tilde{1}$. Hence $\tilde{\eta}_H(q+p-q) = \tilde{1}$ this implies that $q+p-q \in H$. Thus H is a normal subgroup of M. Let $p \in M$ and $q \in H$, then $\tilde{\eta}_H(p\alpha q) \ge \tilde{\eta}_H(q) = \tilde{1}$. Hence $\tilde{\eta}_H(p\alpha q) = \tilde{1}$ this implies $p\alpha q \in H$ and H is a left ideal of M. Let $p, q \in M$ and $r \in H$. Then $\tilde{\eta}_H((p+r)\alpha q) - p\beta q \ge \tilde{\eta}_H(r) = \tilde{1}$. Hence $\tilde{\eta}_H((p+r)\alpha q - p\beta) = \tilde{1}$ this implies that $(p+r)\alpha q - p\beta q) \in H$. Hence H is a left(right) ideal of M.

THEOREM 3.6. Let $\{\tilde{\eta}_i | i \in \Omega\}$ be family of *i.v* fuzzy ideals of a Γ - near-ring M, then $\bigcap_{i \in \Omega} \tilde{\eta}_i$ is also an *i.v* fuzzy ideal of M, where Ω is any index set.

PROOF. Let $\{\tilde{\eta}_i | i \in \Omega\}$ be a family of i.v fuzzy ideals of M. Let $p, q, r \in M, \alpha, \beta \in \Gamma$ and $\tilde{\eta} = \bigcap_{i \in \Omega} \tilde{\eta}_i$. Then,

$$\tilde{\eta}(p) = \bigcap_{i \in \Omega} \tilde{\eta}_i(p) = \left(\inf_{i \in \Omega}^i \tilde{\eta}_i \right)(p) = \inf_{i \in \Omega}^i \tilde{\eta}_i(p).$$

Now

$$\begin{split} \tilde{\eta}(p-q) &= \inf_{i\in\Omega}^{i} \tilde{\eta}_{i}(p-q) \\ &\geq \inf_{i\in\Omega}^{i} \min^{i}\left\{\tilde{\eta}_{i}(p), \tilde{\eta}_{i}(q)\right\} \\ &= \min^{i}\left\{\inf_{i\in\Omega}^{i} \tilde{\eta}_{i}(p), \inf_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\right\} \\ &= \min^{i}\left\{\prod_{i\in\Omega}^{i} \tilde{\eta}_{i}(p), \bigcap_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\right\} \\ &= \min^{i}\left\{\tilde{\eta}(p), \tilde{\eta}(q)\right\}. \\ \tilde{\eta}(p\alpha q) &= \inf^{i}\left\{\tilde{\eta}_{i}(p\alpha q) : i \in \Omega\right\} \\ &\geq \inf^{i}\left\{\min^{i}\left\{\tilde{\eta}_{i}(p), \tilde{\eta}_{i}(q)\right\} : i \in \Omega\right\} \\ &= \min^{i}\left\{\inf^{i}\left\{\tilde{\eta}_{i}(p) : i \in \Omega\right\}, \inf_{i\in\Omega}^{i}\left\{\tilde{\eta}_{i}(q) : i \in \Omega\right\} \\ &= \min^{i}\left\{\prod_{i\in\Omega}^{i}\left\{\tilde{\eta}_{i}(p), \bigcap_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\right\} \\ &= \inf^{i}\left\{\tilde{\eta}_{i}(p) : i \in \Omega\right\} \\ &= \inf^{i}\left\{\tilde{\eta}_{i}(p) : i \in \Omega\right\} \\ &= \left\{\bigcap_{i\in\Omega}^{i} \tilde{\eta}_{i}(p)\right\}. \\ &\bigcap_{i\in\Omega}^{i} \tilde{\eta}(p\alpha q) = \inf^{i}\left\{\tilde{\eta}_{i}(p\alpha q) : i \in \Omega\right\} \\ &\geq \inf^{i}\left\{\tilde{\eta}_{i}(q)\right\} \\ &\bigcap_{i\in\Omega}^{i} \tilde{\eta}((p+r)\alpha q - p\beta q) = \inf^{i}\left\{\tilde{\eta}_{i}(p + r\alpha q - p\beta q) : i \in \Omega\right\} \\ &\geq \inf^{i}\left\{\tilde{\eta}_{i}(r)\right\} \\ &= \left\{\bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(r)\right\} \end{split}$$

Therefore $\bigcap_{i\in\Omega} \tilde{\eta}_i$ is an i.v fuzzy ideal of M.

THEOREM 3.7. Let $\{\tilde{\eta}_i | i \in \Omega\}$ be family of *i.v* fuzzy ideals of a Γ - near-ring M, then $\bigcup_{i \in \Omega} \tilde{\eta}_i$ is also an *i.v* fuzzy ideal of M, where Ω is any index set.

PROOF. Let $\{\tilde{\eta}_i | i \in \Omega\}$ be a family of i.v fuzzy ideals of M. Let $p, q, r \in M, \alpha, \beta \in \Gamma$ and $\tilde{\eta} = \bigcup_{i \in \Omega} \tilde{\eta}_i$. Then,

$$\tilde{\eta}(p) = \bigcup_{i \in \Omega} \tilde{\eta}_i(p) = \left(\sup_{i \in \Omega}^i \tilde{\eta}_i \right)(p) = \sup_{i \in \Omega}^i \tilde{\eta}_i(p).$$

Now

$$\begin{split} \tilde{\eta}(p-q) &= \sup_{i\in\Omega}^{i} \tilde{\eta}_{i}(p-q) \\ &\geqslant \sup_{i\in\Omega}^{i} \max^{i} \{\tilde{\eta}_{i}(p), \tilde{\eta}_{i}(q)\} \\ &= \max^{i} \{\sup_{i\in\Omega}^{i} \tilde{\eta}_{i}(p), \sup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\} \\ &= \max^{i} \{\sum_{i\in\Omega}^{i} \tilde{\eta}_{i}(p), \bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\} \\ &= \max^{i} \{\tilde{\eta}(p), \tilde{\eta}(q)\}. \\ \tilde{\eta}(p\alpha q) &= \sup^{i} \{\tilde{\eta}_{i}(p\alpha q) : i \in \Omega\} \\ &\geqslant \sup^{i} \{\max^{i} \{\tilde{\eta}_{i}(p), \vdots \in \Omega\} \\ &\geqslant \sup^{i} \{\max^{i} \{\tilde{\eta}_{i}(p), \bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\} : i \in \Omega\} \\ &= \max^{i} \{\sup^{i} \{\tilde{\eta}_{i}(p), \bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\} \\ &= \max^{i} \{\sum_{i\in\Omega}^{i} \tilde{\eta}_{i}(p), \bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\} \\ &\bigcup_{i\in\Omega}^{i} \tilde{\eta}(q+p-q) = \sup^{i} \{\tilde{\eta}_{i}(q+p-q) : i \in \Omega\} \\ &= \sup^{i} \{\tilde{\eta}_{i}(p)\} . \\ &\bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(p)\} \\ &\bigcup_{i\in\Omega}^{i} \tilde{\eta}(p\alpha q) = \sup^{i} \{\tilde{\eta}_{i}(p\alpha q) : i \in \Omega\} \\ &= \sup^{i} \{\tilde{\eta}_{i}(q)\} \\ &\bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\} \\ &\bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q) \\ &\bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(q)\} \\ &\sup^{i} \{\tilde{\eta}_{i}(r) : i \in \Omega\} \\ &= \left\{\bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(r)\} \\ &\bigcup_{i\in\Omega}^{i} \tilde{\eta}_{i}(r)\} \\ \end{aligned}$$

Therefore $\bigcup_{i\in\Omega} \tilde{\eta}_i$ is an i.v fuzzy ideal of M.

THEOREM 3.8. Let $\tilde{\eta}$ be an *i.v* fuzzy subset of $M.\tilde{\eta}$ is an *i.v* fuzzy left (right) ideal of M if and only if $\tilde{U}(\tilde{\eta}: [t_1, t_2])$ is left (right) ideal of M, for all $[t_1, t_2] \in D[0, 1]$.

PROOF. Assume that $\tilde{\eta}$ is an i.v fuzzy left(right) ideal of M.

Let $[t_1, t_2] \in D[0, 1]$ such that $p, q \in U(\tilde{\eta} : [t_1, t_2])$.

Then $\tilde{\eta}(p-q) \ge \min^i \{\tilde{\eta}(p), \tilde{\eta}(q)\} \ge \min^i \{[t_1, t_2], [t_1, t_2]\} = [t_1, t_2]$. Thus $p-q \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$. Let $p \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$ and $q \in M$ and $\alpha, \beta \in \Gamma$. We have $\tilde{\eta}(q+p-q) = \tilde{\eta}(p) \ge [t_1, t_2]$. Therefore $q + p - q \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$. Hence $\tilde{U}(\tilde{\eta} : [t_1, t_2])$ is a normal subgroup of M. Let $q \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$ and $p \in M$, thus $(p\alpha q) \ge (q)[t_1, t_2]$. Hence $p\alpha q \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$. Let $z \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$ and $p, q \in M$, thus $\tilde{\eta}((p+r)\alpha q - p\beta q) \ge \tilde{\eta}(r) \ge [t_1, t_2]$, and $((p+r)\alpha q - p\beta q) \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$. Hence $\tilde{U}(\tilde{\eta} : [t_1, t_2])$ is a left (right) ideal of a Γ -near-ring of M.

Conversely, assume $U(\tilde{\eta} : [t_1, t_2])$ is a left(right) ideal of M, for all $[t_1, t_2] \in D[0, 1]$. Let $p, q \in M$. Suppose $\tilde{\eta}(p-q) < \min^i \{\tilde{\eta}(p), \tilde{\eta}(q)\}$.

Choose $\tilde{c} = [c_1, c_2] \in D[0, 1]$ such that $\tilde{\eta}(p-q) < [c_1, c_2] < \min^i \{\tilde{\eta}(p), \tilde{\eta}(q)\}$. This implies that $\tilde{\eta}(p) > [c_1, c_2]$ and $\tilde{\eta}(q) > [c_1, c_2]$, then we have $p, q \in \tilde{U}(\tilde{\eta} : [t_1, t_2])$, and since $\tilde{U}(\tilde{\eta} : [c_1, c_2])$ is a left(right) ideal of M then $(p-q) \in \tilde{U}(\tilde{\eta} : [c_1, c_2])$. Hence $\tilde{(p-q)} \ge [c_1, c_2]$ is a contradiction, this implies that $\tilde{\eta}(p-q) \ge \min^i \{\tilde{\eta}(p), \tilde{\eta}(q)\}$.

Suppose $\tilde{\eta}(q+p-q) < \tilde{p}$, choose an interval $\tilde{c} = [c_1, c_2] \in D[0, 1]$ such that $\tilde{\eta}(q+p-q) < [c_1, c_2]\tilde{\eta}(p)$. This implies that $\tilde{\eta}(p) > [c_1, c_2]$ then we have $p \in \tilde{U}(\tilde{\eta} : [c_1, c_2])$, and since $\tilde{U}(\tilde{\eta} : [c_1, c_2])$ is a normal subgroup of (M, +) then $(q+p-q) \in \tilde{U}(\tilde{\eta} : [c_1, c_2])$. Hence $(q+p-q) \ge [c_1, c_2]$ is a contradiction. Hence $\tilde{\eta}(q+p-q) \ge \tilde{\eta}(p)$. Similarly $\tilde{\eta}(q+p-q) \le \tilde{\eta}(p)$. Hence $\tilde{\eta}(q+p-q) = \tilde{\eta}(p)$.

Suppose $\tilde{\eta}(p\alpha q) < \tilde{q}$, choose an interval $\tilde{c} = [c_1, c_2] \in D[0, 1]$ such that $\tilde{\eta}(p\alpha q) < [c_1, c_2]\tilde{\eta}(q)$. This implies that $\tilde{\eta}(q) > [c_1, c_2]$ then we have $q \in \tilde{U}(\tilde{\eta} : [c_1, c_2])$, and since $\tilde{U}(\tilde{\eta} : [c_1, c_2])$ is a left(right) ideal of M then $(p\alpha q) \in \tilde{U}(\tilde{\eta} : [c_1, c_2])$. Hence $\tilde{(p\alpha q)} \ge [c_1, c_2]$ is a contradiction. Hence $\tilde{\eta}(p\alpha q) = \tilde{\eta}(q)$.

Suppose $\tilde{\eta}((p+r)\alpha q - p\beta q) < \tilde{r}$, choose an interval $\tilde{c} = [c_1, c_2] \in D[0, 1]$ such that $\tilde{\eta}((p+r)\alpha q - p\beta q)) < [c_1, c_2] < \tilde{\eta}(r)$. This implies that $\tilde{\eta}(r) > [c_1, c_2]$ we have $q \in \tilde{U}(\tilde{\eta} : [c_1, c_2])$, and since $\tilde{U}(\tilde{\eta} : [c_1, c_2])$ is a left(right) ideal of M it follows that $((p+r)\alpha q - p\beta q)) \in \tilde{U}(\tilde{\eta} : [c_1, c_2])$. Hence $\tilde{(}(p+r)\alpha q - p\beta q)) \ge [c_1, c_2]$ which is a contradiction. Hence $\tilde{\eta}((p+r)\alpha q - p\beta q)) \ge \tilde{\eta}(r)$. Thus $\tilde{\eta}$ is an i.v fuzzy left(right) ideal of M.

4. Homomorphism of interval valued fuzzy ideals of Γ -near-rings

In this section, we characterize i.v fuzzy ideals of Γ -near-rings using homomorphism.

DEFINITION 4.1. ([9]) Let f be a mapping from a set M to a set S. Let $\tilde{\eta}$ and $\tilde{\delta}$ be i.v fuzzy subsets of M and S respectively. Then $f(\tilde{\eta})$, the image of $\tilde{\eta}$ under f is an i.v fuzzy subset of S defined by

$$f(\tilde{\eta})(y) = \begin{cases} \sup_{x \in f^{-1}(y)}^{i} \tilde{\eta}(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise} \end{cases}$$

and the pre-image of $\tilde{\eta}$ under f is an i.v fuzzy subset of M defined by $f^{-1}(\tilde{\delta}(x)) = \tilde{\delta}(f(x))$, for all $x \in M$ and $f^{-1}(y) = \{x \in M | f(x) = y\}$.

DEFINITION 4.2. ([5]) Let M and S be Γ -near-rings. A map $\theta : M \to S$ is called a (Γ -near-ring)homomorphism if $\theta(x + y) = \theta(x) + \theta(y)$ and $\theta(x\alpha y) = \theta(x)\alpha\theta(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

THEOREM 4.1. Let $f: M_1 \to M_2$ be a homomorphism between Γ -near-rings M_1 and M_2 . If $\tilde{\delta}$ is an i.v fuzzy ideal of M_2 , then $f^{-1}(\tilde{\delta})$ is an i.v fuzzy left (right) ideal of M_1 .

PROOF. Let $\tilde{\delta}$ is an i.v fuzzy ideal of M_2 . Let $p, q, r \in M_1$ and $\alpha, \beta \in \Gamma$. Then

$$\begin{split} f^{-1}(\delta)(p-q) &= \delta(f(p-q)) \\ &= \tilde{\delta}(f(p) - f(q)) \\ &\geq \min^i \{\tilde{\delta}(f(p)), \tilde{\delta}(f(q))\} \\ &= \min^i \{\tilde{\delta}(f(p)), \tilde{\delta}(f(q))\} \\ &= \min^i \{f^{-1}(\tilde{\delta})(p\alpha q) = \tilde{\delta}(f(p\alpha q)) \\ &= \tilde{\delta}(f(p), f(q)) \\ &\geq \min^i \{\tilde{\delta}(f(p)), \tilde{\delta}(f(q))\} \\ &= \min^i \{f^{-1}(\tilde{\delta}(p)), f^{-1}(\tilde{\delta}(q))\}. \\ f^{-1}(\tilde{\delta})(q+p-q) &= \tilde{\delta}(f(q+p-q)) \\ &= \tilde{\delta}(f(q) + f(p) - f(q)) \\ &= \tilde{\delta}(f(p)) \\ &= f^{-1}(\tilde{\delta}(p)). \\ f^{-1}(\tilde{\delta})(p\alpha q) &= \tilde{\delta}(f(p\alpha q)) \\ &= \tilde{\delta}(f(p)\alpha f(q)) \\ &\geq \tilde{\delta}(f(q)) \\ &= f^{-1}(\tilde{\delta}(q)) \\ ^{1}(\tilde{\delta})((p+r)\alpha q - p\beta q) &= \tilde{\delta}(f((p+r)\alpha q - p\beta q)) \\ &= \tilde{\delta}(f(r)) \\ &= f^{-1}(\tilde{\delta}(r)) \end{split}$$

Therefore $f^{-1}(\tilde{\delta})$ is an i.v fuzzy left(right) ideal of M_1 .

 f^{-}

THEOREM 4.2. Let $f: M_1 \to M_2$ be an onto homomorphism of Γ - near-rings M_1 and M_2 . Let $\tilde{\delta}$ be an i.v fuzzy subset of M_2 . If $f^{-1}(\tilde{\delta})$ is an i.v fuzzy left (right)ideal of M_1 , then $\tilde{\delta}$ is an i.v fuzzy left(right) ideal of M_2 .

311

PROOF. Let $p,q,r \in M_2$. Then f(a) = p, f(b) = q and f(c) = r for some $a,b,c \in M_1$ and $\alpha,\beta \in \Gamma$. It follows that

$$\begin{split} \tilde{\delta}(p-q) &= \tilde{\delta}(f(a) - f(b)) \\ &= \tilde{\delta}(f(a-b)) \\ &= f^{-1}(\tilde{\delta})(a-b) \\ &\geq \min^i \{f^{-1}(\tilde{\delta})(a), f^{-1}(\tilde{\delta})(b)\} \\ &= \min^i \{\tilde{\delta}(f(a)), \tilde{\delta}(f(b))\} \\ &= \min^i \{\tilde{\delta}(p, \tilde{\delta}(q)\}. \\ \tilde{\delta}(p\alpha q) &= \tilde{\delta}(f(a)\alpha f(b)) \\ &= \tilde{\delta}(f(a\alpha b)) \\ &= f^{-1}(\tilde{\delta})(a\alpha b) \\ &\geq \min^i \{f^{-1}(\tilde{\delta})(a), f^{-1}(\tilde{\delta})(b)\} \\ &= \min^i \{\tilde{\delta}(f(a)), \tilde{\delta}(f(b))\} \\ &= \min^i \{\tilde{\delta}(f(a)), \tilde{\delta}(f(b))\} \\ &= \min^i \{\tilde{\delta}(f(b) + f(a) - f(b)) \\ &= \tilde{\delta}(f(b + a - b)) \\ &= f^{-1}(\tilde{\delta})(b + a - b) \\ &= f^{-1}\tilde{\delta}(a) \\ &= \tilde{\delta}(f(a)) \\ &= \tilde{\delta}(f(ab)) \\ &= f^{-1}(\tilde{\delta})(a\alpha b) \\ &\geq f^{-1}(\tilde{\delta})(b) \\ &= \tilde{\delta}(f(b)) \\ &= \tilde{\delta}(f(b)) \\ &= \tilde{\delta}(f(b)) \\ &= \tilde{\delta}(f(a) + f(c))\alpha f(b) - f(a)\beta f(b)) \\ &= f^{-1}(\tilde{\delta})(a + c)\alpha b - a\beta b) \\ &\geq f^{-1}(\tilde{\delta})(c) \\ &= \tilde{\delta}(f(c)) = \tilde{\delta}(f(c)). \end{split}$$

Hence $\tilde{\delta}$ is an i.v fuzzy left(right)ideal of M_1

THEOREM 4.3. Let $f: M_1 \to M_2$ be an onto Γ -near-ring homomorphism. If $\tilde{\eta}$ is an i.v fuzzy left (right)ideal of M_1 , then $f(\tilde{\eta})$ is an i.v fuzzy left (right)ideal of M_2 .

PROOF. Let $\tilde{\eta}$ be an i.v fuzzy ideal of M_1 . Since $f(\tilde{\eta})(p') = \sup_{f(p)=p'}^i(\tilde{\eta}(p))$, for $p' \in M_2$ and hence $f(\tilde{\eta})$ is nonempty. Let $p', q' \in M_2$ and $\alpha, \beta \in \Gamma$. Then we have $\{p|p \in f^{-1}(p'-q')\} \supseteq \{p-q|x \in f^{-1}(p') \text{ and } q \in f^{-1}(q')\}$ and $\{p|p \in f^{-1}(p'q')\} \supseteq \{p\alpha q | p \in f^{-1}(p') \text{ and } q \in f^{-1}(q')\}$. $f(\tilde{\eta})(p'-q') = \sup_{f(r)=p'-q'}^i \{\tilde{\eta}(r)\}$ $\geq \sup_{f(p)=p', f(q)=q'}^i \{\tilde{\eta}(p-q)\}$

$$\geq \sup_{f(p)=p',f(q)=q'}^{i} \{\tilde{\eta}(p-q)\}$$

$$\geq \sup_{f(p)=p',f(q)=q'}^{i} \{\min^{i}\{\tilde{\eta}(p),\tilde{\eta}(q)\}\}$$

$$= \min^{i}\{\sup_{f(p)=p'}^{i}\{\tilde{\eta}(p)\}, \sup_{f(q)=q'}^{i}\{\tilde{\eta}(q)\}\}$$

$$= \min^{i}\{f(\tilde{\eta})(p'), f(\tilde{\eta})(q')\}.$$

$$f(\tilde{\eta})(p'\alpha q') = \sup_{f(r)=p'\alpha q'}^{i}\{\tilde{\eta}(r)\}$$

$$\geq \sup_{f(p)=p',f(q)=q'}^{i}\{\tilde{\eta}(p\alpha q)\}$$

$$\geq \sup_{f(p)=p',f(q)=q'}^{i}\{\min^{i}\{\tilde{\eta}(p),\tilde{\eta}(q)\}\}$$

$$= \min^{i}\{\sup_{f(p)=p'}^{i}\{\tilde{\eta}(p)\}, \{\sup_{f(q)=q'}^{i}\{\tilde{\eta}(q)\}\}$$

$$= \min^{i}\{f(\tilde{\eta})(p'), f(\tilde{\eta})(q')\}.$$

$$f(\tilde{\eta})(q'+p'-q') = \sup_{f(r)=q'+p'-q'}^{i}\{\tilde{\eta}(r)\}$$

$$\geqslant \sup_{f(p)=p', f(q)=q'}^{i} \{\tilde{\eta}(q+p-q)\}$$

$$= \sup_{f(p)=p'}^{i} \{\tilde{\eta}(p)\}.$$

$$f(\tilde{\eta})(p'\alpha q') = \sup_{f(r)=p'\alpha q'}^{i} \{\tilde{\eta}(r)\}$$

$$\geqslant \sup_{f(p)=p', f(q)=q'}^{i} \{\tilde{\eta}(p\alpha q)\}$$

$$\geqslant \sup_{f(q)=q'}^{i} \{\tilde{\eta}(q)\}$$

$$= f(\tilde{\eta})(q').$$

$$f(\tilde{\eta})((p'+r')\alpha q'-p'\beta q') = \sup_{f(r)=(p'+r')\alpha q'-p'\beta q'}^{i} \{\tilde{\eta}(r)\}$$

$$\geqslant \sup_{f(p)=p', f(q)=q', f(r)=r'}^{i} \{\tilde{\eta}((p+r)\alpha q-p\beta q))\}$$

$$\geqslant \sup_{f(r)=r'}^{i} \{\tilde{\eta}(r)\}$$

$$= f(\tilde{\eta})(r').$$

Therefore $f(\tilde{\eta})$ is an i.v fuzzy left (right)ideal of M_2 .

5. Anti-homomorphism of interval valued fuzzy ideals of Γ -near-rings

In this section, we characterize i.v fuzzy ideals of $\Gamma\text{-near-rings}$ using anti-homomorphism.

DEFINITION 5.1. ([7]) Let M and S be Γ -near-rings. A map $\theta : M \to S$ is called a (Γ -near-ring) anti-homomorphism if $\theta(x+y) = \theta(y) + \theta(x)$ and $\theta(x\alpha y) = \theta(y)\alpha\theta(x)$ for all $x, y \in M$ and $\alpha \in \Gamma$.

THEOREM 5.1. Let $f: M_1 \to M_2$ be an anti-homomorphism between Γ -nearrings M_1 and M_2 . If $\tilde{\delta}$ is an i.v fuzzy ideal of M_2 , then $f^{-1}(\tilde{\delta})$ is an i.v fuzzy left (right)ideal of M_1 .

THEOREM 5.2. Let $f: M_1 \to M_2$ be an onto anti-homomorphism of Γ - nearrings M_1 and M_2 . Let $\tilde{\delta}$ be an i.v fuzzy subset of M_2 . If $f^{-1}(\tilde{\delta})$ is an i.v fuzzy left (right)ideal of M_1 , then $\tilde{\delta}$ is an i.v fuzzy left(right) ideal of M_2 .

THEOREM 5.3. Let $f: M_1 \to M_2$ be an onto Γ -near-ring anti-homomorphism. If $\tilde{\eta}$ is an i.v fuzzy left (right)ideal of M_1 , then $f(\tilde{\eta})$ is an i.v fuzzy left (right)ideal of M_2 .

Acknowledgement. The second author was supported in part by UGC-BSR Grant #F.25-1/2014-15(BSR)/7-254/2009(BSR) dated 20-01-2015 in India.

References

- [1] G. L. Booth. A note on Γ-near-rings. Stud. Sci. Math. Hung., 23(1988), 471-475.
- [2] Chandrasekhara Rao and V. Swaminathan. Anti-homomorphism in fuzzy ideals. World Academy of Science, Engineering and Technology, International Journal of Mathematical and Computational Sciences. 4(8)(2010), 1211-1214.
- [3] V. Chinnadurai, K. Arulmozhi and S. Kadalarasi. Characterization of fuzzy weak bi-ideals of Γ-near-rings. International Journal of Algebra and Statistics, 6(1-2)(2017), 95-104.
- [4] V. Chinnadurai and S.Kadalarasi. Interval valued fuzzy quasi-ideals of near-rings. Annals of Fuzzy Mathematics and Informatics, 11(4)(2016), 621-631.
- [5] Y. B. Jun, M. Sapanic and M. A. Ozturk. Fuzzy ideals in gamma near-rings. Turk. J. Math., 22(4)(1998), 449-549.
- [6] S. D. Kim and H. S. Kim. On fuzzy ideals of near-rings. Bulletin Korean Mathamatical Society. 33(4)(1996), 593-601.
- [7] M. M. K. Rao and B. Venkateswarlu. Anti-fuzzy k-ideals and anti-homomorphism of Γsemirings. J. Int. Math. Virtual Inst., .5(2015), 37-54.
- [8] G. Pilz. *Near-rings, The theory and its applications*, North-Holland publishing company, Ameserdam 1983.
- Bh. Satyanarayana. Contributions to near-rings theory. Doctoral Thesis, Nagarjuna University, 1984.
- [10] N. Thillaigovindan and V. Chinnadurai. Interval valued fuzzy quasi-ideals of semigroups. East Asian Mathematics Journal. 25(4)(2009), 449-467.
- [11] N. Thillaigovindan, V. Chinnadurai and S.Kadalarasi. Interval valued fuzzy ideals of nerarings. The Journal of Fuzzy Mathematics, 23(2)(2015), 471-484.
- [12] L. A. Zadeh. Fuzzy sets. Inform and Control., 8(1965), 338-353.
- [13] L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning. Inform., Sci., 8(1975), 199-249.

Receibed by editors 15.07.2017; Revised version 30.11.2017; Available online 11.12.2017.

DEPARTMENT OF MATHEMATICS, ANNAMALAI UNIVERSITY, ANNAMALAINAGAR, INDIA E-mail address: kv.chinnadurai@yahoo.com

Department of Mathematics, Annamalai University, Annamalainagar, India $E\text{-}mail \ address: arulmozhiems@gmail.com}$