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Abstract. The purpose of this article is to introduce the notion of cone val-

ued measure of noncompactness. Our theoretical approach generalizes recent
results for cone measure of noncompactness. For the proofs of our results we
use the famous Schauder-Tichonov Theorem as well as Robert Cauty theorem

in the new framework.

1. Introduction

In dealing with the existence problems for functional operator equations, the
concept of measure of noncompactness is very important tool in nonlinear analysis.
This significant concept in mathematical science was defined by many authors in
different manners (see [2, 4, 5, 8, 9, 17, 19]). For the applications of the measure
noncompactness, we refer to [1, 2, 3, 4, 5, 8, 9, 10, 11, 14, 17, 19] and the
references therein.

In [14] authors introduced the concept of cone measure of noncompactness
and established some generalizations of very significant and well-known Darbo’s
fixed point theorem with respect to such defined measure. Their results generalize
several fixed point theorems obtained recently by many authors. Furthermore,
they presented a very nice application in functional integral equations. For the
cone measure of noncompactness authors in [14] used ordered Banach space. For
more details see [14].
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In this paper we complement, generalize, improve and enrich the approaches
and results obtained in [14]. Namely, we take an ordered locally convex (resp. topo-
logical vector) space instead of ordered Banach space, and use Schauder-Tychonoff
(resp. Robert Cauty) fixed point theorem instead of Schauder fixed point theorem.

First, we recall some basic notions in topological vector space. For details, the
reader may refer to [3, 6, 7, 13, 15, 18, 22, 23, 24] and the references therein.

Definition 1.1. ([12]) A subset K of a topological vector space E is said to
be a cone if it satisfies the following conditions:

(1) K is nonempty and closed;
(2) λx+ µy ∈ K whenever x, y ∈ K and λ, µ ∈ [0,+∞);
(3) K ∩ (−K) = {θ}, where θ is the zero vector in E.

Given a cone K ⊂ E, one define a partial order ≼ in E by x ≼ y if and only if
y − x ∈ K. Further, the notation x ≺ y means that x ≼ y and x ̸= y, while x≪ y
stands for y − x ∈ intK (the set of interior points of K). Clearly, the pair (E,K)
is an ordered topological vector space. A cone K is called a solid cone if intK ̸= ∅.

For a pair of elements x, y in E such that x ≼ y, let [x, y] = {z ∈ E : x ≼ z ≼ y}.
A subset A of E is said to be ordered convex if [x, y] ⊂ A, for x, y ∈ A and x ≼ y.
(E,K) is ordered convex if it has a base of neighborhoods of θ consisting of ordered
convex subsets. In this case, the cone K is said to be normal (for more details, see
[3, 6, 8, 13, 22]). Otherwise, one says that K is non-normal if K is not a normal
cone (see [14, Example 4]). If E is a normed space, the last condition means that
the unit ball is ordered convex, which is equivalent to the condition that there is a
number M such that x, y ∈ E and θ ≼ x ≼ y imply that ∥x∥ 6 M ∥y∥. The least
constant satisfying the above inequality is called normal constant of K. Obviously,
the normal constant is always greater than or equal to 1. In the case when M = 1,
then the cone is called monotone (see [13]). The cone K is called regular if every
increasing sequence which is bounded from above is convergent. That is, if {xn} is
a sequence such that x1 ≼ x2 ≼ · · · ≼ xn ≼ · · · ≼ y for some y ∈ E, then there is
x ∈ E such that xn → x (n→ ∞). Equivalently, the cone K is regular if and only
if every decreasing sequence which is bounded from below is convergent. It is well
known that a regular cone is a normal cone.

The next lemma contains a result on cone in ordered Banach space which is
rather classical. It is applied to reduce a lot of results to the setting of ordinary
metric spaces.

Lemma 1.1 ([16]). The following conditions are equivalent for a cone K in
Banach space (E, ∥·∥):

(1) K is normal;
(2) for arbitrary sequences {xn} , {yn} , {zn} in E,

for all n, xn ≼ yn ≼ zn and limn→∞ xn = limn→∞ zn = x imply limn→∞ yn = x;

(3) there exists a norm ∥·∥1 on E, which is equivalent to ∥·∥, such that K is
monotone w.r.t. ∥·∥1.

Example 1.1. ([15]) Let E = C1
R [0, 1] with ∥x∥ = ∥x∥∞+∥x′∥∞ andK = {x ∈

E : x(t) > 0, t ∈ [0, 1]}. This cone is solid but non-normal. In fact, let xn (t) =
tn

n
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and yn (t) =
1
n . Then θ ≼ xn ≼ yn, and limn→∞ yn = θ, but ∥xn∥ = 1

n + 1 > 1.
Hence, {xn} does not converge to θ. So by (2) of Lemma 1.1 it follows that K is a
non-normal cone.

Now consider E = C1
R [0, 1] endowed with the strongest locally convex topology

t∗. Then K is also t∗-solid (because it has the nonempty t∗-interior), but not
t∗-normal. Indeed, if it is normal then, the space (E, t∗) will be normed, which
is impossible since an infinite-dimensional space with the strongest locally convex
topology cannot be metrizable (see, e.g., [20]).

Note that the following properties of bounded sets in ordered topological vector
space E. If K is a solid cone, then each topologically bounded subset of (E,K) is
also ordered bounded, i.e., it is contained in a set of the form [−c, c] for some c ∈
intK. On the other hand, if the coneK is normal, then each ordered bounded subset
of (E,K) is topologically bounded. Hence, if the cone is both solid and normal,
then these two properties of subsets of E coincide with each other. Moreover, the
proof of the following assertion can be found, e.g., in [21].

Theorem 1.1. If the underlying cone of an ordered topological vector space is
solid and normal, then such topological vector space must be an ordered normed
space.

The following results are useful in the sequel of our paper.

Lemma 1.2 ([22]). Let (E,K) be an ordered topological vector space. Then e
is an interior point of K if and only if [−e, e] is the neighborhood of θ in E. In this
case, e is an ordered unit element.

Proof. Let e be an interior point of K. Then there exists a circled neigh-
borhood V of θ such that e + V ⊆ K, which follows that V ⊆ (K − e) ∩ (e−K)
because V is circled. It is clear that

[−e, e] = (K − e) ∩ (e−K) .

Consequently, [−e, e] is a neighborhood of θ. Conversely, assume that [−e, e] is a
neighborhood of θ. We conclude from e+ [−e, e] ⊆ K that e is an interior point of
K. Finally, e is an ordered unit element because [−e, e] is absorbing. �

Lemma 1.3. Let (E,K) be an ordered topological vector space. If the cone K
is solid, then it is Hausdorff.

Proof. If e ∈ intK, then (E, ∥·∥e) is a normed space where ∥·∥e is the
Minkowski functional of neighborhood of θ. It is clear that the normed topology is
weaker than the topology of E. Thus the claim holds. �

Definition 1.2 ([15, 24]). Let K be a solid cone in a topological vector space
E and {un} be a sequence in K. Then {un} is said to be a c-sequence if for each
c≫ θ there exists n0 ∈ N such that un ≪ c for all n > n0.

Proposition 1.1. Let K be a solid cone in a topological vector space E and
{un} be a sequence in K. Then the following conditions are equivalent:

(1) {un} is a c-sequence;
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(2) For each c≫ θ, there exists n0 ∈ N such that un ≼ c for all n > n0;
(3) For each c≫ θ, there exists n0 ∈ N such that un ≺ c for all n > n0;
(4) There exists c ≫ θ such that for every λ ∈ (0, 1), there exists n0 ∈ N such

that un ≼ λc for all n > n0;
(5) There exists a sequence {vn} such that vn ≫ θ, for any n ∈ N, vn → θ as

n→ ∞, then there exists n0 ∈ N such that um ≼ vn for each m > n0.

For more details on c-sequences, see [24].
The following result is a genuine generalization of [14, Lemma 8].

Lemma 1.4. Let K be a solid cone in a topological vector space E. Let {un}
be a sequence in K. Then

un
E→ θ as n→ ∞ implies that un is a c-sequence.

Proof. Let c ≫ θ be given. Since un
E→ θ as n → ∞, then by Lemma 1.2,

there exists n0 ∈ N such that un ∈ [−c, c] for all n > n0. This means that un ≼ c
for all n > n0. Further, the conclusion holds because of (2) of Proposition 1.1. �

In the sequel, let E be a topological vector space, and denote L (E), L∗ (E) as
the set of linear and continuous operators on E, the set of bounded linear functionals
on E, respectively. Let K be a solid cone of E.

Let (E,K) be an ordered topological vector space with zero vector θ. For the
subsets X and Y of E, we introduce the following notations:

(i) X denotes the closure of X;
(ii) conv (X) denotes the convex hull of X;
(iii) P (X) denotes the set of nonempty subsets of X;
(iv) X + Y and λX (λ ∈ R) stand for algebraic operations on X and Y ;
(v) BE denotes the family of all nonempty bounded subsets of E.

We introduce the concept of cone valued measure of noncompactness as follows.

Definition 1.3. Let µ : BE → K be a mapping. One says that µ is a cone
valued measure of noncompactness on E if the following conditions are satisfied:

(1) for every X ∈ BE , µ (X) = θ implies that X is precompact;
(2) for every pair (X,Y ) ∈ BE × BE , one has

X ⊆ Y implies µ (X) ≼ µ (Y ) ;

(3) for every X ∈ BE , one has

µ
(
X
)
= µ (X) = µ (conv (X)) ;

(4) if {Xn}∞0 ∈ BE is a decreasing sequence (w.r.t. ⊆) of closed sets such that

{µ (Xn)}∞0 is a c-sequence, then X∞ =
∞∩

n=0
Xn is nonempty.

Remark 1.1. Clearly, each cone measure of noncompactness (see [14]) is cone
valued measure of noncompactness, while conversely it does not holds. Indeed,
put E = C1

R [0, 1] endowed with the strongest locally convex topology t∗. Then
K = {x ∈ E : x(t) > 0 for all t ∈ [0, 1]} is t∗-solid, but not t∗-normal. Then each
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µ : BE → K satisfying (1)-(4) is cone valued measure of noncompactness which is
not cone measure of noncompactness. Hence, our notion is a genuine generalization
of [14].

If A : E → E, where A is a continuous linear operator and AP ⊆ P , then by (4)
of Proposition 1.1, it follows that {A (xn)} is a c-sequence if {xn} is a c-sequence.

The following results are well-known and crucial in the theory of fixed point
for nonlinear operators (see [6]).

Theorem 1.2 (Brouwer). Let K be a nonempty compact convex subset of a
finite dimensional normed space, and let T be a continuous mapping of K into
itself. Then T has a fixed point in K.

Darbo’s fixed point theorem is a very important generalization of Schauder’s
fixed point theorem, and includes the existence part of Banach’s fixed point theo-
rems.

Theorem 1.3 (Schauder). Let K be a nonempty closed convex subset of a
normed space. Let T be a continuous mapping of K into a compact subset of K.
Then T has a fixed point in K.

Theorem 1.4 (Darbo). Let K be a nonempty, bounded, closed, and convex
subset of a Banach space E and let T be a continuous mapping of K into itself.
Assume that there exists a constant λ ∈ [0, 1) such that µ(TX) 6 λµ(X) for any
X ∈ K. Then T has a fixed point.

Theorem 1.5 (Schauder-Tychonoff). Let K be a nonempty compact convex
subset of a locally convex Hausdorf space E, and let T be a continuous mapping of
K into itself. Then T has a fixed point in K.

Theorem 1.6 (Singbal). Let E be a locally convex Hausdorff space, K a
nonempty closed convex subset of E, and T a continuous mapping of K into a
compact subset of K. Then T has a fixed point in K.

Theorem 1.7 (Robert Cauty). Let K be a nonempty compact convex subset
of a topological vector Hausdorff space E, and let T be a continuous mapping of K
into itself. Then T has a fixed point in K.

2. Main results

Our first result regarding cone valued measure of noncompactness is the fol-
lowing:

Theorem 2.1. Let C be a nonempty, bounded, closed, and convex subset of an
ordered topological vector space E with solid cone K. Let T : C → C be a mapping
satisfying the following conditions:

(i) T is continuous;
(ii) There exist A ∈ L∗ (E) and a cone valued measure of noncompactness

µ : B(E,t) → K such that for all X ∈ B(E,t),

(2.1) µ (TX) ≼ A (µ (X)) .
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Then T has at least one fixed point. Moreover, the set of fixed points of T is
precompact.

Proof. Taking X0 = C, Xn+1 = conv (TXn), for n = 0, 1, 2, ..., we get that
Xn+1 ⊆ Xn for n = 0, 1, 2, .... Hence, {Xn}∞0 is a decreasing sequence of closed
and convex sets. Furthermore, by (2.1) it is clear that

(2.2) µ (Xn+1) = µ
(
conv (TXn)

)
= µ (TXn) ≼ A (µ (Xn)) ,

for n = 0, 1, 2, ...
It follows immediately from (2.2) that

(2.3) θ ≼ µ (Xn) ≼ An (µ (X0)) , for n = 0, 1, 2, ...

Since {An (µ (X0))} is a c-sequence, then (2.3) establishes that {µ (Xn)} is also a
c-sequence.

On the other hand, by virtue of (4) of Definition 1.3, we infer that X∞ =
∩∞
n=1Xn is nonempty, closed and convex. Also,

(2.4) θ ≼ µ (X∞) ≼ µ (Xn) , for n = 0, 1, 2, ...

Now, (2.4) implies θ ≼ µ (X∞) ≪ c for all c ≫ θ, that is., µ (X∞) = θ. Thus, via
(1) of Definition 1.3, X∞ is precompact. Now that X∞ is closed, so X∞ is compact.
Further, TX∞ ⊆ X∞. Then the continuity of the mapping T : X∞ → X∞ and
Theorem 1.6 give us that T has at least one fixed point in X∞. Finally, since the set
of fixed points of T is a nonempty subset of X∞ and µ (X∞) = θ, then by (1) and
(2) of Definition 1.3, we deduce that the set of fixed points of T is precompact. �

Remark 2.1. If Theorem 1.6 may not be true, then we can suppose in all
results that E is a locally convex space. In this case we use Shauders-Tihonov
theorem.

Next we denote Φ as the set of all functions ϕ : K\ {θ} → (0,∞) satisfying the
following condition for every sequence {un} in K\ {θ},

lim
n→∞

ϕ (un) = 0 implies {un} is a c-sequence.

Now we have the following results in this new framework:

Theorem 2.2. Let C be a nonempty, bounded, closed, and convex subset of an
ordered topological vector space E with solid cone K. Let T : C → C be a mapping
satisfying the following conditions:

(i) T is continuous;
(ii) There exist ϕ ∈ Φ, k ∈ (0, 1), and a cone valued measure of noncompactness

µ : BE → K such that

X ∈ P (C) , µ (X) , µ (TX) ̸= θ imply ϕ (µ (TX)) 6 [ϕ (µ (X))]
k
.

Then T has at least one fixed point.
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Proof. Taking X0 = C,Xn+1 = conv (TXn), for n = 0, 1, 2, .... we get that
Xn+1 ⊆ Xn for n = 0, 1, 2, .... Hence, {Xn}∞0 is a decreasing sequence of closed and

convex sets. Obviously, µ(Xn) ̸= θ and µ (TXn) = µ
(
conv (TXn)

)
= µ (Xn+1) ̸=

θ. Accordingly, by (ii), it establishes that

ϕ (µ (Xn+1)) = ϕ (µ (TXn)) 6 [ϕ (µ (Xn))]
k 6 ϕ (µ (Xn)) .

As a result, the sequence {ϕ (µ (Xn))} is decreasing and thus limn→∞ ϕ (µ (Xn)) =
0. This means that {µ (Xn)} is a c-sequence. The remaining proof is the same as
in Theorem 2.1. Consequently, T has at least one fixed point. �

Let Ψ be the set of all functions ψ : K → K satisfying the following conditions:
(1) ψ is a nondecreasing function w.r.t. the partial order ≼, that is,

(u, v) ∈ K ×K and u ≼ v imply ψ (u) ≼ ψ (v) ;

(2) for all u ∈ K\ {θ} , the sequence {ψn (u)} ⊂ K is a c-sequence.

Next we announce the following result:

Theorem 2.3. Let C be a nonempty, bounded, closed, and convex subset of an
ordered topological vector space E with solid cone K. Let T : C → C be a mapping
satisfying the following conditions:

(i) T is continuous;
(ii) there exist ψ ∈ Ψ and a cone valued measure of noncompactness µ : BE →

K such that

µ (TX) ≼ ψ (µ (X)) , for all X ∈ P (C) .

Then T has at least one fixed point.

Proof. Taking X0 = C,Xn+1 = conv (TXn), for n = 0, 1, 2, ..., we get that
Xn+1 ⊆ Xn for n = 0, 1, 2, .... Hence, {Xn}∞0 is a decreasing sequence of closed
and convex sets. Accordingly, by (ii), it establishes that

µ(Xn+1) = µ(TXn) ≼ ψ(µ(Xn)) ≼ ψ2(µ(Xn−1)) ≼ · · · ≼ ψn(µ(X1)).

Thus, by the definition of ψ, we have {µ(Xn)} is a c-sequence. The remaining proof
is the same as in Theorem 2.1. Consequently, T has at least one fixed point. �

Theorem 2.4. Let C be a nonempty, bounded, closed, and convex subset of an
ordered topological vector space E with solid cone K and µ : BE → K be a cone
valued measure of noncompactness on E. Let T : C → C be a mapping satisfying
the following conditions:

(i) T is continuous;
(ii) for any (u, v) ∈ K ×K with θ ≼ u ≼ v, there exists 0 < k (u, v) < 1 such

that

X ∈ P (C) , and u ≼ µ (X) ≼ v imply µ (TX) ≼ k (u, v)µ (X) ;

(iii) K is a regular cone.
Then T has at least one fixed point.
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Proof. Taking X0 = C,Xn+1 = conv (TXn), for n = 0, 1, 2, .... we get that
Xn+1 ⊆ Xn for n = 0, 1, 2, .... Hence, {Xn}∞0 is a decreasing sequence of closed
and convex sets. Accordingly, by (ii), it establishes that

µ(Xn+1) = µ(TXn) ≼ k(u, v)µ(Xn) ≼ µ(Xn).

Thus, {µ(Xn)} is a decreasing sequence which is bounded below because of θ ≼
µ(Xn). Then by the regularity of the cone K, {µ(Xn)} converges to θ. This implies
that {µ(Xn)} is a c-sequence. The remaining proof is the same as in Theorem 2.1.
Consequently, T has at least one fixed point. �

The following result is an Sadowskii fixed point theorem with respect to cone
valued measure of noncompactness.

Theorem 2.5. Let C be a nonempty, bounded, closed, and convex subset of an
ordered topological vector space E with solid cone K and µ : BE → K be a cone
valued measure of noncompactness on E satisfying the following conditions:

(i) there exists x0 ∈ C such that

µ (X ∪ {x0}) = µ (X) , X ∈ BE ;

(ii) T : C → C is continuous; (iii) for every X ∈ P (C), it holds

µ (X) ̸= θ implies µ (TX) ≺ µ (X) .

Then T has at least one fixed point.

Proof. Let us denote M as the set of subsets M ⊆ C satisfying the following
conditions: x0 ∈ M , M is closed and convex, and TM ⊆ M . Obviously, M is a
nonempty set in view of C ∈ M. SetX = ∩M∈MM , thenX is a nonempty (because
x0 ∈ X), closed, and convex set. Clearly, TX ⊆ X. Set Y = conv (TX ∪ {x0}). We
claim that X = Y . In fact, we have x0 ∈ X and TX ⊆ X, which yields Y ⊆ X.
On the other hand, the inclusion Y ⊆ X implies that TY ⊆ TX ⊆ Y . Note that
x0 ∈ Y , then Y ∈ M and X ⊆ Y . This proves our claim. Thus, from (1) and (2)
of Definition 1.3, we speculate

µ (X) = µ (TX ∪ {x0}) = µ (TX) .

If µ (X) ̸= θ, then by (iii), it means that

µ (X) = µ (TX) ≺ µ (X) ,

which is a contradiction. As a consequence, µ (X) = θ. Now X is precompact,
further, it is compact since it is closed. Finally, by Theorem 1.6, the mapping
T : X → X has at least one fixed point. �

Theorem 2.6. Let C be a nonempty, bounded, closed, and convex subset of an
ordered topological vector space E with solid cone K and µ : BE → K be a cone
valued measure of noncompactness on E. Let T : C → C be a given mapping.
Suppose that

(i) T is continuous;
(ii) there exists x0 ∈ C such that, for all λ ∈ (0, 1) and X ∈ BE ,

µ (λTX + (1− λ) {x0}) ≼ λµ (TX) ;
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(iii) (I − T )C is closed, where I : C → C is the identity mapping;
(iv) one has

µ (TX) ≼ µ (X) , X ∈ BE .

Then T has at least one fixed point.

Proof. Let {λn} be a sequence in (0, 1) such that λn → 1 as n→ ∞. Consider
the sequence of mappings Tn : C → C defined by

Tnx = λnTx+ (1− λn)x0, for all x ∈ C, n = 0, 1, 2, ...

Note that Tn is well-defined since C is convex set. Using the assumptions, for all
X ∈ BE , and for all n = 0, 1, 2, ..., we obtain that

µ (TnX) = µ (λnTX + (1− λn) {x0}) ≼ λnµ (TX) ≼ λnµ (X) .

Define a sequence of mappings An : E → E by

Anu = λnu, u ∈ E, n = 0, 1, 2, ...,

then An ∈ L∗ (E) (n = 0, 1, 2, ...) and it holds (2.1). So by Theorem 2.1, the
mapping Tn has a fixed point xn ∈ C, that is,

Tnxn = λnTxn + (1− λn)x0 = xn, n = 0, 1, 2, ...,

which yields that

(I − T )xn = Tnxn − Txn = (λn − 1)Txn + (1− λn)x0, n = 0, 1, 2, ...

Since {Txn} is a bounded sequence, we get that {(I − T )xn} is a c-sequence. Since
(I − T )C is closed, we deduce that θ ∈ (I − T )C. As a consequence, there is some
x ∈ C such that (I − T )x = θ, which means that x ∈ C is a fixed point of T . �

Remark 2.2. From [25], we know that the finest locally convex topology t∗ as
well as the finest linear topology t∗∗ are equal if dimE is countable. Yet, if dimE is
uncountable then t∗ < t∗∗. For instance, let E = C [0, 1] with the supremum norm
and let K = {x ∈ E : x (t) > 0, t ∈ [0, 1]}. Then E is ordered Banach space with
solid cone K. It is clear that K is t∗∗-solid, further, t∗ < t∗∗ because Bair theorem,
in other words, E is a set with uncountable dimensions. Hence all previous theorems
can be considered for ordered topological spaces which are not even locally convex.
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