Available online on 15.01.2018 at http://jddtonline.info

Journal of Drug Delivery and Therapeutics

Open Access to Pharmaceutical and Medical Research

© 2011-17, publisher and licensee JDDT, This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited

Open Open

Research Article

PREFORMULATION STUDIES OF DILTIAZEM HYDROCHLORIDE FROM TABLETED MICROSPHERES

Manish Kumar Gupta^{1*}, Surendra Kumar Swarnkar²

¹ Professor and Principal, Jaipur College of Pharmacy, Jaipur, Rajasthan, India

² Assistant Professor, LBS College of Pharmacy, Jaipur, Rajasthan, India

ABSTRACT

Microspheres are solid, spherical particles of protein or polymer-based matrix which comprised of a fairly homogeneous mixture of polymer and active agents. It undergoes considerable presystemic metabolism (45-55%) which results in reduced bioavailability. Diltiazem hydrochloride was scanned in the Methanol, acid buffer, pH 1.2and phosphate buffer, pH 7.2. 10 mg of drug was dissolved in methanol in 100 ml in volumetric flask, and volume was made to 100 ml with same solvent. This stock solution was further diluted to get concentration of 10mcg/ml. This solution was scanned in UV-spectrophotometer and characteristic peak was observed at 239 nm for methanol, 237 nm for acid buffer, pH 1.2 and phosphate buffer, pH 7.2. Standard curve of Diltiazem hydrochloride was plotted in Methanol, acid buffer (pH 1.2) and phosphate buffer (pH 7.2). The critical values for regression coefficient in each plot were less than 0.001 (i.e., P < 0.001). That indicates that there was a high linear correlationbetween concentration of drug with absorbance.

Keywords: Diltiazem hydrochloride, regression coefficient, bioavailability, Microspheres.

Article Info: Received 11 Nov, 2017; Review Completed 08 Jan, 2018; Accepted 09 Jan, 2018; Available online 15 Jan, 2018

Cite this article as:

Gupta MK, Swarnkar SK, Preformulation studies of diltiazem hydrochloride from tableted microspheres, Journal of Drug Delivery and Therapeutics. 2018; 8(1):64-69

DOI: http://dx.doi.org/10.22270/jddt.v8i1.1552

*Address for Correspondence

Gupta MK, Swarnkar SK, Preformulation studies of diltiazem hydrochloride from tableted microspheres

INTRODUCTION

Oral delivery of drugs is by far the most preferable route of drug delivery due to the ease of administration, patient compliance and flexibility in formulation, etc.¹ The frequency of administration or the dosing interval of any drug depends upon its half-life or mean residence time (MRT) and its therapeutic index. In most cases, the dosing interval is much shorter than the half-life of the drug resulting in a number of limitations. These limitations can overcome by formulating into Modified-Release dosage forms. Modified-release products provide either delayed-release or extended-release of the drug.²

There are three types of controlled drug delivery systems available: ³

- *Passive preprogrammed*, in which the release rate is predetermined and is irresponsive to the external biological environment.
- Active preprogrammed, whose release rate can be altered by a source external to the body (include most metered insulin pumps).
- Active, self programmed, modulate release rate of the drug in response to information, registered by a sensor, on the changing biological environment, such as blood sugar level in diabetes.

Biological factors influencing design and performance of sustained / controlled release products³

- Absorption
- Distribution

Gupta et al

- Metabolism
- Duration of Action
- Side effects
- Margin of safety
- Role of disease state
- Role of circadian rhythm

Microspheres

Microspheres are solid, spherical particles of protein or polymer based matrix which comprised of a fairly homogeneous mixture of polymer and active agents. Microspheres usually have diffusion controlled release profiles with a permanent release rate that is controlled kinetically by the particle size, whereas microcapsules usually have diffusion or dissolution controlled release profiles or both. Microcapsules expel their content by a single high burst as the shell breaks or slow releases.^{4, 5, 6}

Journal of Drug Delivery & Therapeutics. 2018; 8(1):64-69

MATERIALS AND METHODS

Drug profile: Diltiazem Hydrochloride

Diltiazem hydrochloride is a calcium channel blocker (benzothiazepine), widely used for the treatment of angina pectoris, arrhythmias and hypertension.

Table 1: Parameter of Drug profile						
Description	Properties	Given Data				
Chemistry ^{7,} 8	Chemical Structure	H, H O				
		С. —				
	Chemical Name	(+)-cis-2,3,4,5-tetrahydro-5-(2-dimethylaminoethyl)-2- (4- methoxyphenyl)-4-oxobenzo[b]thiazepin-3-yl acetatemonohydrochloride				
	Molecular Formula	$C_{22}H_{26}N_2O_4S$.HCl				
	Molecular Weight	450.98				
	Description	White, crystalline powder or small crystals, Odorless and has a bitter taste				
- n	CAS Registry Number	33286-22-5				
	Melting Point	210° C [207.5° C – 212° C]				
	Optical Rotation	The optical rotation of a 1% (w/v) solution of diltiazemhydrochloride in water at 25° C ($[\alpha_D^{25}]$) is between +100° and +116°				
	Polymorphism	No polymorphs of diltiazem hydrochloride have been reported to date				
	рН	pH of saturated solution in water = 3.0 pH of 1.0% (w/w) solution in water = 4.2				
	рКа	7.7				
	Stability ⁹	In 1N hydrochloric acid at 25°C, 59.5% of the sample was degraded in 24 hrs				
Pharmacoki	Oral absorption	90% (Uniformly absorbed Throughout the GIT				
netics	Presystemic metabolism	45-55%				
	Oral bioavailability	38 ± 11%				
	Plasma half life Range	2-11 h				
	Mean (single dose)	4.5 h (\leftrightarrow RD, Aged) (does not change with multiple dosing)				
	Peak time	4.0 ± 0.4 h				
	Peak concentrations	151±46ng/ml(Following a single 120mg oral dose)				
	Volume of distribution	3.3 ± 1.2 liter.kg ⁻¹ (\leftrightarrow Aged, \downarrow RD)				
	Plasma protein binding	80-90%				
	Clearance	$11.8 \pm 2.2 \iff \text{Aged}, \downarrow \text{RD}$				
	Metabolism	Metabolized in the liver and at least six metabolites have been identified				
	Urinary Excretion	<4%				
	Concentration – effect relationship	The minimum therapeutic plasma concentration appears to be in the range of $50 - 120 \text{ ng/ml}$				
	Therapeutic Uses	Stable/ Unstable angina pectoris, MI, Coronary artery spasm, Hypertension, Arrhythmias, Raynaud's phenomenon, Esophageal motility disorders, Migraine, Primary pulmonary hypertension				
	Therapeutic dose	30 to 60 mg (three to four times a day). Loading dose = $0.25 - 0.35$ mg/kg over 10 min. Maintenance dose = $5 - 15$ mg/h				
	Mechanism of Action: ^{10,}	Diltiazem is an inhibitor of calcium ion influx and causes a dose- dependent, inhibition of the transmembrane influx of calcium ions into				

Table 1: Parameter of Drug profile

		into muscle via the 'L' channel. Diltiazem block calcium channels in			
		cardiac cells at clinically used doses.			
Pharmacod Therapeutic Index – Wide [LD ₅₀ in male ,female mice, male, fem		Therapeutic Index – Wide [LD ₅₀ in male, female mice, male, female rats :			
ynamic		740, 640, 560, 610 mg/kg orally]			
Parameters		Plasma drug concentration response – Good			
Physical Property ^{8,12} Solubility of Diltiazem- HCl in various solventsIn Chloroform, Methanol and Water: Freely solubleIn Dehydrated alcohol: Sparingly soluble		In Chloroform, Methanol and Water: Freely soluble			
		In Dehydrated alcohol: Sparingly soluble			
		In Benzene: Practically insoluble. In Ether: Insoluble			
	Solubility of Diltiazem-	HCl (1.2): 658.83 ± 4.40			
	HCl at Various pH	Phosphate Buffer $(5.0)597.51 \pm 1.54$			
	Buffer ^{:13} (mg/ml) \pm %RSD	Phosphate Buffer $(7.4)593.20 \pm 3.67$			
		Phosphate Buffer (8.0)511.06 \pm 3.94			
Category		Calcium channel blocker, Antianginal, Antihypertensive			

Therapeutically Beneficial Parameters ¹⁰

The area under the plasma concentration curve (AUC) is substantially higher in chronic dosing, than after a single dose. Therefore, following a 90mg single dose, the area was 505 μ g liter⁻¹.h⁻¹, but when the same dose was given every 6 hour for 4 days, the AUC increased to 1216 μ g liter⁻¹.h⁻¹

- Diltiazem hydrochloride is approved for clinical use in the United States.
- It is not available in combination preparations.

Preformulation Studies

Scanning of the drug (Diltiazem hydrochloride)

Diltiazem hydrochloride was scanned in the following solvent and buffers –

- i) Methanol
- ii) Acid Buffer, pH 1.2
- iii) Phosphate Buffer, pH 7.2
- i) Scanning of the drug in solvent methanol

10 mg of drug was dissolved in methanol in 100 ml in volumetric flask, and volume was made to 100 ml with same solvent. This stock solution was further diluted to get concentration of 10 mcg/ml. This solution was scanned in UV-spectrophotometer and characteristic peak was observed at 239 nm.

ii) Scanning of the drug in acid buffer, pH 1.2

10 mg of drug was dissolved in acid buffer pH, 1.2 in a 100 ml volumetric flask, and volume was made to 100 ml with same solvent. This stock solution was further diluted by acid buffer to get concentration of 10 mcg/ml. This final solution was scanned in UVspectrophotometer. The characteristic peak was observed at 237 nm.

iii) Scanning of drug in phosphate buffer, pH 7.2

10 mg of drug was dissolved in phosphate buffer pH, 7.2 in a 100 ml volumetric flask, and volume was made to 100 ml with same solvent. This stock solution was further diluted by phosphate buffer to get concentration of 10mcg/ml. This final solution was scanned in UVspectrophotometer. The characteristic peak was observed at 237 nm.

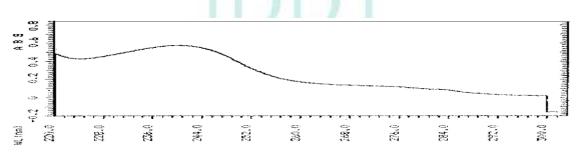
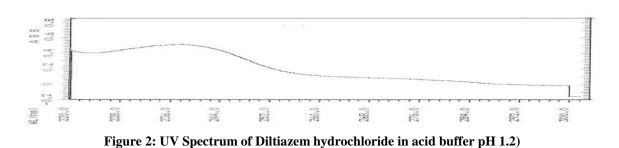



Figure 1: UV Spectrum of Diltiazem hydrochloride in solvent methanol)

S. No.	Amount of Diltiazem Hydrochloride (mg)	Solvent used to make up volume	Final volume (ml)	Concentration of stock solution (mcg/ml)	Concentration of scanning solution (mcg/ml)	Scanning range	Characteristic peak, λ_{max} (nm)
1	10	Methanol		100	10	300	239
2	10	Acid Buffer, pH 1.2		100	10	nm – 3(237
3	10	Phosphate Buffer, pH 7.2	100	100	10	220 n nm	237

Table 2: Summary of the scanning of Diltiazem hydrochloride in solvent methanol and buffers

RESULTS

Infrared Spectroscopy

Magnesium stearate, were recorded in potassium bromide using Shimadzu FTIR -8400 S(CE). The range of scanning was 500 cm⁻¹ -4000 cm⁻¹.

The IR spectrum of pure drug, Eudragit RL100, Eudragit RS100, Eudragit RLPO, Eudragit RSPO,

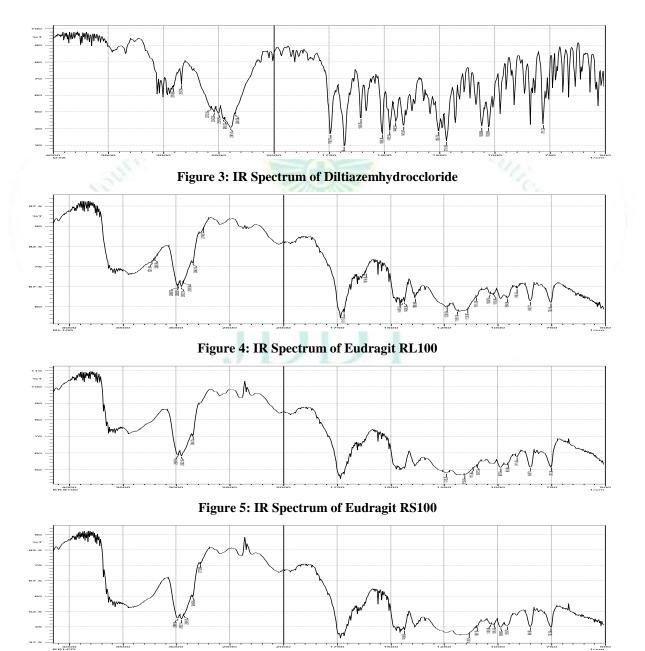
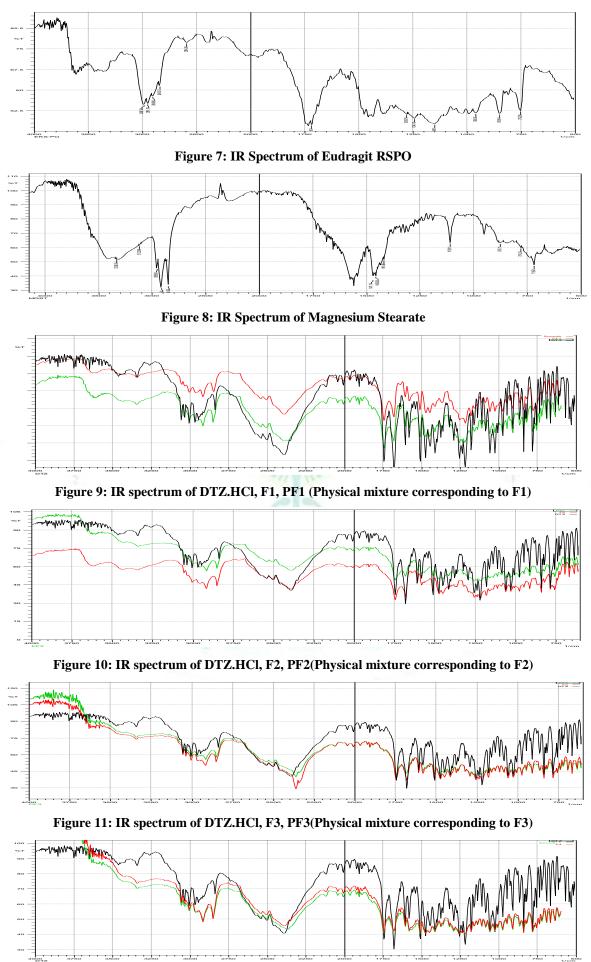



Figure 6: IR Spectrum of Eudragit RLPO

Gupta et al

Microspheres have received considerable attention in pharmaceutical and biomedical application, specifically achieving sustained release and controlled release objectives. Thus, it is an useful method for prolonging drug release from dosage forms, reducing adverse effects and to deliver drugs in a controlled manner. According to Biopharmaceutical Classification System (BCS), Diltiazem hydrochloride is having the characteristics of high solubility, high permeability. Thus it is covered under BCS class – I category. So, Diltiazem hydrochloride is a suitable candidate for sustain release formulation.

Scanning and Standard plots of Diltiazem hydrochloride

Scanning of Diltiazem hydrochloride was performed into Methanol, acid buffer (pH 1.2) and phosphate buffer (pH 7.2). The characteristic peak, λ_{max} was found to be at 237, 237 and 239 nm respectively.

Standard curve of Diltiazem hydrochloride was plotted in Methanol, acid buffer (pH 1.2) and phosphate buffer (pH 7.2). The critical values for regression co-efficient in each plot were less than 0.001 (i.e., P < 0.001). That indicates that there was high linear correlation between concentrations of drug with absorbance.

IR Spectroscopy (FTIR)

This technique is used to determine any chemical interactions between drug and excipients. The Fourier transformed infrared (FTIR) spectra of drug, polymers, formulations and mixtures were obtained using FTIR Spectrophotometer (FTIR – 8400S (CE), SHIMADZU). The intermediate mixtures of drug with each polymer were prepared for each formulation of F_1 , F_2 , F_3 and F_4 as microspheres and subjected to analysis by FTIR. Spectra is shown in Fig and results were tabulated below-

Table 3: Wave- nu	umber of different functional groups present in Diltiazem.HC	21

	Composition	Peak for Diltiazem hydrochloride				
Code		Aromatic	O-CH ₃	Amine HCl	Acetate	Lactam
		C-H	C-H stretch	N-H stretch	C=O stretch	C=O stretch
	60.5	Stretch (cm ⁻¹)	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})
DTZ.HCl	Diltiazem Hydrochloride	3057.27	2837.38	2391.81	1743.71	1681.98
F1	Formulation F1	3055.35	2847.03	2391.81	1743.71	1681.98
PF1	DTZ: ERL 100	3057.27	2839.31	2389.88	1745.64	1681.98
F2	Formulation F2	3055.35	2850.88	2389.88	1743.71	1681.98
PF2	DTZ: ERS100	3057.27	285088	2389.88	1745.64	1681.98
F3	Formulation F3	3057.27	2850.88	2360.95	1745.64	1681.98
PF3	DTZ: ERL PO	3057.27	2839.31	2362.88	1745.64	1685.84
F4	Formulation F4	3057.27	2850.88	2387.95	1745.64	1681.98
Pf4	DTZ: ERS PO	3055.35	2850.88	2366.74	1745.64	1683.91

Diltiazem hydrochloride is having $O-CH_3$, Amine, Acetate, Lactam as functional groups. These are the main sites where the chemical interaction may occur. After observing the spectra and above data, it could be concluded that the peak of these functional groups are intact in the intermediate mixtures and final formulations (Microspheres). As there was no shifting, deleting and broadening of the peak observed in the spectrum, it can be concluded that no chemical interactions had been occurred.

REFERENCES

- 1. Garg S, Sharma S, Gastroretentive drug delivery systems. Drug Deliv. Oral. 2003; 160-166.
- Ansel HC, Allen L.V., Popouich N.G., Pharmaceutical Dosage Forms and Drug Delivery Systems, 7th ed. Lippincott, Philadelphia, 2000; pp. 229-234.
- Li H.K., Robinson J.R., Lee V.H.L., Influence of drug properties and routes of drug administration on the design of sustained and controlled release systems. In: Robinson, J.R., Lee, V.H.L. (Ed.), Controlled Drug Delivery Fundamentals and Applications, 2nd ed. Marcel Dekker, New York, pp. 3-36.
- Kilicarslan M., Baykara T., The effect of drug/polymer ratio on the properties of the Verapamil HCl loaded microspheres. Int. J. Pharm. 2003; 252:99-109.
- 5. Rastogi V, Shukla S, Singh R, Lal N, Yadav P. Microspheres: a promising drug carrier. Journal of Drug Delivery and Therapeutics, 2016; 6(3):18-26. doi:10.22270/jddt.v6i3.1196.
- 6. Kappor D, Patel M, Vyas R, Lad C, Tyagi B. A review on microsponge drug delivery system. Journal of Drug Delivery

and Therapeutics, 2014; 4(5):29-35. doi:10.22270/jddt.v4i5.978.

- 7. Indian Pharmacopoeia, 1996. Vol. I, Controller of Publications, Government of India, New Delhi, pp. 256-257.
- Mazzo D.J., Obetz C.L., Shuster J., Diltiazem hydrochloride. In: Brittain, H.G. (Ed.), Analytical Profiles of Drug Substances and Excipients. Vol. 23, Academic Press, New York, 1994; pp. 53-98.
- 9. Martindale, The Complete Drug Reference, 33rd ed. Martindale Pharmaceutical Press, London, pp. 857-859.
- Dollery C., Therapeutic Drugs, Vol. I, 2nd ed., Churchill Livingstone, UK, 1999; pp. D139-D143.
- Tripathi K.D., Essentials of Medical Pharmacology, 5th ed. Jaypee Brothers, New Delhi, 2004; pp. 486-498.
- 12. US Pharmacopoeia XXV, 2002. US Pharmacopoeial Convention Inc., Rockville, MD, pp. 581-584
- 13. Sood A., Panchagnula R., Drug release evaluation of diltiazem CR preparations. Int. J. Pharm. 1998; 175, 95-107.