ISSN-2350-0530(O), ISSN-2394-3629(P) IF: 4.321 (CosmosImpactFactor), 2.532 (I2OR)

InfoBase Index IBI Factor 3.86

INTERNATIONAL JOURNAL OF RESEARCH – GRANTHAALAYAH

A knowledge Repository

WATER QUALITY MODELS: A REVIEW

Nair Sumita *1, Bhatia Sukhpreet Kaur ² *1,2 Applied Chemistry, Bhilai Institute of Technology, Durg, India

DOI: https://doi.org/10.5281/zenodo.266433

Abstract

Maintaining water quality and predicting the fate of water pollutants are one of the important tasks of present environmental problems. The best tool for predicting different pollution scenarios are the simulation of mathematical models which can provide a basis and technical support for environmental management.

Keywords: Water Quality Model; Environmental Management; Water Pollutants.

Cite This Article: Nair Sumita, and Bhatia Sukhpreet Kaur. (2017). "WATER QUALITY MODELS: A REVIEW." International Journal of Research - Granthaalayah, 5(1), 395-398. https://doi.org/10.5281/zenodo.266433.

1. Introduction

Now-a-days a rapid growth of industrialization, urbanization and agricultural practices results in the pollution of water bodies with high rate. These practices not only pollute the reservoirs with high pollutant concentration but also increase number of pollutants. The discharging of degradable wastewater in water bodies result in decrease in water quality generally and particularly DO (Dissolved Oxygen) concentrations [1]. This has caused a serious concern over the deterioration of river water quality. As a result of which the need of satisfying water quality is growing. For establishing strategies for management of future river water quality, analysis of past trend and study of present status of river water quality is imperative. To understand the present pollutant load, pollutant transfer and future cause – effect relation between pollutant source and water quality, Mathematical Modelling is considered as one of the best tools for estimation. With the help of these models the response of the aquatic environment to different scenarios can also be predicted. Mathematical modelling can also be beneficial for all those sites which are inaccessible due to special environmental issues. Therefore, water quality models become an important tool to identify water environmental pollution and the final fate and behaviours of pollutants in water environment [2]. With the development of model theory and the fast-updating computer technique [3], more and more water quality models have been developed with various model algorithms [4, 5]. Up to date, tens of types of water quality models including hundreds of model software have been developed for different topography,

water bodies, and pollutants at different space and time scales [5, 6]. Therefore, it is very necessary for most developing countries to better understand the availability and precisions of different water quality models and their methods of calculation and calibration and progress in the model standardization in order to apply effectively these models and form a good model regulation system [7, 8]. The study of different water quality models can result in contributing better environmental management policies and authorising reasonable construction projects. From 1925 to till date many water quality models have been introduced such as as QUAL 2K model [9], WASP 6 model(10], QUASAR model [11, 12], SWAT model [13), and MIKE 21 [14] and MIKE 31 models [15] (Table 1)

Table 1: Main surface water quality models and their versions and characteristics.

Model	Model Version	Characteristics	Reference
Streeter-	S-P model	Streeter and Phelps established the first S-P	16
Phelps	Thomas BOD-	model in 1925. S-P models focus on oxygen	
models	DO	balance and one-order decay of BOD and they	
		are one-dimensional steady-state models.	
QUAL	QUAL I;	The USEPA developed QUAL I in 1970.	7, 17, 18,
models	QUAL II;	QUAL models are suitable for dendritic river	19, 20.
	QUAL2E;	and non-point source pollution, including one-	
	QUAL2E	dimensional steady-state or dynamic models.	
	UNCAS;		
	QUAL 2K.		
WASP	WASP1-7	The USEPA developed WASP model in 1983.	21
models	models.	WASP models are suitable for water quality	
		simulation in rivers, lakes, estuaries, coastal	
		wetlands, and reservoirs, including one-, two-,	
		or three-dimensional models.	
QUASAR	QUASAR	Whitehead established this model in 1997.	7, 10, 11
model	model	QUASAR model is suitable for dissolved	
		oxygen simulation in larger rivers, and it is a	
		one-dimensional dynamic model including	
		PC_QUA SAR, HERMES, and QUESTOR	
MILLE	MILEDIA	modes.	01 14 15
MIKE	MIKE11;	Denmark Hydrology Institute developed these	21, 14, 15.
models	MIKE 21;	MIKE models, which are suitable for water	
	MIKE 31.	quality simulation in rivers, estuaries, and	
		tidal wetlands, including one-, two-, or three	
DACING	DACINIC 1.	dimensional models.	7 22
BASINS models	BASINS 1; BASINS 2;	The USEPA developed these models in 1996. BASINS models are multipurpose	7, 22.
inodeis	BASINS 2; BASINS 3;	BASINS models are multipurpose environmental analysis systems, and they	
	BASINS 4.	integrate point and nonpoint source pollution.	
	DASINS 4.	BASINS models are suitable for water quality	
		analysis at watershed scale.	
EFDC	EFDC model.	Virginia Institute of Marine Science	23, 24.
LIDC	LI DC IIIouel.	virginia institute of ivialine Science	43, 44.

model	developed this model. The USEPA has listed	
	the EFDC model as a tool for water quality	
	management in 1997. EFDC model is suitable	
	for water quality simulation in rivers, lakes,	
	reservoirs, estuaries, and wetlands, including	
	one-, two-, or three-dimensional models.	

2. Conclusion

In the changing environmental scenario the water quality models are playing very important role in predicting the present and future status of water pollution. Many water quality models have been developed since 1925 and some developed countries have provided some regulated models for surface water quality simulation. Hence the standardization of some water quality models are becoming necessary for most developing countries for the study of efficient environmental impact assessment.

References

- [1] Nakhaei, N. and Shahidi, A.E. (2010) Waste Water Discharge Impact Modeling with QUAL2K, Case Study: The Za- yandeh-Rood River. International Environmental Modelling and Software Society (IEMSS), Ottawa. [Citation Time(s):1]
- [2] Q. G. Wang, W. N. Dai, X. H. Zhao, F. Ding, S. B. Li, and Y. Zhao, "Numerical model of thermal discharge from Laibin power plant based on Mike 21," Research of Environmental Sciences, vol. 22, no. 3, pp. 332–336, 2009 (Russian). View at Google Scholar
- [3] M. A. Ashraf, M. J. Maah, and I. Yusoff, "Morphology, geology and water quality assessment of former tinmining catchment," The Scientific World Journal, vol. 2012, Article ID 369206, 15 pages, 2012. View at Publisher · View at Google Scholar
- [4] S.-M. Liou, S.-L. Lo, and C.-Y. Hu, "Application of two-stage fuzzy set theory to river quality evaluation in Taiwan," Water Research, vol. 37, no. 6, pp. 1406–1416, 2003. View at Publisher · View at Google Scholar. View at Scopus
- [5] Q. G. Wang, W. N. Dai, X. H. Zhao, F. Ding, S. B. Li, and Y. Zhao, "Numerical model of thermal discharge from Laibin power plant based on Mike 21," Research of Environmental Sciences, vol. 22, no. 3, pp. 332–336, 2009 (Russian). View at Google Scholar
- [6] J. H. Bai, H. F. Gao, R. Xiao, J. J. Wang, and C. Huang, "A review of soil nitrogen mineralization in coastal wetlands: issues and methods," CLEAN—Soil, Air, Water, vol. 40, no. 10, pp. 1099–1105, 2012. View at Publisher · View at Google Scholar
- [7] X. J. Cao and H. Zhang, "Commentary on study of surface water quality model," Journal of Water Resources and Architectural Engineering, vol. 4, no. 4, pp. 18–21, 2006 (Russian). View at Google Scholar
- [8] M. Politano, M. M. Haque, and L. J. Weber, "A numerical study of the temperature dynamics at McNary Dam," Ecological Modelling, vol. 212, no. 3-4, pp. 408–421, 2008. View at Publisher · View at Google Scholar. View at Scopus
- [9] X. Fang, J. Zhang, Y. Chen, and X. Xu, "QUAL2K model used in the water quality assessment of Qiantang River, China," Water Environment Research, vol. 80, no. 11, pp. 2125–2133, 2008. View at Publisher · View at Google Scholar. View at Scopus
- [10] Y. Artioli, G. Bendoricchio, and L. Palmeri, "Defining and modelling the coastal zone affected by the Po river (Italy)," Ecological Modelling, vol. 184, no. 1, pp. 55–68, 2005. View at Publisher · View at Google Scholar. View at Scopus

- [11] P. G. Whitehead, R. J. Williams, and D. R. Lewis, "Quality simulation along river systems (QUASAR): model theory and development," Science of the Total Environment, vol. 194-195, pp. 447–456, 1997. View at Publisher · View at Google Scholar. View at Scopus
- [12] M. Sincock and M. J. Lees, "Extension of the QUASAR river-water quality model to unsteady flow conditions," Journal of the Chartered Institution of Water and Environmental Management, vol. 16, no. 1, pp. 12–17, 2002. View at Google Scholar. View at Scopus
- [13] Grizzetti, F. Bouraoui, K. Granlund, S. Rekolainen, and G. Bidoglio, "Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model," Ecological Modelling, vol. 169, no. 1, pp. 25–38, 2003. View at Publisher · View at Google Scholar. View at Scopus
- [14] Danish Hydraulic Institute, MIKE21: User Guide and Reference Manual, Danish Hydraulic Institute, Horsholm, Denmark, 1996.
- [15] Danish Hydraulic Institute, MIKE 3 Eutrophication Module, User Guide and Reference Manual, Release 2. 7, Danish Hydraulic Institute, Horsholm, Denmark, 1996.
- [16] H. W. Streeter and E. B. Phelps, A Study of the Pollution and Natural Purification of the Ohio River, United States Public Health Service, U.S. Department of Health, Education and Welfare, 1925.
- [17] W. J. Grenney, M. C. Teuscher, and L. S. Dixon, "Characteristics of the solution algorithms for the QUAL II river model," Journal of the Water Pollution Control Federation, vol. 50, no. 1, pp. 151–157, 1978. View at Google Scholar. View at Scopus
- [18] L. C. Brown and T. O. Barnwell Jr., The Enhanced Stream Water Quality Models QUAL2E and QUAL2E—UNCAD: Documentation and User Manual, US Environmental Protection Agency, Environmental Research Laboratory, Athens, Ga, USA, 1987.
- [19] S. R. Esterby, "Review of methods for the detection and estimation of trends with emphasis on water quality applications," Hydrological Processes, vol. 10, no. 2, pp. 127–149, 1996. View at Google Scholar. View at Scopus
- [20] B. Grizzetti, F. Bouraoui, K. Granlund, S. Rekolainen, and G. Bidoglio, "Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model," Ecological Modelling, vol. 169, no. 1, pp. 25–38, 2003. View at Publisher · View at Google Scholar. View at Scopus
- [21] Danish Hydraulics Institute, MIKE11, User Guide & Reference Manual, Danish Hydraulics Institute, Horsholm, Denmark, 1993.
- [22] "The US Environmental Protection Agency," http://water.epa.gov/scitech/datait/models/basins/fs-basins4.cfm.
- [23] The U.S. Environmental Protection Agency, "Compendium of tools for watershed assessment and TMDL development," Tech. Rep. EPA 841-B-97-006, The U.S. Environmental Protection Agency, Washington, DC, USA, 1997. View at Google Scholar
- [24] The U.S. Environmental Protection Agency, "Review of potential modeling tools and approaches to support the BEACH Program," "Rep. No. EPA 823-R-99-002, The U.S. Environmental Protection Agency, Washington, DC, USA, 1999. View at Google Scholar
- [25] The U.S. Environmental Protection Agency, "Compendium of tools for watershed assessment and TMDL development," Tech. Rep. EPA 841-B-97-006, The U.S. Environmental Protection Agency, Washington, DC, USA, 1997. View at Google Scholar
- [26] The U.S. Environmental Protection Agency, "Review of potential modeling tools and approaches to support the BEACH Program," "Rep. No. EPA 823-R-99-002, The U.S. Environmental Protection Agency, Washington, DC, USA, 1999. View at Google Scholar

E-mail address: drsumitanair@yahoo.in

^{*}Corresponding author.