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Abstract: 

Cancer is a complex multistep process involving tremendous changes at molecular and cellular properties of a 

cancerous cell. One of the main characteristics associated with the tumor cells include preferential use of glycolysis 

over oxidative phosphorylation to meet the high energy needs. This process is observed even in the presence of 

ample oxygen to fuel mitochondrial respiration and is considered to be the root cause of tumor growth and a 

potential hallmark of cancer. It has been found that tumor cells shows increased glycolytic capacity than normal 

cells and produce lactate rather than pyruvate in the process. During cancers, the expression levels of glycolytic 

enzymes are increased and different mechanisms like increased transcription or altered post-translational 

regulation has been proposed. Since hypoxia is a well known model in cancers and therefore role of cap-

independent translation cannot be ignored. Furthermore, elucidation of the underlying reasons behind the increased 

expression of glycolytic enzymes in cancer will help us to better understand and cure cancer. This review focuses on 

the possible role of cap independent translation in mediating increased expression of glycolytic enzymes in cancers. 
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INTRODUCTION:  

Glycolysis is the first and most important step in the 

metabolism of glucose and produce substrate for the 

oxidative phosphorylation. Energy demand of normal 

cells is compensated by oxidizing glucose completely 
via mitochondrial oxidative phosphorylation, as 

glycolysis produce only a small amount of energy. 

However, tumor cells frequently consume large 

amounts of glucose as compared to normal cells and 

secrete large amounts of lactate rather than oxidizing 

it completely. So, malignant cells use glycolysis 

preferentially over mitochondrial oxidative 

phosphorylation even in the presence of sufficient 

amount of oxygen [1]. In other words, the glycolytic 

capacity of cancerous cells is increased compared to 

normal cells. This shift in glucose metabolism is 

called the ‘‘Warburg effect,’’ and is considered to be 
the root cause of cancer formation and growth. 

Warburg effect has been shown to be the potential 

hallmark of cancer [2] [3] [4]. Earlier it was proposed 

that in cancer cells deviation toward the glycolytic 

process is due to a permanent impairment of 

oxidative metabolism and to compensate the energy 

needs, the glycolytic capacity is increased [4]. 

However, it was later on found that primary 

lymphocytes proliferate in the similar manner as 

cancer cells do and convert more than 90% of their 

glucose to lactate [5] [6]  [7] [8]. Thus ruling out the 
possibility that increased glycolytic capacity is linked 

with the damaged oxidative metabolism or Warburg 

effect is unique to cancer cells. The belief was further 

strengthened, when it was found that the cancer cells 

posses absolutely fine oxidative metabolism system 

[9]. It should be noted here that the increased 

glycolytic rate in proliferating cells provides them 

different advantages. Firstly, high glycolytic rate 

allows cells to use more and more glucose to 

compensate energy demands. Although glycolysis 

produces low ATP number per glucose molecule, 

however if the glycolytic flux is high enough, ATP 
production can exceed that produced from oxidative 

phosphorylation [10] [4]. Such a phenomenon may 

be due to high rate of ATP production during 

glycolysis than to oxidative phosphorylation [11]. 

Secondly, during glycolysis a wide variety of 

intermediates are formed, which are needed for 
different biosynthetic pathways including glucose 6-

phosphate for glycogen synthesis; dihydroxyacetone 

phosphate for triacylglyceride and phospholipid 

synthesis, pyruvate for alanine and malate synthesis, 

glycerol and citrate for lipids, nonessential amino 

acids, ribose sugars for nucleotides, and NADPH 

(through pentose phosphate pathway) to fatty acid 

synthesis [12]. In short, it can be stated that the 

Warburg effect benefits both the biosynthesis and 

bioenergetics.  

 

Malignant cells are known to obtain their energy and 
other intermediated needs from the glycolysis. The 

increased glycolysis has been associated with the 

upregulation of the glycolytic enzymes [12]. The 

reason behind the upregulation of glycolytic enzymes 

in tumor cells has been linked with the increased 

transcription and altered post-translational regulation 

[13] [14]. However, it should be noted here that none 

of these processes account fully with the observed 

upregulation of the glycolytic enzymes. Little is 

known about the translational regulation like Cap-

independent translation, mediated by Internal 
ribosome Entry Sites (IRES) of glycolytic enzymes 

during cancer. Cap-independent translation is an 

alternative strategy used by cells to maintain the 

translation rate of some mRNAs under stress 

conditions, like hypoxia (a well known phenomenon 

in cancer) [15]. So there is a possibility that the 

increased expression levels of glycolytic enzymes 

during cancer may be linked with the presence of 

cap-independent translation in such enzymes [16]. 

Earlier studies have documented presence of IRES 

elements in different cellular mRNAs and their 

essential roles in tumorigenesis (see table 1). 

 

Table 1: Shows presence of IRES elements in different cellular mRNAs 

 

Gene  Reference 

AML1/Runx1 (Runt-related transcription factor 1/ acute myeloid 

leukemia 1 protein 

[17] 

Apaf-1 (apoptotic protease-activating factor-1) [18] 

Cat-1 (cationic amino acid transporter) [19] 

c-IAP1 (cellular inhibitor of apoptosis protein 1) [20] 

Continue…………... 
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cyp24a1 (Cytochrome P450 family 24 subfamily A member 1) [21] 

EGR (early growth response) [22] 

EGFR/ERBB1/HER1 (epidermal growth factor receptor) [23] 

Hox (homeobox) [24] 

Hif1α (hypoxia-inducible factor 1-alpha) [25] 

c-Jun [26] 

c-myc [27] [28] 

l-myc [29] 

n-myc [30]  

p16INK4a/CDKN2A [31] [32] 

p27 [33] [34] [35] 

p53 [36] [37] 

p120 [38] 

SNAT2 (sodium-coupled neutral amino acid transporter) [39] 

c-src [40] 

SREBP-1a (sterol-regulatory-element-binding protein 1a) [41] 

VEGF (vascular endothelial growth factor) [42] [43] [44] 

XIAP (X-chromosome-linked inhibitor of apoptosis) [45] [46] 

Zeb2 [47] 

 

 

 
In human cells, >90% of mRNAs utilizes cap-

dependent mechanism for translation purposes. Such 

a process involves the binding of eukaryotic initiation 

factor 4F (eIF4F) complex (eIF4E, eIF4A, and 

eIF4G) to the 5’- m7GpppN cap on the mRNA. Later 

on 40S subunit is recruited to the 5′ end of the mRNA 

as a 43S complex (40S, eIF1, eIF2, eIF3, eIF5, eIF1A 

and Met-tRNAi). After the formation of initiation 

complex on the 5′ cap, the 40S subunit scans the 

mRNA (5′–3′ direction) until a start codon (AUG) is 

recognized. When 40S subunit meets the initial 

codon the larger subunit (60S) joins, forming an 80S 
ribosome and protein synthesis start [48] (see figure 

1A). It should be noted here that the protein synthesis  

 

 

 
is an energy consuming process [49] and therefore 

during cellular stresses like hypoxia, cap-dependent 

translation is inhibited to conserve energy and 

nutrients [50]. To cope with the stress conditions, 

tumor cells utilize an alternate mode of translation 

namely cap-independent translation [16]. Such an 

alternate mode of translation, directly recruit the 

translation initiation complex to the IRES element 

(present in the 5’-UTR) of these mRNAs (see figure 

1B) and is considered to be an efficient mode of 

translation, when cap-dependent protein synthesis is 

impaired [51]. It has been found that during stress 
condition like hypoxia, IRES elements remains active 

to carry cap independent translation [42] [52].  
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Figure 1: Shows protein translation in normal and stress conditions. A) Cap dependent translation: 

Eukaryotic initiation factor binds to the 5’- cap on the mRNA, followed by recruitment of 40S subunit to the 5′ end 

of the mRNA to form as a 43S complex. The 40S subunit scans the mRNA (5′–3′ direction) until a start codon 

(AUG) is recognized, flowed by the union of larger subunit (60S) to form forming an 80S ribosome and protein 

synthesis start. B) Cap independent translation: This alternate means of translation occurs under cellular stress 

and involves direct recruitment of the translation initiation complex to the IRES element (present in the 5’-UTR) of 

few mRNAs and is considered to be an efficient mode of translation. 

 

Presence of long 5′ untranslated region (5′ UTR) in 

mRNAs is an indicative of the chances of cap-
independent translation and we have found such long 

sequences in various glycolytic mRNAs. The 

molecular mechanism of cap-independent translation 

mediated by IRES is not fully known, however it is 

clear that IRES elements act differently. It should be 

kept in mind that for efficient initiation of translation 

most of the IRESs depend on canonical translation 

initiation factors and non-canonical IRES transacting 

factors (ITAFs). One such ITAF is polypyrimidine 

tract binding protein (PTB) at the IRES sequence rich 

in the pyrimidine regions and modulates the activity 
of the IRES elements. Also, binding of PTB to the 

pyrimidine sequences has been found to enhance 

during stress conditions like with hypoxia (24). Apart 

from the presence of long 5′ UTR sequences in the 

glycolytic mRNAs, we also found many PTB 

consensus sequence elements (CCUC) in the 5-UTRs 

of various glycolytic enzymes.  
 

CONCLUSION: 
Presence of long 5′ UTR in different glycolytic 

enzymes like Phosphofructo kinase (PFK1) (Gene 

ID: 5213), Hexokinase 2 (HK2) (Gene ID: 3099) and 

Glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) (Gene ID: 2597) increases chances of cap-

independent translation. As earlier discussed that in 

tumor cells expression level of glycolytic enzymes is 

increased and the reason behind such phenomenon 

can be attributed to cap-independent translation. 
There is a need to study the cap independent 

translation of glycolytic enzymes and activation of 

IRES activity in tumor cells. The information 

presented in the review will be critical in 

understanding the molecular mechanism behind the 
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increased glycolytic capacity of tumor cells and thus 

effective in devising anticancer therapy.  
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