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Abstract:  
Diabetes Mellitus is a chronic, lifelong disease currently impacting people throughout the world. A fundamental 

cause of Diabetes Mellitus: Non-enzymatic protein glycosylation (glycation) contributes to a group of metabolic 

diseases, including diabetes-associated late complications, atherosclerosis, chronic renal failure, Alzheimer’s 

disease and inflammatory arthritis. It has been hypothesized that inhibition of glycation may prevent the diseases 

associated with diabetes. Inhibitors of glycation have been explored for several decades, chiefly using in vitro 

models, which resulted in discovery of different natural compounds capable of forestalling glycation, such as 

antioxidants, polysaccharide, metal chelators and peptides. Many peptides released from different proteins have 

proven to possess physiological functions besides their nutrient roles. Even the results of in vitro studies are not 

directly applicable on the in vivo situation due to differences in the conditions, mechanism of glycation and 

bioavailability issues. In this review article, we briefly discuss the mechanism of advanced glycation end products 

(AGEs) in promoting pathogenesis and then present the recent findings concerning the role of plant-based inhibitors 
and amino acid peptides in decreasing the formations of AGEs. These findings suggest that enrichment of diet with 

natural, anti-glycating agents may reduce glycation and as a consequence, diabetic complications.  
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INTRODUCTION: 

For the past few years, there is a steep rise in the 

incidences of diabetes around the world. Globally, an 

estimated 422 million adults had diabetes in 2014, 

compared to 108 million in 1980. The global 
prevalence (age-standardized) of diabetes has 

climbed up from 4.7% to 8.5% since 1980 among the 

adults [1]. Saudi Arabia is one of the 19 countries and 

territories of the International Diabetes Federation 

(IDF), Middle East and North Africa (MENA) region, 

which has the seventh highest rate of prevalence of 

diabetes. There were approximately 3.4 million cases 

of diabetes in Saudi Arabia in 2015, and according to 

a recent estimate, almost 24.4% of the adult 

population is suffering from diabetes mellitus [2].  

The term “diabetes mellitus” describes a group of 

metabolic disorders with varied etiology 
characterized by chronic hyperglycemia with 

disturbances of carbohydrate, fat and protein 

metabolism resulting from the defects in insulin 

secretion, insulin action, or both. The effects of 

diabetes mellitus include long-term damage, 

dysfunction, and failure of various organs, especially 

the eyes, kidneys, nerves, heart, and blood vessels [3], 

[4]. Long-term complications of diabetes include: 

retinopathy with potential loss of vision [5]; 

nephropathy leading to renal failure [6]; peripheral 

neuropathy with risk of foot ulcers, amputations, and 
Charcot joints [7]; autonomic neuropathy causing 

gastrointestinal [8], genitourinary [9] and 

cardiovascular symptoms [10] and sexual dysfunction 

[11, 12]. Diabetic patients have an increased 

incidence of atherosclerotic cardiovascular [13], 

peripheral arterial [14], and cerebrovascular disease 

[15]. The long-term effects of diabetes are mostly due 

to protein glycation, also called the Maillard reaction 

that impairs the function of biomolecules [16]. The 

Maillard reaction was identified by a French scientist 

Louis Camille Maillard, in 1912. He discovered 
yellow-brown colors while sugar was heated with 

amino acids [17]. This reaction was introduced in the 

food industry for improving aroma, texture, and color 

of the food stuff and scientists discovered that this 

reaction also takes place in  in vivo and is currently 

involved in the pathogenesis of various diseases [18–

20]. 

GLYCATION AND ADVANCED GLYCATION 

END PRODUCTS (AGES) 

Maillard reaction, also referred to as Glycation is a 

complex cascade of reactions. The reaction is 
typically slow at physiological conditions since it 

does not involve an enzyme catalyst, it requires 

several days or weeks to get completed [16]. The 

reaction starts when the aldehyde on reducing sugars, 

such as glucose, fructose, and ribose, is attacked by 

the terminal amino groups of proteins, nucleic acids 

[21] and phospholipids [22], forming an unstable 

Schiff base [23]. The Schiff base then undergoes a 

slow structural rearrangement (Amadori 
rearrangement/ Heyns rearrangement), and the 

reaction proceeds to a relatively more stable, 

irreversible Amadori products or keto-amines, for 

instance, HbA1c [24].       

Oxidative decomposition of the Amadori products 

leads to the accumulation of a wide range of highly 

reactive intermediates like carbonyl and dicarbonyl 

compounds also known as oxoaldehydes. The 

products of these carbonyl compounds include 3-

deoxyglucosone (3-dG), glyoxal (GO) and 

methylglyoxal (MGO) glycolaldehyde, 1-

deoxyglucosone, 4, 5- dioxo pentose, and 5, 6-
dioxohexose [25]. The MGO formation also occurs 

by a non-oxidative process in anaerobic glycolysis 

[26] and by oxidative degradation of polyunsaturated 

fatty acids [22]. The highly electrophilic nature of 

these dicarbonyl compounds makes them react 

relatively faster with guanidine, arginine and lysine 

residues, amino and sulfhydryl functional moieties of 

proteins to produce different irreversible adducts [23]. 

Furthermore, modifications of these glycation 

products, such as rearrangement, oxidation, 

polymerization and cleavage, produces irreversible 
conjugates known as AGEs [27]. AGEs include Nε-

(carboxymethyl) lysine (CML), Nε-

(carboxylethyllysine) (CEL), S-(carboxymethyl) 

cysteine (CMC), pyrraline, 3-deoxyglucosone-

derived imidazolium crosslink, pentosidine, 

glucosepane, glyoxal lysine dimer, crosslinks and 

fluorolink [19]. As a result, Intra- and inter-molecular 

heterocyclic cross-linking and fragmentation of 

proteins occur. AGEs, senescent macroprotein 

heterogeneous moieties are the final products of the 

glycation process. The final products of the glycation 

process, the AGEs, have greater thermostability. 
Since AGEs are the final product of non-enzymatic 

glycosylation process, therefore it can be produced 

both in in vivo and in vitro. Formation of AGEs in a 

living organism is concentration-dependent and 

hence enhanced in hyperglycemic conditions while 

dietary intake of exogenous AGEs also contributes to 

the accumulation of AGEs and pathogenesis of AGEs 

related diseases. AGEs are found in some foods 

which are formed in normal conditions and can form 

in food during cooking, especially more in modern 

diets because they are largely heat-processed  through 
frying, baking, roasting and comparatively less in 

foods prepared by boiling, steaming and stewing [28].  

Smoking is another strong source of AGEs; It was 

reported that glycotoxins, which promote AGEs 

formation were isolated from aqueous extracts of 
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tobacco and cigarette smoke [29]. Some proteins in 

the blood serum of smokers were modified by nor-

nicotine which is a metabolite of tobacco nicotine 

[24]. Skin of smokers had higher AGEs compared to 

non-smokers [30]. An overview of the various routes 
of AGEs formation and its toxic effects in different 

organs is depicted in Fig. 1.  

 

MECHANISM OF AGES RELATED 

PATHOGENESIS 

AGEs are implicated in diabetes mellitus, and it`s 

complications as reported by Rahbar et al. The 

elevated HbA1c, one of the Amadori product of 

hemoglobin in diabetic patients is a potent source of 

development of diabetes mellitus [31]. In diabetes, 

glucose modified-HSA resulted in AGEs formation 

and resulted in deleterious impairment in biochemical, 
electrochemical, spectroscopic, optical and fluidity 

properties of HSA at high concentrations of glucose 

[32]. It was proved that glycation of insulin and 

proinsulin occurs in the pancreas during the point of 

insulin synthesis and storage leading to insulin 

resistance and reduced glucose uptake [33]. Low-

density lipoprotein is also glycated in diabetic 

atherosclerosis and is not recognized by the LDL 

receptor contributing to the hyperlipidemias, 

accelerated foam cell formation and glycation of 

high-density lipoproteins, hence, reducing its 
function during cholesterol transport [34]. Glycation 

of myelin has been identified in Diabetic neuropathy, 

and this modification of myelin stimulates 

macrophages to secrete proteases leading to nerve 

demyelination [12]. Immunohistochemical analysis 

revealed that AGEs were detected in diabetic renal 

tissue, wherein, thickening of the basement 

membrane, expansion of the mesangium developed 

resulting in renal failure. AGEs stimulate the release 

of transforming growth factor-b (TGF-b), which 

increases the synthesis of collagen matrix 

components and may account for the thickening of 
the basement membrane in diabetic nephropathy [35]. 

AGEs were also noticed in retinal blood vessel walls 

and were hypothesized to be involved in up-

regulating RAGE mRNA levels. This cause pericytes 

to undergo apoptosis through triggering oxidative 

stress and finally severe visual impairment leading to 

diabetic retinopathy [36]. Lens crystalline was 

studied in diabetic cataract, and it was found that 

glycation of lens crystallin causes conformational 

changes, aggregation, crosslinking and opacification 

at the end stage [37]. A Recent study has shown that 

AGEs accumulation leads RAGE to stimulate both 

IL-33 release and ILC2 accumulation in the lungs to 
promote chronic and acute allergic airway disease [8]. 

AGEs in the human ovary may account for some age-

related features of ovarian dysfunction, including 

impaired vascularization and consequent hypoxia due 

to reduced intake of nutrients by follicle cells [38]. 

Eventually, AGEs affect nearly all types of cell (Fig. 

1) and molecules in the body and play a vital role as 

proinflammatory mediators.  

 
Fig. 1: Formation of AGEs and its toxic effects in 

different organ systems. 

 

INHIBITORS OF AGES FORMATION 

Phytochemical AGEs inhibitors 
Phytochemicals are produced by plants through 

primary or secondary metabolism. They generally 

have biological activity in the plant host and play a 

major role in plants to help them thrive or defense 

against competitors, predators or pathogens [39, 40]. 

Phytochemicals have been used for centuries as 

traditional medicines and studied widely for their 

numerous biological activities such as anticancer, 
antimicrobial, antioxidant, and antiglycation. In order 

to provide an efficient therapeutic strategy for 

diabetes and its associated complications, natural 

antiglycation compounds which have limited side 

effects have been isolated from plants and widely 

studied. We have discussed listed the recent findings 

on phytochemical AGEs inhibitors in Table. 1. 
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Table 1: Overview of the recent findings on phytochemical AGEs inhibitors. 

 

PLANT-BASED PHYTOCHEMICAL AGES INHIBITORS   

Source Solvent 
Active 

component 
Objective 

Methodology for 

analysis 
Results Reference(s) 

Grape skin --- 

phenolic 

content 

 

Muffins 
Determination of 

carboxymethyl lysine. 

Reduced 

CML 
[41] 

Punica 

granatum 

Linn. 

Methanol 

steroids, 
triterpenoids, 

Glycosides, 

flavonoids, 

saponins and 

tannins. 

Phenolic 

content 

Rat Serum AGEs 
Reduced 

AGE 
[42] 

Cissus 

quadrangulari

s Linn 

Methanol 
ethyl acetate 

fraction 

Rat 

 

HbA1c assay 

 

Inhibited 

Glycation 
[43] 

Coptidis 

rhizoma 
--- Berberine Rat 

Immunohistochemistry 

for RAGE. 

Reduced 

RAGE 
[35] 

Green tea --- 
epigallocatech

in 3-gallate 
Mice 

Serum AGEs and tissue 

AGEs 
Western blot for RAGE. 

Inhibited 

Glycation 
Reduced 

RAGE 

[44] 

garlic Water 
Organosulphu

r constituents 
Rat 

Immunohistochemistry 

for RAGE. 

Reduced 

RAGE 
[45] 

Terminalia 

chebula Retz. 

Ethyl 

acetate 
chebulic acid LX-2 cells 

LX-2 cells were treated 

glyceraldehyde-derived 

advanced glycation end-

products and 

chebulic acid. 

Inhibited 

Glycation 
[46] 

Artocarpus 

communis 
--- 

flavonoid 

content 

(HCT116 

cells 

THP-1 

monocytes 

BSA glycation test with 

glyceraldehyde. 

Western blot for RAGE 

Inhibited 

glycation 

reduced 

RAGE 

[47] 

chilli peppers 

origin 
--- Capsaicin In vitro 

BSA glycation test with 

glucose. 

Inhibited 

Glycation 
[48] 

Osteomeles 

schwerinae C. 

K. Schneid. 

Ethanol 
phenolic 

content 
In vitro 

BSA glycation test with 

glucose and fructose. 
AGE-RAGE binding 

using ELISA. 

Detection of live cell-

based AGE-BSA/RAGE 

binding. 

Inhibited 

Glycation 
[49] 

Gynura 

procumbens 

leaves 

Ethanol 

phenolic 

content 

flavonoid 

content 

In vitro 
BSA glycation test with 

glucose. 

Inhibited 

Glycation 

[50] 

 

heartwood of 

Pterocarpus 

marsupium 

Ethanol 

phenolic 

content 

flavonoid 

content 

In vitro 

BSA glycation test with 

fructose. 

 

Inhibited 

Glycation 
[51] 



IAJPS 2017, 4 (11), 4027-4042                Abudukadeer Kuerban et al              ISSN 2349-7750 
 

 
w w w . i a j p s . c o m  
 

Page 4031 

garlic 

ginger thyme 

parsley curry 

leaves 

peppermint 

turmeric 
onion 

green onion 

scallion 

coriander 

Ethanol 

Water 

Tannins 

Saponins 

Phlobatannins 

Anthraquinon

es 

Terpenoids 
Diterpenes 

Steroids 

Flavonoid 

phenolics 

In vitro 

BSA glycation test with 

glucose. 

BSA glycation test with 

fructose. 
 

Inhibited 

Glycation 
[52] 

Canarium 

album L. 

Water, 

ethanol, 

methanol, 

acetone, 

Ethyl 

acetate 

Triterpenoid 

content 

phenolic 

content 

flavonoid 

content 

In vitro 

BSA glycation test with 

glucose. 

Determination of protein 

thiol group. 

Inhibited 

Glycation 
[53] 

Camellia 

nitidissima 
Chi 

Ethanol 

dichlorometha

ne fraction 

ethyl acetate 

fraction 
n-butanol 

fraction 

water fraction 

In vitro 

BSA glycation test with 

glucose and MGO 
Methylglyoxal 

scavenging assay. 

Inhibited 
Glycation 

[54] 

Annona 

crassiflora 

Mart. 

Ethanol 

hexane, 

dichlorometha

ne, ethyl 

acetate, n-

butanol and 

water 

fractions 

In vitro 

BSA glycation test with 

fructose. 

 

Inhibited 

Glycation 
[55] 

Carpobrotus 
edulis 

Foeniculum 

vulgare 

Water 

Ethanol 

phenolic 
content 

flavonoid 

content 

In vitro 

BSA glycation test with 

glucose. 

Determination of 
fructosamine by NBT 

assay, 

Determination of protein 

carbonyl content. 

Inhibited 

Glycation 

[56] 

[57] 

Aphloia 

theiformis 

(Vahl.) Benn 

Methanol 

Water 

hexane, 

dichlorometha

ne, ethyl 

acetate, and n-

butanol 

fractions 

In vitro 

BSA glycation test with 

fructose 

 

Inhibited 

Glycation 
[58] 
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Coccinia 

grandis 
Methanol 

phenolic 

content 
flavonoid 

content 

saponins and 

dietary fiber 

content 

In vitro 

BSA glycation test with 

fructose 

Determination of 

fructosamine 

Protein bound carbonyl 

groups determined using 
DNPH. 

TNBSA assay to 

determine lysine 

modification 

Quantification. 

Circular dichroism 

measurements for the 

changes in the secondary 

structure of BSA 

Inhibited 

Glycation 
[59] 

Ocimum 

americanum 

Methanol, 

Water 

phenolic 

content 
In vitro 

BSA glycation test with 

glucose 

Inhibited 

Glycation 
[60] 

Red ginseng Water 
phenolic 

content 
 

apolipoprotein A-I 

glycation test with 

fructose. 

Inhibited 

Glycation 
[61] 

Algae Water 
phenolic 

content 
In vitro 

Lysine-Glucose Maillard 

reaction assay. 

BSA glycation test with 

glucose MGO. 

Inhibited 

Glycation 
[62] 

sugarcane 

molasses 
Water 

phenolic 

content 

 

In vitro 
Lysine-Glucose Maillard 

reaction assay 

Reduced 

CML and 

CEL 

[63] 

cruciferous 

vegetables 
 

Sinigrin(gluco

sinolale) 
In vitro 

BSA glycation test with 

glucose, MGO. 

Determination of 

fructosamine 

Protein-bound carbonyl 

groups determined using 

DNPH. 
TNBSA assay to 

determine lysine 

modification 

Quantification. 

Circular dichroism 

measurements for the 

changes in the secondary 

structure of BSA 

Inhibited 

Glycation 
[64] 

Jujube fruit 

Ripe fruit 
Water 

phenolic 

content 

flavonoid 

content 

In vitro 
BSA glycation test with 

fructose 

Inhibited 

Glycation 
[65] 

phyllanthus 
emblica 

Cassia 

Auriculata 

Water 
phenolic 
content 

 

In vitro 
BSA glycation test with 

glucose 

Inhibited 

Glycation 
[66] 

Ilex 

paraguariensi

s 

Water 
chlorogenic 

acid 
In vitro 

BSA glycation test with 

fructose and glucose 

Inhibited 

Glycation 
[67] 
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Syzygium 

jambolanum 

and 
Cephalandra 

indica 

Water 

Glycosides 

phenolic 

content 
flavonoid 

content 

In vitro 

BSA glycation test with 

fructose 

Determination of 

fructosamine by NBT 

assay, 

Determination of protein 
carbonyl content, 

Determination of protein 

thiol group 

Determination of free 

amino groups 

Inhibited 

Glycation 
[68] [66] 

vanilla bean  
Vanillin 

Resveratrol 
In vitro 

BSA glycation test with 

glucose, MGO 

Determination of protein 

carbonyl content, 

Determination of 

fructosamine  by NBT 

assay 

Circular dichroism 
measurements for the 

changes in the secondary 

structure of BSA 

SDS page electrophoresis 

for glycation 

Inhibited 

Glycation 
[69] [70] 

Houttuynia 

cordata 
  Quercetin In vitro 

HSA in vitro glycation 

test with glucose and 

glyoxal 

Circular dichroism 

measurements for the 

changes in the secondary 

structure of HSA 
Hemoglobin-δ-

gluconolactone assay 

Methylglyoxal-HSA 

reactivity assay 

Inhibited 

Glycation 

[71] [72] [73] 

[74] 

 

Phytochemicals extracted from medicinally used 

plants have shown promising antiglycation activity in 

in vitro and in vivo. Methanolic extract from 

Coccinia grandis was tested in an antiglycation assay 

in a BSA-fructose model. A concentration of 0.5 

mg/ml showed significant AGEs inhibition after 

28days. Levels of fructosamine and protein carbonyl 
content in the BSA-fructose system decreased to the 

same degree as in aminoguanidine  group [59]. In an 

another study, ApoA-I glycation with fructose was 

inhibited by 100 µg/ml of Red ginseng water extract 

within 48 hours [61]. However, in a study performed 

by Kuda and colleagues, Algae aqueous extract 

interfered Lysine-Glucose Maillard reaction and 

inhibited BSA glycation with glucose and MGO [62]. 

In a separate study reported, Quercetin was extracted 

from Houttuynia cordata and evaluated for 

antiglycation activity in HSA- Glucose, glyoxal 

glycation model and it was demonstrated that AGEs 
formation was lowered and the changes in the 

secondary structure of HSA decreased [71, 72]. In a 

recent study, Flavonoid content prepared from 

Artocarpus communis was used to treat HCT116 

colon cancer cells, it was observed that the 

malignancy enhanced by AGEs was decreased after 

the treatment along with the decline in the levels of 

and  RAGE [47]. Additionally, Ethyl acetate fraction-
chebulic acid- from Terminalia chebula retz inhibited 

AGEs induced hepatic fibrosis in LX-2 cells 

modulating Nrf2 translocation via ERK pathway [46]. 

Also, AGEs inhibitory activity of Epigallocatechin 3-

gallate purified from green tea was studied in in vivo, 

the plasma AGEs level in HFD induced obesity mice 

were decreased accompanied by the inhibition of 

RAGE expression in liver [44]. 

 

Plant-based polysaccharides AGEs inhibitors: 

Polysaccharides are natural polymeric carbohydrate 

molecules formed by glycosidic linkages between 
monosaccharide units. If all the monosaccharides in a 
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polysaccharide are of the same type, then the 

polysaccharide is called a homopolysaccharide, but if 

more than one type of monosaccharide is present, it is 

referred to as a heteropolysaccharide. 

Polysaccharides are stable, safe, non-toxic, non-
carcinogenic components of plants and 

microorganisms with diverse  bioactivities, such as 

anticancer, anticoagulant, antiviral, anti-

inflammatory, anti-thrombotic, hypoglycemic and 

antioxidant activities [75]. Recent findings on plant-

based polysaccharide inhibitors have been listed in 

Table. 2. Recently, many types of research have been 

conducted globally on polysaccharides, due to its 

high antioxidant and antiglycation activity. In a 

unique study, XU et al., extracted polysaccharides 

from black currant, consisting of galacturonic acid, 

xylose, mannose, glucose, and galactose. A 
concentration of 0.2 mg/ml showed significant 

antiglycation activity, and interestingly, the inhibitory 

action on protein glycation was more efficient in the 

later phases of AGEs and dicarbonyl compounds 

formation [76]. In a different study, polysaccharides 

extracted from Boletus snicus comprised of a large 

amount of glucose, uronic acid and a small amount of 

mannose, galactose, arabinose, glucosamine 

hydrochloride and glucuronic acid, exhibited 

significant antiglycation activity at lower 
concentrations [77]. In an another study, the 

mechanism of polysaccharides on antiglycation was 

attributed to its structure, M.Chaouch et al., extracted 

polysaccharides from Opuntia ficus indica and 

degraded them by sonication from 6,800,000 to 

14,000 g/mol; they discovered that the 

polysaccharides degraded for 2 and 3 h showed even 

better antioxidant and antiglycation activities [78]. 

However, the antiglycation activity of 

polysaccharides is still unclear. This might be due to 

its structure, such as the type of glycosyl linkage, 

type of monosaccharides or other composition and 
also the molecular weight. Hence, the further in-

depth study is needed to unravel the complex 

antiglycation mechanisms involved. In short, 

polysaccharides may be a promising drug candidate 

in the near future for inhibiting glycation.  

 

Table 2: Polysaccharide inhibitors as antiglycation agents: Recent findings. 

PLANT-BASED POLYSACCHARIDES AGES INHIBITORS 

Source Solvent 
Active 

component 

Objecti

ve 

Methodology for 

analysis 
Results Reference(s) 

Benincasa 

hispida 

(Thunb.) 

Cogn. 

Water Polysaccharides In vitro 
BSA glycation test with 

glucose. 

Inhibited 

Glycation 
[79] 

Opuntia 

ficus indica 
Water Polysaccharides In vitro 

BSA glycation test with 

galactose. 

Inhibited 

Glycation 
[78] 

black 
currant 

Enzyme 
solution 

Polysaccharides In vitro 

BSA glycation test with 

glucose. 

TNBSA assay to 

determine lysine 
modification. 

Quantification. 

Determination of protein 

carbonyl content. 

Inhibited 
Glycation 

[76] 

Boletus 

snicus 
Water Polysaccharides In vitro 

BSA glycation test with 

glucose. 

TNBSA assay to 

determine lysine 

modification 

Quantification. 

Determination of protein 

carbonyl content. 

Inhibited 

Glycation 
[77] 
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Raspberry 

(R. idaeus 

L.) fruits 

Water Polysaccharides In vitro 

BSA glycation test with 

glucose. 

TNBSA assay to 

determine lysine 

modification 

Quantification. 
Determination of protein 

carbonyl content. 

Inhibited 

Glycation 
[80] 

Pueraria 

lobata roots 
Water Polysaccharides In vitro 

BSA glycation test with 

glucose. 

 

Inhibited 

Glycation 
[81] 

Dendrobium 

huoshanense 
Water Polysaccharides In vitro 

BSA glycation test with 

glucose. 

TNBSA assay to 

determine lysine 

modification 

Quantification. 

Determination of protein 

carbonyl content. 

Inhibited 

Glycation 
[82] 

Polygonum 
multiflorum 

Thunb 

Ethanol 
Water 

Polysaccharides In vitro 
BSA glycation test with 

MGO. 

 

Inhibited 
Glycation 

[83] 

 

Amino Acid and Peptide inhibitors: 

Different peptides and amino acids also have the 
potential to reduce the formation of AGEs, if they are 

more reactive with reducing sugars than proteins and 

phospholipids. While studying the reactions of 

various peptides and amino acids with aldehydes, 

Zhou and Decker found that 5mM histidine reduced 

headspace trans-2-hexanal by only 8% when mixed 

with 0.5 mM of trans-2-hexanal and 5mM of β-

alanine could not reduce headspace trans-2-hexanal 

at all. Glutathione was able to quench trans-2-hexenal 

and trans,trans-2,4-hexadienal by 47 and 21% 

respectively at glutathione concentrations of only 1 

mM [84]. While in a different study, Hobart et al. 
found that histidine alone was more effective than 

carnosine in preventing glycation induced 

crosslinking of cytosolic aspartate aminotransferase, 

ceasing the formation at a 1:1 antiglycation agent to 

causative agent ratio; while Carnosine needed a 50:1 

ratio to prevent protein modification by 

methylglyoxal [85]. In a study of yam hydrolysates, 

Han et al. compared the dipeptides asparagine-

tryptophan and glutamine-tryptophan to carnosine, 

homocarnosine, and glutathione in their ability to 

prevent glycation of bovine serum albumin with 
galactose. Carnosine inhibited glycation 

approximately the same as asparagine-tryptophan, 

homocarnosine, and glutathione, interestingly, all of 

these were more effective than glutamine-tryptophan. 

At a concentration of 50 μM, carnosine was more 

effective than asparagine-tryptophan followed by 

homocarnosine, but glutathione and glutamine-

tryptophan showed no such effect. When glucose was 

the reducing sugar, and 100 μM of the peptide was 

used, glutathione exhibited more activity than 

homocarnosine, which in turn was more effective 
than both asparagine-tryptophan and glutamine-

tryptophan, which were almost equivalent. However, 

the antiglycation activity of carnosine was less than 

glutathione, homocarnosine, asparagine-tryptophan, 

and glutamine-tryptophan. At a concentration of 50 

μM, asparagine-tryptophan and glutamine-tryptophan 

had negligible effects, while glutathione showed 

better results than carnosine. Pre-treatment of cells 

with asparagine-tryptophan and glutamine-tryptophan 

resulted in an increase of cell survival from 50% to 

90% when stress was applied with methylglyoxal 
(one of the common reactive carbonyl species in the 

body). The various actions of the synthesized 

peptides from different studies and their active 

components are presented in Table. 3.  

 

 

 

 

 

 



IAJPS 2017, 4 (11), 4027-4042                Abudukadeer Kuerban et al              ISSN 2349-7750 
 

 
w w w . i a j p s . c o m  
 

Page 4036 

Table 3: Recent update on amino acid and peptide inhibitors as antiglycation agents. 

 

AMINO ACID AND PEPTIDE INHIBITORS 

Source 
Active 

component 
Methodology Analysis Results Reference(s) 

Synthesized 

amino acid 
Histidine 

Addition of histidine to 

glyceraldehyde in 20:1 ratio 

and cytosolic aspartate 

aminotransferase before 

incubation. 

Protein electrophoresis 

 

20 mM caused 

60% inhibition of 

crosslinking 

[85] 

Synthesized 

amino acid 
Β alanine 

Addition of Β alanine to 
glyceraldehyde in 10:1 ratio 

and cytosolic aspartate 

aminotransferase before 

incubation. 

Protein electrophoresis 

 

5 mM caused 36% 

inhibition of 

crosslinking 

[85] 

Synthesized 

Peptide 
Anserine 

20 mM of compound was 

added to previously glycated 

Glucose-ethylamine. 

Nuclear magnetic 

resonance 

 

20mM of anserine 

was able to reverse 

early glycation 

[86] 

Synthesized 

Peptide 

asparagine-

tryptophan 

50 or 100 μM of peptide was 

added to bovine serum albumin 

and galactose or bovine serum 

albumin and glucose and 

heated. 

sodium dodecyl 

sulphate–polyacrylamide 

gel electrophoresis 

and an 

anticarbocymethyllysine 

antibody 
 

100μm reduced 

carbocymethyllysin

e to 30.7% of the 

control in galactose 

system and to 

63.2% in glucose 
system 

[87] 

Synthesized 

Peptide 

glutamine-

tryptophan 

50 or 100 μM of peptide was 

added to bovine serum albumin 

and galactose or bovine serum 

albumin and glucose and 

heated. 

sodium dodecyl 

sulphate–polyacrylamide 

gel electrophoresis 

and an 

anticarbocymethyllysine 

antibody 

 

100μm reduced 

carbocymethyllysin

e to 14.8% of the 

control in galactose 

system and to 

58.8% in glucose 

system 

[87] 

Synthesized 

Peptide 
Carnosine 

20 mM of compound was 

added to previously glycated 

Glucose-ethylamine 

Nuclear magnetic 

resonance 

20mM of 

Carnosine was able 

to reverse early 

glycation 

[86] 

Synthesized 

Peptide 
Carnosine 

Α crystallin was incubated with 

10 mM ribose or deoxyribose 

with or without the addition of 
Carnosine 

sodium dodecyl 

sulphate–polyacrylamide 
gel electrophoresis 

50mM Carnosine 

prevented glycation 
entirely 

[88] 

 

Synthesized 

Peptide 

Carnosine 

Addition of Carnosine to 

glyceraldehyde in 10:1 ratio 

and cytosolic aspartate 

aminotransferase before 

incubation. 

Protein electrophoresis 

5 mM caused 68% 

inhibition of 

crosslinking 

[85] 

Synthesized 

Peptide 

 

Carnosine 

50 or 100 μM of peptide was 

added to bovine serum albumin 

and galactose or bovine serum 

albumin and glucose and heated 

and carboxymethyllysine was 

detected with an antibody. 

sodium dodecyl 

sulphate–polyacrylamide 

gel electrophoresis 

 

100μm reduced 

carbocymethyllysin

e to 13% of the 

control in galactose 

system and to 

68.5% in glucose 

system 

[87] 
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Synthesized 

Peptide 
Carnosine 

Streptozotocin 

-induced 

diabetic rats given oral dose of 

1g Carnosine /kg body 

weight/day 

quantitative retinal 

morphometry, analysis 

of retinal proteins, 

Histological examination 

of retinal paraffin 

sections 

Oral dose of 

Carnosine 

Prevented retinal 

vascular damage 

primarily by 

altered gene 
expression 

[89] 

Synthesized 

Peptide 
Carnosine 

A diet composed of 0.001%, 

0.01%, or 0.1% of Carnosine 

by mass was given to 2-deoxy-

D-glucose induced diabetic rats 

Blood sampling 

0.01% or 0.001% 

Carnosine 

suppressed 

hyperglycemia, 

[90] 

Synthesized 

Peptide 

Homocarno

sine 

50 or 100 μM of peptide was 

added to bovine serum albumin 

and galactose or bovine serum 

albumin and glucose and heated 

sodium dodecyl 

sulphate–polyacrylamide 

gel electrophoresis 

and an 

anticarbocymethyllysine 

antibody 

100μm reduced 

carbocymethyllysin

e to 17.8% of the 

control in galactose 

system and to 49% 

in glucose system 

[87] 

Synthesized 
Peptide 

Glutathione 

50 or 100 μM of peptide was 

added to bovine serum albumin 
and galactose or bovine serum 

albumin and glucose and heated 

sodium dodecyl 

sulphate–polyacrylamide 

gel electrophoresis 
and an 

anticarbocymethyllysine 

antibody 

100μm reduced 

carbocymethyllysin

e to 17.8% of the 
control in galactose 

system and to 49% 

in glucose system 

[87] 

Synthesized 

Peptide 

Glucagon-

like 

peptide-1 

Murine podocytes Western blotting 
RAGE was down 

regulated 
[91] 

Garlic 

c-

glutamylcy

steine 

derivatives 

Maillard reaction systems with 

glucose L-lysine mixture 
CML determination Decreased CML [92] 

 

Alhamdani et al. studied the protection of human 

peritoneal mesothelial cells from the toxic effects of 

peritoneal dialysis fluid, which contained both 

glucose and glucose degradation products; both of 
which can produce AGEs, using many potential 

amino acids and dipeptides. It was reported that as far 

as protective effects are concerned, carnosine was 

more effective than homocarnosine followed by β-

alanine, anserine and histidine [93]. Histidine and 

anserine both showed toxicity to the cells, with 

histidine displaying cell toxicity without a protective 

effect in the presence of the peritoneal dialysis fluid. 

Hipkiss et al. incubated 50 mM of various peptides 

with 500 mM of different sugars [88]. After HPLC 

analysis at specific times, the researchers found that 
homocarnosine showed lower reactivity with 

reducing sugars when compared to carnosine and 

thus may be less effective in decreasing early 

glycation. 

 

The Inhibition of AGEs by amino acids and small 

peptides vary in each study. Differences between the 

models chosen, such as the type and amount of sugar 

used, the amount of protective agent added, the 

protein target and consideration of toxicity play a 

crucial role in concluding the results. There is an 

emerging trend that homocarnosine is less reactive 

than carnosine, which is less responsive than 

histidine with glucose and reactive carbonyls such as 
methylglyoxal. Carnosine and Homocarnosine have 

an additional advantage in that they display less 

toxicity than glycated amino acids in cell models. 

There are numerous sources of proteins and peptides 

that could have potential to decrease AGE formation.  

However, varied results between current studies 

indicate that more research is needed to identify 

which peptide structures that have the ability to 

reduce AGEs formation.  

 

CONCLUSION:  
These findings suggest that there is an urgent need to 

address the issue of bioavailability and fill up the 

void between the results obtained in in vitro and in 

vivo platforms for better clarification in further 

studies. In addition, many studies have found that the 

use of more than one plant-based antiglycation agent 

synergistically can give better results than a single 

agent. Further, the pace of research should be way 

ahead than the increasing incidences of glycation-
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related diseases to develop functional foods from the 

natural sources. 
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