h Endodontics

Middle Mesial Canal of the Mandibular First Molar: A Case Report & Literature Review

Dr. Anu Dhawan PG Student

Dr. Sumit Gupta Reader Dept. of Endodontics Sudha Rustagi Dental College & Hospital Faridabad (Harvana)

Introduction

he main objective of non-surgical root canal treatment is the thorough chemomechanical debridement of the entire pulp space cavity and its complete obturation with an inert filling material¹. Since the work of Hess and Zurcher², it has become apparent that the pulp cavity comprises a complex network of anatomical structures and knowledge of this complex internal dental morphology is an extremely important step in planning and administering endodontic therapy because nontreatment of even one canal can lead to endodontic treatment failure.

The mandibular first molar which is the earliest permanent posterior tooth to erupt, seems to be the tooth that most often requires root canal treatment. Over the years, there have been numerous studies that describe the morphology of teeth, including mandibular first molars. Skidmore and Bjorndal, Pineda and Kuttler, and Vertucci 1,4,5 have all reported on the morphology of the mandibular first molar. Anatomical characteristics of permanent mandibular molars are generally described as teeth with two roots. The usual canal distribution is two canals in the mesial root and one or two in the distal root.

In 1974, Vertucci and Wiiliams as well as Barker et al. described the presence of a middle mesial canal.⁶⁻⁸ Since then, several case reports of multiple canal systems in mandibular first molars have been investigated and described.8

It has been postulated that secondary dentin apposition during tooth maturation would form dentinal vertical partitions inside the root canal cavity, thus creating root canals. A third root canal may also be created inside the root canal cavity of mandibular molars by this process. Such third canals are situated centrally between the two main root canals, the buccal and lingual root canals. The diameter of those third middle canals is smaller than that of the other two.11The probability of a mandibular first molar having a fifth canal is 1–15%.

Clinically, the middle mesial canal can be described as an intermediate canal between the mesiobuccal and mesiolingual root canals of the mandibular molars; its orifice is disclosed as a depression or a 'bleeding point' within the developmental groove connecting the two canals¹²

Depending on its clinically recognisable pathway, it has been classified into three categories: [fig 1]

- a 'fin', when at any stage during biomechanical preparation, an instrument could pass freely between the mesiobuccal or mesiolingual canal and the middle mesial canal
- 'confluent', when the prepared canal originated as a separate orifice but apically joined the mesiobuccal or mesiolingual canal
- 'Independent', when the prepared canal originated as a separate orifice and terminated at a separate foramen, or when after preparation of a broad single mesial canal in which three master cones could be inserted occurred¹³.

However, according to Mortman and Ahn¹ this third canal is not actually an additional mesial canal but rather the sequelae of instrumenting the isthmus between the mesiobuccal and mesiolingual canals.

Either way, it constitutes a distinct anatomical structure needing to be treated, otherwise treatment failure may occur.

Most of the time this intermediate canal will join at the apical or middle third with either the mesiolingual or mesiobuccal canal, ending in one foramen. This intermediate canal joins more frequently with the mesiobuccal canal. Various authors^{11,12,16,17} have suggested that

younger patients had intermediate canals which were more easily found.

According to comprehensive in vitro and in vivo studies investigating the occurrence of

A 25 year-old male patient presented at the Department of Conservative Dentistry and Endodontics, with a complaint of intermittent pain in the posterior right mandibular region for the past two weeks. The pain was spontaneous, diffuse, non-radiating associated with prolonged sensitivity to hot and cold. Clinical examination revealed a carious right mandibular first molar (46). The tooth gave a delayed response to electric pulp tester compared to its contralateral tooth. The tooth was not tender on percussion. The clinical and radiographic findings led to a diagnosis of chronic irreversible pupitis of the right mandibular first molar (46), necessitating endodontic therapy, and consent was taken from the patient for the same.

Radiographic evaluation of the involved tooth indicated a regular canal configuration of two canals in the mesial root and one canal in the distal root. The right inferior alveolar nerve was anesthetized using 2% Lignocaine with 1:100,000 adrenaline. The tooth was isolated using a rubber dam and an endodontic access cavity was prepared. Clinical examination revealed five distinct orifices: three located mesially (mesio-buccal, middle mesial and mesiolingual) and two distally (distobuccal and distolingual). The canals were explored with #10 K-file (Mani, Inc; Tochigi, Japan). Multiple, working-length radiographs taken at different angulations with one file placed in each of the three mesial and two distal orifices revealed the presence of five distinct canals. Cleaning and shaping was performed using a step back hand instrumentation technique, with Kfiles(Mani, Inc; Tochigi, Japan), under copious irrigation with 5.25% sodium hypochlorite solution and EDTA (Glyde, Maillefer, Dentsply, Ballaigues,

Working Length Radiograph

Figure 1

Switzerland). The root canals were dried with paper points (Maillefer, Dentsply, Ballaigues, Switzerland) and obturated with cold, laterally condensed gutta-percha (Maillefer, Dentsply, Ballaigues, Swit-zerland) and zinc oxide eugenol sealer (Dental products of India Ltd). Tooth was temporized and restored with full coverage restoration on subsequent appointments.

Discussion:

One of the major challenges clinicians face when performing endodontic treatment in molars is the complexity of the root canal systems and incomplete instrumentation or filling of all root canals accounts for one of the major causes of failure of endodontic treatments¹⁸. In 2002, Hoen and Pink¹⁹screened 1100 failing endodontically treated teeth. They found the incidence of missed roots or canals of the retreated teeth to be 42% in their investigation and reported that maxillary first molar was the tooth most often re-treated, followed by the mandibular first molar. Similarly, Vertucci FJ1 and DeGrood ME and Cunningham CJ²⁰ reported that a considerable number of failures could be assigned to anatomical variations, such as the presence of canals not usually found.

Careful clinical and radiographic inspection are mandatory to a successful Diagnostic measures such as therapy.² multiple preoperative radiographs, examination of the pulp chamber floor with a sharp explorer, troughing of the grooves with ultrasonic tips, staining the chamber floor with 1% methylene blue dye, performing the sodium hypochlorite "champagne bubble test," and visualizing canal bleeding points are all important aids in locating root canal orifices.²² ADG 16 endodontic explorer used as a pathfinder can help determine the angle at which the canals depart from the main chamber. The search for an extra orifice is also aided by the use of magnifying loupes and fiber-optic transillumination to locate the developmental line between the mesiobuccal and mesiolingual orifices.22

The mandibular molar can also invariably present an aberrant anatomy. However, most clinicians go by norms of 3-4 canals in mandibular molars i.e. 2 mesial and 1 or 2 distal canals. Clinicians must be aware of the fact that the presence of a third canal in the mesial root of the mandibular first molars has been reported to have an incidence rate of $1\% \sim 15\%$.⁸Even though anatomical variations in mandibular first molars are documented in the literature, variations in the anatomy of these teeth are not recognized by a great many dentists. Table 1 presents a list of few studies reporting the prevalence of middle mesial canal, and table 2 lists various case reports reporting the presence of middle mesial or middle distal canals in mandibular molars published in literature till date.

Variations in the mesial root of mandibular first molars can be identified through very careful observation of angled radiographs. Buccolingual views, 20° from mesial and 20° from distal, reveal the basic information on the tooth's anatomy and the root canal system that is required for endodontic treatment.⁸²A significant constraint in conventional radiography is that it produces a 2D image of a 3D object, resulting in the superimposition of the overlying structures. Therefore, these

Table 1 Studies on the prevalence of middle mesi-	al canal in
first & second mandibular molars	

Author (8)	Year	N	%
Exvivo studies			
Skidmore & Bjornda ¹⁴	1971	85	0
Pineda & Kuttler 5	1972	600	0
Vertucci ⁶	1974	200	1
Richard walker 24	1988	100	1
Caliskan et al25	1995	200	55
De Carvahlo & Zuolo26	2000	204	21.7
Wasti et al 27	2001	30	33
Gulabivala et al 28	2001	273	7.1
Gulabivala et al 29	2002	178	7.6
Sarkar S30	2002	10	70
Sert &Bayirli 31	2004	400	1.5
Ahmed et al 32	2007	200	4
Forner Navarro et al10	2007	52	13.4
Yesiloy et al 22	2007	80	6.25
Reuban et al 34	2008	125	-
Peiris et al 35	2008	177	1.1
Shahriar shahi 36	2008	209	0.95
Chen G ²²	2009	183	6
A.A Al - Qudah and L.A. Awawdeh ³⁸	2009	330	6
Karapinar -Kazandag et al ¹⁰	2010	96	20
In vivo studies			
van Voorde "	1975	136	0.75
Pomeranz et al ¹³	1981	100	12
Martinez - Berna & Badanelli 41	1983	2362	15
Fabra - Campos ¹⁶	1985	145	2.1
Fabra - Campos ¹²	1989	760	2.6
Goel et al	1001	60	15

Table 2: list of case reports reporting the presence of extra mesial or distal canal in mandibular molars

Author	Year		Tooth reported
Badanelli & Martinez Berna "	1979	Mmc	1 case
Weine "	1982		46
Martinez Berna &Badanelli "	1985		36,46
Lim 44	1985		1 case
H. Fabra Campos 16	1985		36,46 46,46
Beatty & Krell 45	1987		1 case
Bond **	1988		36
Jacobsen "	1994		36,46 46
De Grood & Cunningham 20	1997		46
Holtzman [°]	1997		46
Riccuci "	1997	4 canals	46
Reeh	2000		36
Mortman & Ann	2003	-	30,30,36,46,46
Baugh & wanace	2004	Maria	46
Mill	2004	Mine	40
Chang ⁵¹	2006		36
Reyhani et al ⁵²	2007		46
Na varro et al 10	2007		36
Kontakiot is & Tzanetakis 53	2007	4 canals	36
S Abdeen 54	2008	Mmc	36
Gianluca Plotino 55	2008	Mmc	48
Poomi et al 56	2009		46
Yesiloy et al 57	2009		46,46
Dr. Abhiney Puri 50	2009	Mmc	46
Siju Jacob ⁵⁹	2009	Mmc	46
Lash et al 40	2010		
Sung Ho La 61	2010	Mmc	46
Mohsen Aminsobhani 62	2010		
Surekha Puri et al 48	2011	Mmc	46,46
Chandra SS. et al 44	2011	Mmc	36
Shweta Jain 45	2011	Mdc	46
Vandana Bhardwaj "	2011	Mmc Mdc Mmc	36 46 46
Patil Jaya Prakash ®	2011	white	
Vijaykumar Shiraguppi 55	2011	Mmc	46
Moha navelu Deepalakshmi ⁶⁰	2012	Mmc	46,46,46,36
Xenos M. Petridis 20	2012	Mmc	37,46,36,37
Dr. Navin Mishra et al 71	2012	Mmc	37
Dr. Charu Batra 72	2012	Mmc	47 with radix p
Swati Sharma Kharade 70	2012	Mdc	37
J.V. Karunakaran 34	2012		27
a. 11. a ¹⁸	2012	Mmc	37
Sachin Gupta ~	2012	Mmc	36
Deepak J. Parekn	2012	Mmc	36
Bains R et al "	2013	Mdc	46
LuQ	2013	Mda	_
Dr. Muktishree Mahendra 79	2013	Mmc	46
Avinash A patil ³⁰	2013	Mmc	46
Nupur Dhanak ⁸¹	2013	Mmc	36
Manoj Aggarwal		Mdc	36

radiographs are of limited value in cases with complex root canal anatomy.⁸³ Interpretation and appraisal based on a 2D radiograph may alert the clinician to the presence of aberrant anatomy but would not be able to present the variable morphological structure of root canals and their interrelations.⁸² Hence, it is mandatory to use all the available diagnostic aids to locate and treat the entire root canal system.²²

Nance et al.⁸⁴ showed that tuned aperture computerized tomography (TACT) imaging enabled a significant increase in canal detection as compared to conventional radiography. Gopikrishna et al.⁸² used spiral computerized tomography for the confirmatory diagnosis of a morphological aberration in the maxillary first molar. The latest technology for most accurate diagnosis is the use of CBCT, but its use is limited due to feasibility and high cost.

In order to easily locate these intermediate canals within the mesial root these four steps have been suggested by Fabra-Campos¹⁶

Once the access cavity is made, the dentinal protuberance which separates the entrance to the mesiobuccal and mesio-lingual canals are removed with either ultrasonic tips or round bur

An explorer is used to explore through the groove connecting the mesiobuccal and mesiolingual canal to search for any possible intermediate depression. Also in teeth with vital pulp a bleeding spot can be observed which may indicate MMC

Catheterize the third canal by using a thin file (#08 or 10) in an alternating 45° rotating motion

Once the canal is located, enlarge the canal entrance.

In the present case, we were fortunate to locate the third mesial canal with the help of magnification loupes at 2.5x magnification, and successful endodontic treatment could be carried with only multiple angled radiographs. **Conclusion**

The present case report describes the endodontic management of a mandibular first molar with five canals, three in the mesial and two in the distal. It is mandatory that the clinician should possess a thorough knowledge of not only the normal anatomy of the root canal system, but also aberrations. Thus, multiple angulated radiograph and close clinical inspection of the chamber floor at higher magnification is essential whilst treating teeth that have a high incidence of extra canals.

To summarize, treating additional canalsmay be challenging, but the inability to find and properly treat the root canals may cause failures. Unforeseen complexities can be managed with the thorough knowledge and armamentarium without the surgical intervention in every other case.

References

References are available on request at editor @ healtalkht.com