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Abstract 

In this study, it is tried to give a system of Markov chains approach to the trend of annual mean temperatures in 
Turkey. For this reason, a data of annual mean temperatures between the years 1965 - 2012 of 58 meteorological 
stations of Turkey are used. Each scenario is given as a solution to a quadratic programming problem for which is 
spanned by the transition matrices of twelve groups. The steady-state distribution method given here facilitates the 
multiple station Markov chain applications. In the meantime, the linear regression approaches in which the 
averages of station groups are considered as independent variables are as well introduced. It is also given 
comments on some scenarios while an extreme scenario as a solution to a few problems is pointed out to which is 
feared in respect of climatic change.  

Keywords: Annual mean temperatures, climatic change, Markov chain, Aggregation by steady-state 
distribution, Linear regression 

Introduction and Motivation 

The climate is the slowly varying aspects of 
the atmosphere-hydrosphere-land surface 
system, according to the American 
Meteorological Society. Climate is used for a 
statistical description, for example, such as the 
average temperature or precipitation over a 
period of time which measures the variations 
on these quantities (Dessler, 2012, p.1). 
Briefly, the climate is the average weather 
conditions that do not change for many years 
in a very large area. 

Climate change is any systematic change in 
the long-term statistics of climate elements 
such as temperature, precipitation, pressure or 
wind speeds over several decades or longer, 
again by the American Meteorological Society 
(Dessler, 2012, p.4).  

An important part of climate change studies is 
about temperature changes. According to our 
search on Scholar.Google (April 24, 2017), 
about one seventh of all climate change 
studies involve precipitation changes. The 

same research points out in about 4% of 
climate change studies the temperature 
changes and precipitation changes take place 
together.  

There are a number of studies made on the 
annual mean temperature changes in Turkey. 
Dogan et al. (2015) on the trend directions by 
backward- and forward-shifted methods, 
Kadioglu (1997) on the trend analysis by the 
Mann-Kendall test, Ustaoglu (2012) on the 
trend analysis by the Mann-Kendall test for 
the North-west of Turkey, Can and Atimtay 
(2002) on the trend and abrupt changes by the 
Mann-Kendall and Wald-Wolfowitz tests, 
Karaburun et al. (2012) on the trend of annual 
mean temperatures for Marmara region by the 
Mann-Kendall test and Theissen polygons, 
Tayanc et al. (1998) on the inhomogeneity of 
annual mean temperatures in Turkey by the 
Wald-Wolfowitz and Kruskal-Wallis tests, 
among others. As it is known, the Mann-
Kendall and Wald-Wolfowitz tests are 
nonparametric tests. Among these techniques, 
there are some other methods, known as 
Theissen polygons, the inverse distance 

DOI: 10.30897/ijegeo.



Çelebioğlu  / IJEGEO 5(2): 197-217 (2018)

199 

weights and kriging. The first two methods are 
based on the catchment geometry (Ball and 
Luk, 1998), and the third method is known as 
a method of interpolation for spatial data. 
These methods are generally used for the 
rainfall and temperature data.  For the details 
and history of kriging see Stein (1999).    

In this study, we used the steady-state 
distribution of Markov chains to aggregate the 
stations. Since kriging has a stochastic 
spatially dependent component, in a sense, our 
approach resembles kriging. In essence, the 
purpose of this study is to give some 
explanations of considered models and catch a 
direction to climate change by comparing the 
station groups in terms of their frequencies 
included in the models.  

In average temperature changes, the increases 
and decreases are primarily striking. As the 
explained reasons in the next section, let us 
denote the increases in mean temperatures in 
successive years by 1 and the decreases or 
unchanges by 0. The transition matrix 
estimated from the mean of annual mean 
temperature changes of 58 meteorological 
stations for 48 years, which is the subject of 
our research, by the Maximum Likelihood 
method is  

,
40000.060000.0
71429.028571.0









P

and its steady-state distribution is 

 .5435.04565.0

Looking only at these results, it can be worried 
about climate change, because according to 
the steady-state distribution, it is expected that 
in the long run 45.65% of all times the average 
temperatures will decrease or not change, and 
increase 54.35%. In other words, in the 
average temperatures it would be expected a 
decrease in every 1.84 years, even though it is 
expected to decrease or remain unchanged at 
about every 2.19 years, in the long term. And 
this transition matrix will again be considered 
in Section 4. By these comments, we can be 
pessimistic. In a sense, we will discuss some 

details that can be called as scenarios in the 
following sections.  

Methodology and Models 

Since the climate system is one of the most 
complex systems that scientists have tried to 
come to grips with, there are many approaches 
to understanding this system and new 
approaches are still ongoing. One of these 
approaches is to take advantage of the 
simulated system by generating as much 
system dynamics as possible in powerful 
computers. But the most powerful 
supercomputers have not also been able to 
capture all the processes of system dynamics. 
So, instead of complex numerical models, 
scientists are directed to simple conceptual 
models. Stochastic models are such a 
conceptual tool to understand better the 
climate system (Imkeller and von Storch, 
p.vi). Since for the climate system there are, in 
general, lots of data obtained from many 
stations, Markov chain and point process 
models are similar to the extent that they are 
restricted to single-station applications, and 
are not easily generalizable to multiple station 
applications. References to the Markov chains 
and related derived models can be seen in (von 
Storch and Navarra, 1995, p.201). In the case 
of an irreducible or ergodic Markov chain, it is 
appropriate to consider the steady-state 
distribution from the asymptotic analysis point 
of view (Clark, 2008, p.46). Taking this in 
mind, it is tried to give a new model to deal 
with multiple stations through steady-state 
distribution.  

Aggregation and decomposition to reduce the 
state space are two general techniques to solve 
large scale Markov decision processes 
(Boucherie and van Dijk, 2017, p.372). 
Aggregation has different kinds of purposes, 
such as state aggregation and time 
aggregation. In other words, the key idea in 
aggregation is to lead to an effective reduction 
of dimensionality (Yin and Zhang, 2013, 
p.53). However, in contrast to state 
aggregation, which generally results in an 
approximate model due to the loss of Markov 
property, time aggregation suffers no loss of 
accuracy, because the Markov property is 
preserved. (Cao, et al., 2002). For the theory, 
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applications and details of aggregation in 
Markov models see (Anisimov, 2008, 
Chapters 8-10), and the references therein. 

For this study, the data of annual mean 
temperatures between the years 1965 - 2012 of 
58 meteorological stations of Turkey are used. 
As there are few data such as 48 years, it is 
observed both the autocorrelation coefficients 
of the each station and of each of the station 
groups up to the 12th lag are smaller than the 

AR (1) ( 1 ) coefficient in respect of their
absolute values. For this reason, and the 
emphasis that temperature changes can be 
modeled by Markov chains in many cases in 
Dobrovolski (2000), we decided to use a 
homogeneous Markov chain model consisting 

of a state space 0 and 1. In this Markov chain, 
the cases are taken as the state 0 if the 
difference of mean temperatures between 
consecutive years is negative or zero, and as 
the state 1, if the difference is positive. Thus, it 
can be said that the state 0 represents the case 
the mean temperatures do not change or 
decrease and the state 1 represents the case the 
mean temperatures increase. Under this state 
determination, the transition matrices for each 
of the 58 stations are estimated by the Least 
Squares method and then their steady-state 
distributions are found. By the observation on 
the steady-state distributions it was determined 
that 58 stations have 12 different steady-state 
distributions up to 4th decimal place.  

Table 1. Meteorological stations distribution by climatic zones (geographical regions). 
Climatic Zone  
(Geographical 
Region) 

Stations Name Station ID 

Black Sea Amasya, Artvin, Bartin, Bayburt, 
Bolu, Duzce, Giresun, Gumushane, 
Kastamonu, Ordu, Rize Samsun, 
Sinop, Tokat 

17085, 17045, 17020, 17089, 
17070, 17072, 17034, 17088, 
17074, 17033,17040, 17030, 
17026, 17086 

Marmara Bilecik, Bursa Edirne, Kirklareli, 
Kocaeli, Yalova 

17120, 17116, 17050, 17052, 
17066, 17119 

Central Anatolia Aksaray, Ankara, Cankiri, Karaman, 
Kayseri, Kirsehir, Nevsehir, Sivas, 
Yozgat 

17192, 17130, 17080, 17246, 
17196, 17160, 17193, 17090, 
17140 

Aegean Afyonkarahisar, Aydin, Denizli, 
Izmir, Kutahya, Mugla, Usak 

17190, 17234, 17237, 17220, 
17155, 17292, 17188 

Mediterranean Adana, Antakya, Burdur, Isparta, 
Kahramanmaras, Mersin 

17351, 17372, 17238, 17240, 
17255, 17340 

Eastern Anatolia Ardahan, Bingol, Elazig, Erzincan, 
Igdir, Malatya, Mus, Tunceli, Van 

17046, 17203, 17201,17094, 
17100, 17199, 17204, 17165, 
17172 

South East 
Anatolia 

Adiyaman, Gaziantep, Kilis, 
Mardin, Sanliurfa, Siirt 

17265, 17261, 17262, 17275, 
17270, 17210 
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Table 2. Station groups by their stations and steady-state distributions. 

Station 
Group  

No 
Included Station(s) Name  

Steady-state 
Distribution 

1 
Adiyaman, Afyonkarahisar, Bartin, Bayburt, Bolu, 
Gaziantep, Igdir, Isparta, Kirklareli, Malatya, Mus, Ordu, 
Sivas 

 4348.05652.0

2 Aksaray, Antakya, Ardahan, Bilecik, Bingol, Erzincan, 
Kayseri, Kilis, Rize, Siirt, Usak, Yozgat  4130.05870.0

3 Adana, Amasya, Burdur, Cankiri, Düzce, Elazig, 
Gumushane, Karaman, Kutahya, Mardin, Yalova  4565.05435.0

4 Ankara, Artvin, Bursa, Edirne, Kastamonu, Mugla, Samsun, 
Sinop  4783.05217.0

5 Aydin, Denizli, Giresun, Kocaeli  5000.05000.0
6 Nigde, Sanliurfa, Van  3696.06304.0
7 Kirsehir, Nevsehir  3913.06087.0
8 Tokat  4131.05869.0
9 Tunceli  4406.05594.0

10 Kahramanmaras  4750.05250.0
11 Mersin  3847.06153.0
12 Izmir  5217.04783.0

The estimated transition matrices of 12 station 
groups are as follows: 

,
23846.076154.0
58580.041420.0

1 







P

,
18421.081579.0
57407.042593.0

2 







P

,
25541.074459.0
62545.037455.0

3 







P

,
267050.0732950.0
671875.0328125.0

4 







P

,
33696.066304.0
66304.033696.0

5 







P

,
13725.086275.0
50575.049425.0

6 







P

,
19444.080556.0
51786.048214.0

7 







P

,
05263.094737.0
70370.029630.0

8 







P

,
23810.076190.0
60000.040000.0

9 







P  

,
38095.061905.0
56000.044000.0

10 







P

,
11765.088235.0
55172.044828.0

11 







P

.
38095.061905.0
72727.027273.0

12 







P  
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Table 3. Autocorrelations for station groups up to lag 12. 

Station No 
Lag 1 2 3 4 5 6 7 8 9 10 11 12 

1 -.50727 -.49839 -.51344 -.54797 -.51726 -.52228 -.57953 -.55488 -.42870 -.33529 -.36948 -.48254 
2 0.06676 0.01455 0.02005 0.08271 0.06822 0.03880 0.09453 0.06346 -.06210 -.18069 0.05137 0.05681 
3 -.10495 -.07746 -.03376 -.08238 -.14187 -.08302 -.00489 0.00632 -.12521 -.05923 0.00799 -.11842 
4 0.02718 0.02449 -.01401 0.02524 0.10781 0.03974 -.08603 -.05501 0.05401 0.06498 -.08638 0.01507 
5 0.18561 0.22253 0.19923 0.13041 0.08457 0.21110 0.22106 0.14546 0.27684 0.24975 0.10616 0.04987 
6 -.24215 -.24862 -.22715 -.09526 -.10326 -.26643 -.22963 -.14108 -.29952 -.22720 -.19368 0.01772 
7 0.03461 0.03321 0.03026 -.04413 -.03345 0.06399 0.10467 0.01056 0.06867 -.12054 0.08219 -.11550 
8 -.01393 -.02430 -.02059 -.02102 -.02140 -.00952 -.07902 -.04267 -.05037 0.10300 -.03158 -.01392 
9 0.07693 0.10023 0.17467 0.1814 0.18505 0.03456 0.19800 0.18207 0.05888 0.07506 0.08904 0.29851 

10 -.04491 -.07911 -.18569 -.23429 -.24001 -.00345 -.21792 -.19250 0.06998 -.01565 -.00076 -.35263 
11 0.06995 0.06444 0.11300 0.23135 0.24472 0.00850 0.13946 0.15369 -.05958 -.01173 -.03272 0.32198 
12 -.01230 0.01228 0.01361 -.17646 -.16039 .018980 -.00528 -.07056 0.13039 0.08090 0.05023 -.30476 

202
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In the next step of model determination, the 
stations with the same steady-state distribution 
are collected in the same station group and the 
transition frequencies observed for each 
station are combined to estimate the transition 
matrices of these station groups.  

The 12 station groups respectively consist of 
1st group 13 stations, 2nd group 12 stations, 
3rd group 11 stations, 4th group 8 stations, 5th 
group 4 stations, 6th group 3 stations, 7th 
group 2 stations and the following groups, 
namely 8, 9, 10, 11 and 12th groups only 1 
station; this can be observed from Table 2. 
The first three of these station groups consist 
of all of 7 different geographical regions of 
Turkey, the 4th station group consists of 4 
different regions, the 5th and 6th station 
groups consist of 3 different regions and the 
7th and later station groups consist of stations 
from only 1 geographical region. In the 1st 
station group there are 4 stations from the 
Black Sea region and in the 2nd station group 
there are 3 stations from the Eastern Anatolia 
and Central Anatolia as in the highest 
frequencies. And in the 3rd station group there 
are 3 stations from the Black Sea region and in 
the 4th station group there are 4 stations from 
the Black Sea region as in the highest 
frequencies.  

Since the magnitude and even the direction of 
change in many meteorological variables is 
uncertain, in this study it is developed and 
studied many numbers of models as possible 
with different approaches. Each of these 
models which use a quadratic programming 
technique can be generally expressed as 
follows (Floudas and Visweswaran, 1995):  

xQxxcxMaxf TT
2
1)( 

subject to (ST) 

0,  xbxA , 

where 
Tx  is the transpose of vector x , and

the order relations in vectors and matrices are 
componentwise. As seen, a quadratic 
programming problem consists of a quadratic 
objective function and linear constraints. In 
our approach, the right-hand side constants of 
linear constraints, that is, the upper bounds are 
important because of the size of average 
temperature variability and the uncertainty of 
its direction of change. The models given as a 
quadratic programming problem can be 
explicitly formulated as follows: 




12

1

2

i
ixMin  or (sometimes 

 

12

1

12

i ij
ji xxMax )  

ST 

12,...,2,1;0

1

12,...,1;)(

12

1

12

1















ix

x

jPPx

i

i
i

j
i

ii

where the variable ix  denotes the weight of 

i th station group and iP  denotes the Least
Square Estimation of transition matrix of i th
station group. As mentioned in the following, 
the different models have been achieved by 

increasing assumptions and consequently 
increasing the number of constraints. Among 
these models, according to the assumptions 
used, there are the models giving precedence 
and not-giving precedence to the number of 
stations in station groups, the model bounded 
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by the transition matrix closest to all transition 
matrices and the model bounded by the 
symmetric transition matrix closest to all the 
transition matrices in the constraint, the 
models derived from the first two models by 
adding the constraints with the squares and 
fourth powers of transition matrices.  

Table 4 shows the number of non-zero 
solutions that the station groups rank among 

and the order of sizes of these solutions in 
quadratic programming models. As an 
example, the station group 1 having 13 
stations ranks among 45 non-zero solutions in 
which 36 of them are 0.05 and 10 of them are 
in the first order. Similarly, the station group 
12 having only one station ranks among 49 
non-zero solutions in which 35 of them are 
0.05  and 21 of them are in the first order.   

Table 4. Non-zero solution types related to station groups. 
Station 

Group No 
 of  

Stations 
 of non-zero 

solutions 
 of solutions 

05.0  
 of solutions 

in the first 
order 

1 13 45 36 10
2 12 42 31 5
3 11 47 36 5
4 8 49 35 6
5 4 47 38 8
6 3 47 36 12
7 2 42 35 6
8 1 41 22 5
9 1 43 30 1

10 1 49 36 15
11 1 39 30 3
12 1 49 35 21

Table 5. Some values for the non-zero solution types given in Table 3 and their means. 
Station 
Group 

No 
Solutions 05.0  Solutions 05.0  Mean Weights 

of 
Min* Max Min Max 0 05.0  

1 0.00094 0.04344 0.05347 0.82278 0.15125 0.18076 
2 0.00094 0.04689 0.05347 0.99998 0.09509 0.11742 
3 0.00001 0.04689 0.05205 0.60236 0.07823 0.09440 
4 0.00000 0.04689 0.05128 0.78002 0.10377 0.13309 
5 0.01410 0.04689 0.05205 0.99994 0.09865 0.14947 
6 0.00001 0.04689 0.05205 1.00000 0.16274 0.20596 
7 0.00008 0.04388 0.05205 0.99999 0.11039 0.12840 
8 0.00000 0.04852 0.05084 1.00000 0.12821 0.21986 
9 0.00094 0.04689 0.05346 0.75281 0.07996 0.10362 

10 0.00001 0.04689 0.05148 1.00000 0.12468 0.16192 
11 0.00001 0.04689 0.05151 0.69623 0.12098 0.14966 
12 0.00004 0.04863 0.05219 1.00000 0.25892 0.34932 
*The 0.00000 values on the table are actually non-zero values such that <0.00001.

Here, it is obvious that the comments to be 
made by considering the station numbers in 
the station groups will be very striking and 
show the significance of each station group, 
and hence the importance of stations in this 

group in the annual mean temperature 
changes. From Table 5, as an example, the 
station group 5 having 4 stations has the 
minimum value 0.0140 and the maximum 
value 0.04689 in the non-zero solutions <0.05, 

Çelebioğlu  / IJEGEO 5(2): 197-217 (2018)
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while it takes at least 0.05205 and at most 
0.99994 values in the non-zero 
solutions ≥0.05, and the corresponding 
means of these solutions are 0.09865 
and 0.14947 respectively. Similarly, 
the station group 12 having only one 
station has the minimum value 0.00004 
and the maximum value 0.04863 in 
the non-zero solutions < 0.05, while it 
takes at least 0.05219 and at 
most1.00000 values in the non-zero 
solutions ≥0.05  and the corresponding 
means of these solutions are 0.25982 
and 0.34932, respectively. 

It is compared the weight estimates obtained 
by two different sampling methods over the 
actual observed values for the changes in 
annual mean temperatures for errors. The first 
sampling was performed on the ranked data 
and the second on the time ordered data, i.e., 
over the combined historical data. The 
comparisons are made over the Mean 
Absolute Deviation Error (MADE) and Mean 
Square Error (MSE). For illustrating the 
diversity of models, only the best three and 
worst last of them are given in detail in Tables 
6 and 7. 

Table 6. The MSE values and number of non-zero weights 05.0 and 05.0  for the models of 
ranked and ordered data. 

Model* 
Ranked Data 

MSE 

 of 
non-zero 
weights 

Model 
Ordered Data 

MSE 

 of non-
zero 

weights 

MINSF3 - U 0.511840 8(4)** MINSR9 - U 0.187396 3(2) 

MINCO12 - U 0.512015 9(9) GM - A 0.187396 12(12) 
MINCO3 - U 0.512454 9(6) MAXCPSYM - A 0.190957 7(5) 
MINCAB*** 0.187396 12(12) MINS5 - MINSF5 0.191590 4(1) 

MIN5 - U 0.191590 7(5) 
MINCO5 - A 0.191590 7(7) 
MIN8 - A 0.194454 1 
MINS8 - AU 0.194454 1 

* Here A and U point out auto scaled and unscaled techniques for QSB program, respectively.
**The frequencies in the parentheses belong to the solutions 05.0 . 
***Here, in essence GM - A and MINCAB models give the same solution in quadratic programming 

 problem. 

Table 7. The MADE values and number of non-zero weights 05.0 and 05.0  for the models of 
ranked and ordered data. 

Model 
Ranked 

Data 
MSE 

 of non-
zero 

weights 
Model 

Ordered 
Data 
MSE 

 of 
non-zero 
weights 

MINSF4 - U 2.475107 4(2) MINSR9 - U 1.002128 3(2) 
MINCO12 - U 2.480284 9(9) GM - A 1.002128 12(12) 
MINSF3 - U 2.480780 8(4) MINCO12 - U 1.019858 9(9) 
MINCAB 1.002128 12(12) MAXCPSYM - A 1.020284 7(5) 

MIN8 - A 1.075461 1 
MINS8 - AU 1.075461 1 

Çelebioğlu  / IJEGEO 5(2): 197-217 (2018)
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These models are given in detail as follows: 

MINSF3: MINCO12: MINCO3: MINSR9: 




12

1

2

i
ixMin 



12

1

2

i
ixMin 



12

1

2

i
ixMin    



12

1

2

i
ixMin

ST ST ST ST 

.1
12

1

4
3

12

1

4
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where the matrix SYMP  in the model MAXCPSYM is a symmetric transition matrix which is the 

closest to all the transition matrices of station groups. In other words, the matrix SYMP  can be easily 

obtained by the following model MINAB with ab  , i.e., as the matrix AAP :

 MINAB: 

  















12

1

2

1
1

,)(
i

ABABi bb

aa
PPPMin

ST 

.0,0,1,1  baba  

The models MINSF3, MINCO12 and 
MINCO3 can be interpreted as minimizing the 
square of weights over the squares and fourth 
powers of transition matrices as constraints 

        
with P and 12

P
 

, and additionally

giving the precedence to the number of 
stations in station groups in the last 
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two models, i.e., in the models MINCO12 and 
MINCO3. In the solutions with extra powers 
of transition matrices, it has been observed 
some slight corrections relative to models 
without extra powers. In the model MINSF3, it 
is obvious that there is no precedence to the 
number of stations in station groups. 
Similarly, the other models can be interpreted. 
Here, it should not be forgotten that in the 
comments to be made for each model, it 
would be very useful to consider station 
numbers in station groups; because a station 
group in the solution including stations from 
different climatic zones will give it extra 
meaning and importance. It is also useful to 
give such a detail that the quadratic 
programming problem does not provide a 
feasible solution when the MINAB model has

an extra constraint a

  

≤b on a and b values.

In this case, the quadratic

 

programming 
problem gives positive solutions which do not 
satisfy  

1
12

1


i

ix

constraint. By dividing the coefficients from 
zero by the sum 




12

1i
ix

, 

 that is, with normalization relatively usable 
solutions can be obtained. 

Linear Regressıon Approaches 

In this section, it is investigated the variation 
of the annual mean temperatures in Turkey by 
the linear regression approach. For this reason, 
it should be based on the assumption that they 
have approximately normal distribution 
whereas the increases and decreases observed 
in annual mean temperatures have nonnormal 
distributions as shown in the graphs below.  
As seen from Table 8, the adjusted 

determination coefficients, 
2
adjR

's show that 
the regression models on the single station 
group means are also valid such that the single 
station group means explain at least 57.5, and 
at most  98.4, percent of the variation of 
annual mean temperatures. In fact, it is easy to 
see that there is a positive correlation between 
the number of stations in the station groups 
and the coefficients of determination for the 
regression models on single station group 
means, which is exactly 0.5740.  

Table 8. Regression estimates of annual mean temperature changes by the station group means. 
2
adjR 2

adjR

)025788.0()023025.0(
980618.0107793.0ˆ

,1GY ii 
9698.0  

)020419.0()019989.0(
885888.0006012.0ˆ

,2GY ii 
9767.0

)018150.0()016670.0(
947467.0009964.0ˆ

,3GY ii 
9838.0  

)051967.0()041947.0(
02966.1009881.0ˆ

,4GY ii 
8972.0

)064085.0()046589.0(
12893.1007066.0ˆ

,5GY ii 
8737.0

)034147.0()038675.0(
740424.0000063.0ˆ

,6GY ii 
9126.0

)037545.0()047825.0(
640916.0019806.0ˆ

,7GY ii 
8662.0

)031614.0()036470.0(
730136.0022189.0ˆ

,8GY ii 
9205.0  

)062106.0()071469.0(
638294.0022590.0ˆ

,9GY ii 
7012.0

)075607.0()066783.0(
853630.0045251.0ˆ

,10GY ii 
7391.0  

)113990.0()085237.0(
889269.0036170.0ˆ

,11GY ii 
5749.0

)107815.0()0726998.0(
08271.1001616.0ˆ

,12GY ii 
6915.0  
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Table 9. Goodness of fit summary for the fitted distributions. 

Distribution 
Kolmogorov 

Smirnov 
Anderson 
Darling Chi-Squared 

Statistic Rank Statistic Rank Statistic Rank 
Burr (4P) 0.03231 2 1.9646 3 71.011 4 
Dagum (4P) 0.03108 1 1.9441 2 99.126 5 
Gen. Logistic 0.03281 3 1.8495 1 55.527 3 
Normal 0.06518 15 12.081 15 202.71 18 

Furthermore, assuming the correctness of the 
results obtained in quadratic programming-
based models, multiple linear regression 
models parallel to these results are also 
considered and the determination coefficients 
of these models are also found to be larger. 
The histograms of the increases and decreases 

of annual mean temperatures obtained from all 
stations and the distributions compiled are 
given in Figures 1 - 3, and the goodness of fit 
summary of these three distributions and the 
normal distribution by Easyfit program is 
given in Table 8 above. 

Fig 1. Four-parameter Burr distribution for annual mean temperature changes. 
( k  =1.7487 = α,98199.0 = β,64411.0− = γ,64410.0 ) 
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Fig 2. Four-parameter Dagum distribution for annual mean temperature changes. 
( k  =0.57823 = α,90.427 = β,40.648− = γ,40.204 ) 

Fig 3. Three-parameter generalized logistic distributionfor annual mean temperature changes. 
( k  =0.07453 = σ,0.55838 = µ,0.05912 ) 
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Fig 4. Normal distribution for annual mean temperature changes. 
( 00977.0,0295.1   ) 

In multiple linear regressions, it should be 
noted that C represents the constant, i.e. the 
intercept of the model. From the respect of 
coefficients in the models, a pleasing point here 
is that the 12th station is usually placed in  the 
last orders in the case of multiple regressions

whereas it is usually located in the first orders 
with its weights in quadratic programming 
solutions. Here it should not be forgotten that the 
station (group) 12, i.e., Izmir has a tendency to 
have the highest average annual temperatures 
among all of the station groups. 

Table 10-1. Multiple linear regression estimates of annual mean temperatures changes of Turkey by 
the station group means. 

Model 
MLR 

Estimate 
Induced*  

MLR Estimate 
2
adjR

MINSF3-U 

Weight Coefficient Coefficient 

.9956 
(.9952) 

C - -.02327

1G .04994 .25723 .17175 

2G .03929 .17865 .26452 

3G .08062 .30371 .39672 

4G .09671 .12212 .13950 

6G .02910 .02683 

7G .02028 .02543 

9G .06663 .01742 

12G .61743 .05146 

*Induced estimates consist of models which are regressed over statistically non-zero coefficients.
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Table 10-2. Multiple linear regression estimates of annual mean temperatures changes of Turkey by 
the station group means. 

Model MLR 
Estimate 

Induced*  
MLR Estimate 

2
adjR

MAXCPS
YM- A 

Weight Coefficient Coefficient

.9885 
(.9880) 

C - .01374

3G .07409 .58463 .71678 

4G .18581 .21492 .28625 

5G .22226 .13929 

8G .08445 .07038 

9G .00409 .01378 

10G .03015 .10044 .10021 

12G .39915 -.16099 -.14238 

MIN8 - A 
MINS8 - 
AU 

Weight Coefficient Coefficient 
.9205 

(.9217) 
C - .02219

8G 1.00000 .73014 .73046 

MINCO12-
U 

Weight Coefficient Coefficient

.9956 
(.9952) 

C - -.02197

1G .08409 .24704 .17175 

2G .08409 .25385 .26452 

3G .08409 .35053 .39672 

4G .08409 .10424 .13950 

5G .08409 -.03176 

12G .57956 .06538 

MINSR9 - 
U 

Weight Coefficient Coefficient

.9712 
(.9719) 

C - -.00105

6G .19958 .46026 .46022 

9G .75281 .16611 .16615 

12G .04761 .34966 .34960 

*Induced estimates consist of models which are regressed over statistically non-zero coefficients.
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Table 10-3. Multiple linear regression estimates of annual mean temperatures changes of Turkey by 
the station group means. 

Model MLR 
Estimate 

Induced*  
MLR Estimate 

2
adjR

MINCO3 - 
U 

Weight Coefficient Coefficient 

.9956 
(.9955) 

C - -.02648 -.02012

1G .08403 .28841 .23596 

2G .08403 .25214 .21767 

3G .08403 .33962 .38868 

4G .08403 .15487 .13655 

5G .08403 -.07554 

6G .00008 -.01343 

7G .00008 .03930 

8G .00008 -.05797 

12G .57962 .06780 

MINCAB 
GM - A 

Weight Coefficient Coefficient 

.9966 
(.9966) 

C -.014920

1G .08333 .20243 .14224 

2G .08333 .23024 .28641 

3G .08333 .25262 .33662 

4G .08333 .19702 .16907 

5G .08333 -.03581 

6G .08333 .02529 

7G .08333 .03598 

8G .08333 -.01808 

9G .08333 .00283 

10G .08333 .02615 

11G .08333 .05117 .06693 

12G .08333 .03347 
*Induced estimates consist of models which are regressed over statistically non-zero coefficients.

Çelebioğlu  / IJEGEO 5(2): 197-217 (2018)



214 

Possible Approaches over Observed a and
b  Values

In this section, taking into consideration the 
120 possible values of transition probabilities 

00  , a  and 11 , b  in the estimates
of transition matrices of station groups other 
than those mentioned in previous sections we 
give some summary results. In addition, we 
give the models with the right hand side 

constraint restriction by 3P , and by the
transition probability matrix of the mean of 
annual mean temperature changes of all 
stations. The reason why we place the model 

with 3P  here is that the determination 
coefficient of the 3rd station group is larger 
than that of all other individual station groups. 
For the models based on the probabilities a

and b , it is worth noting that some of these
models have not feasible solutions because of 
the constraints of quadratic programming 
problem (see Fig. 4 ). Fig. 4 also shows the 
transitions between the solutions on the 
boundaries. For example, on the first 'row' of 
Figure 4, the notation 1012 GG 
corresponds to the transition from Solution S1 
to Solution S9, where the solutions evolve 
from G10 to G12, although G5 is also a part of 
the solution sometime. It should be noted here 
that the indices of station groups are in the 
magnitude order of weights in the solutions. 
Here any model with no feasible solution 
indicates that the tendency of 
increase/decrease in mean temperatures will 
not be in the direction of this model. On the 
other hand, Solution S92 specifically 
corresponds to the MIN8-A solution, and 
Solution S8 roughly coincides with the 
GMTPM solution: 




12

1

2

i
ixMin

ST 

1,,
12

1

12

1

 
 i

iGM
i

ii xPPx

where GMP  is the transition matrix estimated 
from the mean of annual mean temperature 
changes of all meteorological stations. 

When the solutions are examined under 
similar thoughts, it is observed that the orders 
of magnitudes of the weights of station groups 
change as the a values decrease from big to 
small values. The weights of station groups 
can be summarized as follows: the upper left 
corner is G12 corner, the upper right corner is 
G10 corner, the lower left corner is G8 corner 
and the lower right corner is G6 corner (we 
mean S72 solution). In a sense, similar words 
can be said for the edges of the feasible 
region: the station G12 on the upper corner of 
left vertical edge having the greatest weight 
leaves its place to the station G8 on the lower 
side, while the solutions are accompanied by 
the station groups G4 and G5 in the middle 
orders and the station group G5 is left later. 
Again in the magnitude order, on the last line 
of Figure 4 (the row above the solution to S92), 
the solution containing the station groups G6, 
G11, G8 and G7 transforms into a solution 
consisting of the station groups G8, G12 and 
G4 on the left corner. In the solutions on the 
right side of the feasible region and even to the 
right of the column starting with S1 (except 
S1), and including S40 and S41, the station 
groups G10, G7, G6 and G1 take place and in 
the solution S50 the order changes as   G7, G6 
and G10, and in the solutions S51 and S52 the 
order changes as G6, G7 and G11. In the 
continuation of these rows towards the low, 
the solution S61 includes the station groups 
G6, G7, G10 and G11, and the solutions S62 
and S63  include G6, G7 and G11 and G6, 
G11 and G7 as the first three components, 
respectively. On the bottom row, the solutions 
S73, S74 and S75 contain the station groups 
G6, G7 and G11. 

Finally, consider the solutions S35, S36, S45 
and S46 at the intersection with the largest 
number of station groups. Using the short 
notations given on the sides of Figure 4, these 
solutions are respectively 
G12,5,4,10,3,9,8,1,2,7,11,6; 
G12,8,4,5,3,9,1,2,10,11; 
G12,4,5,3,9,1,2,11,10,7,6 and 
G8,12,4,5,3,9,1,2,11,10  
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Note that the solution groups S36 and S46 
comprise 10 of station groups, while the 
solutions S35 and S45 include all station 
groups.    

Conclusion and Some Remarks 

In this study, using the observed average 
annual temperature values for 48 years in 58 
meteorological stations of Turkey we 
examined some scenarios which could react 
on the future annual mean temperature 
changes. For this purpose, firstly, aggregating 
the Markov chains related to the annual mean 
temperatures of 58 stations by their steady-
state distributions, 12 station groups are 
obtained and different quadratic programming 
models are considered. In these models, the 
right side transition matrices in the constraints 
indicate the direction of the temperature 
changes in a sense and the weights are the 
projections on 12 station groups which show 
the importance of each station group. 

Similar to the application in annual mean 
temperatures, for the differences in mean 
rainfall between successive years, if we take 0 
for the negative or zero cases, and 1 for the 
positive cases, it is also obvious that the same 
approach can be applied to the changes in 
mean precipitation. Even the Markov chain 
approach given here can be used to examine 
for the increases and decreases in mean 
temperatures and mean precipitations together, 
with a state space  

}1,0,:),{(  jijiS .
However, in such a case it may be necessary 
to take into account the dependence structure 
between mean temperatures and mean 
precipitations.  

Some of the findings of this study are: the 
station groups of 4, 10 and 12 have the largest 
number of non-zero solutions. The station 
groups of 3, 5 and 6 are in second order in 
respect of number of non-zero solutions. The 
third, fourth and fifth orders pertain to the 
station groups 1, 9 and the station groups 2 
and 7, respectively. Here, it should be noted 
that station groups do not take place lonely in 
the solutions. In these non-zero solutions, the 
station groups 12, 10, 6, 1, and 5 are the most 

frequently seen as the first order weights (see 
Table 4). In all non-zero solutions, in respect 
of the mean weights, the first five orders 
pertain to the station groups 12, 6, 1, 8 and 10. 
In the solutions 0.05 the orders of mean 
weights pertain to the station groups 12, 8, 6, 1 
and 10 (see Table 5).  

In the quadratic programming models, a 
variety of solutions have been obtained, 
ranging from solutions containing only 1 
station group to solutions containing 12 station 
groups with different approaches. Some of 
these solutions are given in Section 2. In 
Section 3, regression models which try to 
regulate the annual mean temperatures of 
Turkey over the station groups with non-zero 
weights in the quadratic programming given in 
Section 2 are considered. Statistically, only the 
coefficients of these first four station groups 
were significant in the regression models 
against the quadratic programming solutions 
containing the first four station groups and/or 
some other station groups. The adjusted 
determination coefficient of these regression 
models is as high as 0.9956. It should be noted 
that the first four station groups contain a total 
of 44 stations (75.9% of all stations). 

And finally, in Section 4, some possible 
approaches over observed a  and b  values
which are also related to the quadratic 
programming models are given in detail. 

In the study, the predictions of mean 
temperature changes for the future are not 
included. That is the reason why these 
estimates increase the volume of the article 
and our changeability on how to use the 
weights obtained by quadratic programming. 
When the weights are taken as probabilistic or 
deterministic, it is possible to carry out 
different simulation studies. It may even be 
interesting to compare over aftcasts which one 
of the probabilistic or deterministic 
approaches is closer to reality.  
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Si :ith feasible 
Solution  

N:No 
FeasibleSolution  

G12 G12,10 G12,10 G12,10 G10,12 G10,12 G12,10,5 G12,10,5 G10

         G10,7,6,1,5  

G8,12,4,5 
G8-

autosc G8,4,11,2,12,3,9 G8,11,4,2,3,12,9,6 G8,11,4,2,3,12,9,6 G8,11,6,2,7,9,1,3 G8,11,6,7,2 G8,11,6,7,2 G6,11,8,7  G7,6,10  

G6,11,8,7 

b G6,11,7

G6 

0,38095 S9 S8 S7 S6 S5 S4 S3 S2 S1 N N N G12G10 

0,33696 S19 S18 S17 S16 S15 S14 S13 S12 S11 S10 N N G12,8G10,7,6,1,5 

0,26705 S29 S28 S27 S26 S25 S24 S23 S22 S21 S20 N N G12,8G10,7,6,1,9,2,5,3,11 

0,25541 S39 S38 S37 S36 S35 S34 S33 S32 S31 S30 N N G12,8,4,5G10,7,6,1,9,2,5,11,3 

0,23810 S49 S48 S47 S46 S45 S44 S43 S42 S41 S40 N N G12,8,4,5G10,7,6,1,2,11,9,3,5 

0,19444 S60 S59 S58 S57 S56 S55 S54 S53 S52 S51 S50 N G8,12,4,5G7,6,10 

0,18421 S71 S70 S69 S68 S67 S66 S65 S64 S63 S62 S61 N G8,12,4,5G6,7,10,11 

0,13725 N S82 S81 S80 S79 S78 S77 S76 S75 S74 S73 S72 G8,12,4G6

0,11765 N S91 S90 S89 S88 S87 S86 S85 S84 S83 N N G8,12,4G6,11,8,7 

0,05263 N S92 N N N N N N N N N N a G8-autosc 

0,272730 0,296300 0,328125 0,336960 0,374550 0,400000 0,414200 0,425930 0,440000 0,448280 0,482140 0,494250

Fig 5. Solutions on the feasible region for the models with the observed  a  and b  values. 
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