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Abstract Microsatellites, also known as simple sequence repeats (SSRs) are very powerful molecular markers 

due to their high level of polymorphism, co-dominant inheritance, reproducibility and multi-allelic nature. 

Alleles of genomic- and transcriptomic-microsatellites of cotton and maize as well as published microsatellite 

data from many other crops species were used to reveal level of polymorphism differences between genomic- 

and transcriptomic-microsatellites; relationship between number of alleles and polymorphism, between motif 

length and polymorphism, between number of repeats and polymorphism, and level of fixation index values of 

genomic- and transcriptomic-microsatellites based on the observed and expected heterozygosity values. Based 

on 477 microsatellite loci studied, results indicated that polymorphic information content (PIC) values of 

genomic-microsatellites were higher than transcriptomic-microsatellites. Polymorphism levels of microsatellites 

increased as the number of allele increased. Although it is expected that loci with more number of repeats could 

be more polymorphic, there were not clear relationships between the number of repeats and polymorphism, and 

between motif length and polymorphism. Expected and observed heterozygosity values of genomic- and 

transcriptomic-microsatellites were different. Results also revealed that genomic and transcriptomic-

microsatellite markers produce more null alleles, and occurrences of homoplasy are more frequent among 

different species. Results indicated that functional markers developed from transcriptomic-microsatellites might 

not be suitable for phylogenetic studies but they could be very useful in agro-genomic research. 
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Introduction 

First termed by Litt and Lutty in 1989 [1], Simple Sequence Repeats (SSRs), or also widely called 

microsatellites, are tandemly repeated DNA sequences of mono-, di-, tri-, tetra-, penta- and hexa-nucleotide 

motif units distributed in plant and animal genomes [2-5]. Microsatellite DNA markers are obtained using 

polymerase chain reaction (PCR) in high stringent annealing conditions that permit the specific amplification of 

single loci [6]. Microsatellites are co-dominant, abundantly found throughout the genome, highly polymorphic, 

multi-allelic, reproducible and reliable markers. They are widely utilized in many applications including genetic 

diversity, genetic mapping, hybrid identification, population genetics, marker-assisted selection, and in many 

other agro-genomic studies [7-9].  

Microsatellites or SSRs could be classified according to the type of tandemly repeated sequences they 

contained. Perfect microsatellites are consisted of perfect repetitions, e.g., (CG)20, imperfect microsatellites are 

consisted of repeated sequences that are interrupted by different nucleotides, e.g., (GT)12GC(TT)8, compound or 

composite microsatellites are consisted of two or more different motifs in tandem, e.g., (CT)7(CG)6. The 

compound type microsatellites can also be perfect or imperfect. Microsatellites could be classified based on 

their location in organellar or nuclear genomes. Microsatellites can be present in organellar genomes, such as 
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chloroplasts and mitochondria, and nuclei. Also microsatellites are classified according to their discovery 

methods. Genomic-microsatellites are conventional types and they are obtained using genomic library 

preparation and identification methods. Next-generation sequencing technologies created another way of 

developing microsatellite markers without cloning and heavy manipulation tasks. RNA-sequencing (RNA-

seq) based microsatellite markers are very similar to that of expressed sequence tag-microsatellites (EST-

microsatellites). In last three-four years, EST-microsatellites have been replaced with the transcriptomic-

microsatellites obtained from RNA-seq and genome sequencing studies [6,9,10]. Transcriptomic-

microsatellites contain exonic regions of protein coding or non-protein coding regions of eukaryotic genes. As 

in EST-derived microsatellites, transcriptomic-microsatellites target transcribed regions (exons and untranslated 

regions) and have a higher rate of transferability across species than genomic-microsatellite markers [2,3,6,9-

12]. 

There are several hypotheses to explain the occurrence and expansion of microsatellites in genomes. Among the 

hypotheses two are dominantly pronounced. De novo microsatellite hypothesis suggests that the birth of 

microsatellites is a consequence of the creation of a proto-microsatellite. Proto-microsatellite is a short region 

DNA consisting of 3 or 4 repeated units of simple sequences, which are defined as a scramble of repetitive 

motifs lacking a clear tandem arrangement. It is suggested that a proto-microsatellite is expanded by strand 

slippages of DNA polymerase during replication [13, 14]. The other hypothesis is the unequal crossing-over 

during meiosis. Replication slippage is a symmetrical process, where the same number of repeats are added and 

removed. This process inevitably leads to either the loss of microsatellites or the insertion of a high number of 

repeats (gain or loss of motifs). The misalignment that gives rise to mutations occurs between a newly 

synthesized DNA strand and its complementary template strand. The two strands dissociate and reanneal 

incorrectly, forming a loop, which is stable due to the repetitive nature of the sequence. If the loop is formed on 

the nascent strand, the resulting mutation will be a repeat length expansion, while loops on the template strand 

result in a reduction of the repeat length [13]. Unequal crossing-over during meiosis (recombination) is usually 

associated with the exchange of repeated units between homologous chromosomes, and therefore, plays a 

limited role in microsatellite mutation. However, this mechanism might be responsible for microsatellite multi-

step mutations [15]. 

Microsatellite DNA markers are “ideal” genetic markers since they are very polymorphic and multi-allelic, they 

permit classification of individuals into more than two groups [3,16-18]. Most microsatellite markers are co-

dominant to enable discrimination between heterozygous and homozygous state [2,19]. Microsatellites are not 

epistatic meaning that they have no inter-locus interactions and thus they do not interfere with other marker loci. 

Most microsatellites are abundant and distributed almost evenly over the entire genome. They are not 

pleiotropic and polymorphisms are not affected with the variations in environmental, plant developments and 

tissue and organ [6,9]. However, there are several limitations of microsatellite markers in genetic, phylogenetic 

and agro-genomic studies. Occurrence of null alleles in microsatellites is one of three main limitations. Null 

alleles are locus deletion in the annealing primer site preventing locus amplification. Presence of null alleles 

causes heterozygous identification impossible and leads to erroneous estimations of allele frequencies and 

segregation rates [20]. Homoplasy causes erroneous estimations of allele frequencies and segregation rates. 

Homoplastic alleles are those alleles that are identical in length (size) but not in sequence, or identical in length 

and sequence but with different evolutionary history [21]. Presence of linkage disequilibrium in microsatellites 

is the third limitation. Linkage disequilibrium causes deviations from the random association of alleles in a 

population, which may be primarily caused by population sub-structuring and high levels of in breeding [22]. 

Occurrences of null alleles, homoplasy and linkage disequilibrium in genomic- and transcriptomic-microsatellite 

markers may differ and their presence may limit the utilization of microsatellite markers. This study used 

genomic- and transcriptomic-microsatellites from cotton and maize along with 472 genomic- and 

transcriptomic-microsatellite loci published to reveal: (i) level of polymorphism between genomic-and 

transcriptomic-microsatellites; (ii) relationship between number of alleles and polymorphism; (iii) relationship 

between motif length and polymorphism; (iv) relationship between number of motif repeats and polymorphism, 

and (v) determine the fixation index values of genomic- and transcriptomic-microsatellites based on observed 

and expected heterozygosity. 
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Materials and Methods 

Twenty cotton samples consisting Gossypium hirsutum L. and G. herbaceum L. cultivars, and 8 maize (Zea 

mays L.) commercial F1 hybrid varieties were used as plant materials. Genomic DNA from single seed from 

each plant sample was extracted using a protocol described in Karaca et al. [23]. Four cotton transcriptomic and 

genomic primer pairs [17], and 4 maize transcriptomic and genomic primer pairs 

(https://www.maizegdb.org/data.center/ssr) were utilized in this study. 

Polymerase chain reactions (PCRs) were carried out in a 25 µL reaction mixture containing 1X PCR assay 

buffer (50 mM KCl, 10 mM TRIS–Cl, 2.5 mM MgCl2), 0.2 mM each of dNTPs, 0.5 µM each of forward and 

reverse primers, 1 unit of Taq DNA polymerase and 80-100 ng of genomic DNA template. PCR was carried out 

in a thermal cycler (GeneAmp PCR System 9700) with the following amplification profile: 5 min hold at 95 
o
C, 

followed by a 10 cycle pre-PCR consisting of 20 s at 95 
o
C for denaturation, 30 s at 60 

o
C for annealing, and 1 

min at 72 
o
C for extension [24]. Annealing temperatures were reduced 0.5 

o
C each cycle. PCR was continued for 

30 more cycles at a 55 
o
C annealing temperature with a final extension for 10 min at 72 

o
C [25, 26]. 

The amplified products were separated by electrophoresis in 3% high resolution agarose gels (Agarose SERVA) 

containing 0.05 µg/mL ethidium bromide. The size of the amplified fragments (alleles) was determined using 

DNA size standards. DNA fragments were visualized under UV light in a gel documentation system [25]. 

Amplified bands (alleles) were co-dominantly scored. Scores for microsatellite amplicons were given 

approximate base pairs. Descriptive statistics including frequency of allele, observed and expected 

heterozygosity and inbreeding coefficient or Fixation Index (F) were calculated with GenAlEx 6.5 [27, 28]. 

 

Frequency of allele (Fa): 
2𝑁𝑥𝑥  +  𝑁𝑥𝑦

2𝑁
 

Where: Nxx is the number of homozygotes for allele x 

(xx), and Nxy is the number of heterozygotes containing 

the x allele (y can be any other allele). N is the number of 

sample. 

 

Observed heterozygosity (Ho): 
𝑁𝑥𝑦

𝑁
 

Where: Nxy is the number of heterozygotes, N is the 

number of sample. 

 

Expected heterozygosity 

(He): 
= 1 −  

𝑛

𝑖=1

𝑝𝑖
2 

Where: pi is the allele frequency of the i-th allele and 

n is the total number of allele at a locus. 

 

Inbreeding coefficient or 

Fixation index (F): 

𝐻𝑒 − 𝐻𝑜

𝐻𝑒
 

Where: He is expected heterozygosity 

and Ho is observed heterozygosity. 

 

Polymorphism information content (PIC) values using the equation below were calculated using Excel software 

[29]. 

 

𝑷𝑰𝑪 = 1 −  𝑝𝑖
2𝑛

𝑖=1
−  𝑛−1

𝑖=1  𝑛
𝑗=𝑖+1 2 𝑝𝑖

2𝑝𝑗
2 = 1 −  𝑛

𝑖=1 𝑝𝑖
2 −   𝑛

𝑖=1 𝑝𝑖
2 2 +  𝑛

𝑖=1 𝑝𝑖
4, 

where pi equals the frequency of the ith allele and pj the frequency of the (i+1) allele. 

In addition to plant materials used in the present study, 472 loci of microsatellites from different plant species 

are used (Table 1). Plant materials used in the present study included genomic and EST-derived and 

transcriptomic-microsatellites from sage, oil palm, castor, Allium spp., Garcinia spp., chickpea, wild and 

cultivated barley, olive, Philcoxia, Jatropa, Elymus, Zea and Zanthoxylum samples. 

Simple correlation analyses were performed between PIC and number of alleles (Na), between PIC and 

observed heterozygosity (Ho), between PIC and expected heterozygosity (He), to reveal any positive or negative 

relationships between these statistics. Finally, scatter pilots between PIC and repeating motifs and between PIC 

and motif length were drawn to better visualize the relationships. 
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Table 1: Source and types of microsatellite locus data used in the study 

Type # Loci #Sample and type Source Reference 

G
en

o
m

ic
-m

ic
ro

sa
te

ll
it

es
 

9 50 sage samples from 

natural populations 

Salvia officinalis L. [30] 

8 15 oil palm varieties Elaeis guineensis Jacq. [31] 

8 38 castor genotypes Ricinus communis L. [32] 

22 32 date palm cultivar Phoenix dactylifera L. [33] 

11 60 samples from two Allium 

spp. 

Allium mongolicum Regel [34] 

23 30 Garcinia genotypes Garcinia gummi-gutta (L.) Roxb. [35] 

9 23 chickpea accessions Cicer arietinum L. [36] 

10 189 adult walnut trees Juglans regia L. [37] 

48 41 breadfruit samples Artocarpus altilis, A. camansi and A. 

heterophyllus 

[38] 

5 30 Philcoxia samples Philcoxia minensis Taylor & V. C. Souza [39] 

20 96 wild and cultivated 

barley accessions 

Hordeum vulgare L. [40] 

T
ra

n
sc

r
ip

to
m

ic
-

m
ic

ro
sa

te
ll

it
es

 

46 24 olive varieties Olea europaea L. [41] 

49 96 wild and cultivated 

barley accessions 

Hordeum vulgare L. [40] 

28 22 sweet corn Zea mays L. [42] 

112 15 Elymus sibiricus 

accessions 

Elymus sibiricus L. [43] 

13 25 Arnica samples Arnica montana [44] 

17 370 Citrus accessions Citrus spp. [45] 

19 25 Jatropa accessions Jatropa curcas L. [46] 

15 102 pickly ash samples Zanthoxylum spp. [47] 

 

Results and Discussion 

This study consisted of laboratory experiments and in silico studies. In the laboratory studies two different plant 

species used were different in their ploidy levels. Maize is a diploid while cotton is an allotetraploid species. It is 

well known that tetraploid cotton species behaves as diploid species during meiosis [2]. In the present study, 

genomic- and transcriptomic-microsatellite markers from two species were scored as diploid using co-dominant 

scoring method [16, 28]. Among 4 cotton loci, two transcriptomic-microsatellites were polymorphic in twenty 

samples while genomic-microsatellites were non polymorphic. On the other hand, 4 maize microsatellite loci 

used three produced polymorphic markers within maize hybrid cultivars. One of the two transcriptomic-

microsatellite loci was not polymorphic among maize hybrid cultivars. A total of 5 loci were polymorphic and 

their descriptive statistics were used in further studies. 

There are two commonly used indices, or measures for the polymorphism degree definition or evaluation. One 

of the indices is heterozygosity usually referred as Н, which could be divided into expected heterozygosity (He) 

and observed heterozygosity (Ho). In the present study, we compared Ho and He for genomic- and 

transcriptomic-microsatellites. Ho and He are used to calculate fixation index values. The other index is 

polymorphism information content (PIC) which shows discrimination power of markers usually generated with 

primer or primer pairs or restriction enzymes. PIC also indicates the population polymorphism depending on the 

number and frequency of the alleles [29]. 

Number of alleles per cotton and maize locus, observed heterozygosity, expected heterozygosity and PIC along 

with fixation index values were calculated using GenAlEx software version 6.5 [28]. The number of alleles for 

polymorphic loci ranged from 3 to 8, with an average value of 4.6 alleles per locus. Observed heterozygosity 
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values ranged from 0.118 to 0.437, with an average value of 0.235 alleles per locus. Expected heterozygosity 

values ranged from 0.213 to 0.532, with an average value of 0.423 alleles per locus. PIC values of cotton and 

maize loci ranged from 0.22 to 0.645, with an average of 0.388 alleles per locus. It was obvious that there were 

null alleles and homoplasy in cotton data due to presence of G. herbaceum samples. We also found that one of 

cotton transcriptomic-microsatellites were not at Hardy–Weinberg equilibrium [20-22] calculated using 

GenAlEx software version 6.5 [28]. 

Comparison of PIC values between genomic- and transcriptomic-microsatellite polymorphism levels in cotton 

and maize revealed that there were some levels of PIC value differences between the two sources of 

microsatellites. PIC values of transcriptomic-microsatellites were lower than that of genomic-microsatellites. 

However, the number of alleles and loci obtained from laboratory experiments were very small for a better 

scientific conclusion. Therefore, this study used additional alleles and loci from different plant species presented 

in Table 1. 

The observed heterozygosity (Ho) is the part of heterozygous genes in a population. Ho is calculated for each 

locus as the total number of heterozygotes divided by the sample size. Among 477 loci (5 from laboratory 

experiments and 472 from in silico studies) used in this study, Ho values ranged from 0.11 to 0.60, with an 

average value of 0.416 alleles per locus. The highest Ho value was obtained from di-nucleotides of 

transcriptomic-microsatellites (0.60) while the lowest value of Ho (0.11) was obtained from penta-nucleotides of 

transcriptomic-microsatellites. Analyses based on 477 loci indicated that the values of Ho decreased as the motif 

length increased from di- to penta-nucleotides while Ho values of hexa-nucleotides from transcriptomic 

microsatellites were not paralleled with this conclusion (Table 2). 

Expected heterozygosity (He) is often used to describe levels of genetic diversity because He depends solely on 

the number and frequencies of alleles. He is less sensitive to the sample size than the observed heterozygosity. 

This makes He more attractive in population studies. Among 477 loci used in this study, He values ranged from 

0.36 to 0.74, with an average value of 0.57 alleles per locus. The highest He value of 0.74 was obtained from di-

nucleotides of genomic-microsatellites. Lowest value (0.36) of He was obtained from penta-nucleotides of 

transcriptomic-microsatellites. Results indicated that He values decreased as the motif length increased from di- 

to penta-nucleotides. However, while He values of hexa-nucleotides from transcriptomic microsatellites were 

not paralleled with this conclusion (Table 2). Hexa-nucleotide motifs are related with the tri-nucleotide repeats 

and called three-fold repeats. Similar Ho and He descriptive statistics was obtained. 

Values of Ho and He were used to calculate Fixation Index (F) values which ranged from -0.01 to 0.69. 

Generally F values close to zero are expected under random mating while F values close to +1 indicate 

inbreeding or undetected alleles. F values close to -1 indicate excess of heterozygosity due to negative 

assortative mating, or selection for heterozygotes [28]. Penta-nucleotides of transcriptomic-microsatellites 

produced the highest F value (0.69) followed with hexa-nucleotides of transcriptomic-microsatellites (0.61) and 

di-nucleotides of genomic-microsatellites (0.44). On the other hand, the lowest F value (-0.01) was found in di-

nucleotides of transcriptomic-microsatellites, followed with tetra-nucleotides (0.08) and tri-nucleotides (0.12) of 

transcriptomic-microsatellites. F values of genomic- and transcriptomic-microsatellites were different. Results 

of present study indicated that alleles of genomic- and transcriptomic-microsatellites should be combined for 

population structure and characterization studies in order to obtain reliable characteristics of populations. 

Polymorphism information content (PIC) values of genomic- and transcriptomic-microsatellites ranged from 

0.41 to 0.67, with an average value of 0.53 per locus. In the study, microsatellites of tri-nucleotide repeats from 

genomic DNA showed the highest value of PIC (0.67). The PIC values of genomic-microsatellite markers 

(0.65±0.24) were generally higher than that of transcriptomic-microsatellite markers (0.48±0.16). Within the 

transcriptomic-microsatellites, di-nucleotide repeats showed the highest PIC value (0.50) while tri-nucleotide 

repeats of genomic-microsatellites showed the highest PIC value (0.67). This indicated that di-nucleotide 

transcriptomic-microsatellites and tri-nucleotides of genomic-microsatellitesare much powerful in genetic 

polymorphism studies. 

Correlation analyses between descriptive statistical values, PIC and F values along with their averaged values 

and standard deviations were presented in Table 2. Compound type microsatellite from genomic and 

transcriptomic sources were excluded from analyses because the number of compound microsatellites of 
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genomic- and transcriptomic sources were quite different. When larger number of compound microsatellites 

from genomic- and transcriptomic-microsatellites are studied, much reliable results could be obtained.  

Numbers of genomic-microsatellite motif length ranged from two to five. However, the number of observations 

in tetra- and penta-nucleotides was very low in genomic-microsatellites. There was only one observation for 

tetra-nucleotides and three observations for penta-nucleotides. The highest number of repeats were found in di-

nucleotides (109) followed with tri-nucleotides (64). Unfortunately, the number of loci and motif lengths among 

genomic- and transcriptomic-microsatellite data were quite different. Transcriptomic-microsatellites contained 

di- to hexa-nucleotide motif lengths. Tri-nucleotide microsatellites were the most abundant (160) followed with 

di-nucleotides (70) while hexa-nucleotides were the lowest motif length (12) followed with penta-nucleotides in 

transcriptomic-microsatellites (Figure 1 and Table 2). 

 
Figure 1: Scatter pilots between PIC and motifs in genomic- and transcriptomic-microsatellites 

Table 2: Descriptive statistics, PIC, fixation index (F) and correlation analyses of genomic- and transcriptomic 

microsatellites 

Type Motif N Rpt 

(SD) 

Mean Values (SD) Fixation 

Index 

(F) 

Correlations 

Na Ho He PIC PIC-

Rpt 

PIC-

Na 

PIC-

Ho 

PIC-

He 

Genomic-

microsatellites 

Di- 109 14.13 

(±6.49) 

9.13 

(±6.95) 

0.41 

(±0.29) 

0.74 

(±0.20) 

0.63 

(±0.25) 

0.44 -0.23 0.67 -0.04 0.62 

Genomic-

microsatellites 

Tri- 64 13.86 

(±8.34) 

8.03 

(±4.57) 

0.57 

(±0.28) 

0.70 

(±0.17) 

0.67 

(±0.19) 

0.18 0.41 0.61 0.06 0.80 

Genomic-

microsatellites 

All 173 13.91 

(±7.19) 

8.65 

(±6.12) 

0.52 

(±0.28) 

0.73 

(±0.20) 

0.65 

(±0.24) 

0.28 0.01 0.64 0.00 0.64 

Transcriptomic-

microsatellites 

Di- 70 12.41 

(±7.08) 

4.31 

(±2.02) 

0.60 

(±0.38) 

0.59 

(±0.16) 

0.50 

(±0.18) 

-0.01 0.10 0.76 0.28 0.85 

Transcriptomic 

-microsatellites 

Tri- 160 6.19 

(±1.51) 

4.27 

(±1.56) 

0.50 

(±0.40) 

0.57 

(±0.13) 

0.49 

(±0.14) 

0.12 0.20 0.70 0.23 0.91 

Transcriptomic 

-microsatellites 

Tetra- 39 6.90 

(±3.12) 

4.26 

(±2.75) 

0.38 

(±0.27) 

0.42 

(±0.20) 

0.48 

(±0.25) 

0.08 0.67 0.76 0.68 0.84 

Transcriptomic 

-microsatellites 

Penta- 18 4.11 

(±0.32) 

3.22 

(±1.40) 

0.11 

(±0.10) 

0.36 

(±0.14) 

0.41 

(±0.09) 

0.69 -0.45 0.73 0.11 0.77 

Transcriptomic 

-microsatellites 

Hexa- 12 5.08 

(±1.93) 

4.17 

(±1.47) 

0.17 

(±0.13) 

0.45 

(±0.20) 

0.42 

(±0.14) 

0.61 -0.04 0.82 -0.21 0.94 

Transcriptomic 

-microsatellites 

All 299 7.57 

(±4.66) 

4.21 

(±1.86) 

0.48 

(±0.38) 

0.54 

(±0.16) 

0.48 

(±0.16) 

0.12 0.18 0.73 0.32 0.84 
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Motif: the length of repeats unit, Rpt: repeat numbers, N: Number of individuals analyzed, Na: number of 

alleles, He: expected heterozygosity; H: heterozygosity, Ho: observed heterozygosity, PIC: polymorphism 

information content, SD: standard deviation 

Results revealed that there existed an inverse relationship between motif length and PIC with a negative 

correlation value of -0.174. Also it is noteworthy that the relationship between motif length and PIC might be 

microsatellite class specific as correlation was more consistent for some microsatellite types (Table 2). 

However, larger data set with well-distributed motif lengths are required to confirm and verify the observed 

negative correlation between motif length and PIC values. 

In the present study, we also studied relationship between PIC and number of motif repeats (Figure 2, Table 2). 

Motif repeats of transcriptomic-microsatellites mainly consisted of repeating motifs less than 12 while genomic-

microsatellites contained less than 20 repeating motifs. It appeared that transcriptomic-microsatellites with 

higher number of repeats have lower level of PIC values. More than half of transcriptomic-microsatellites with 5 

to 15 repeats had PIC value of 0.5. On the other hand, majority of genomic-microsatellites with 10 to 20 repeats 

had PIC value of 0.5 (Figure 2, Table 2). 

Based on the combined genomic- and transcriptomic-microsatellite data the scatter plots between PIC values 

and number of repeats (repeating motifs) indicate that there existed no strong correlation between the PIC and 

number of repeats (Figure 2). Also overall correlation between the repeats and PIC values was weak with 

correlation value of 0.244. However, we detected a moderate correlation (0.67) between number of repeats and 

PIC in transcriptomic-microsatellites consisting of tetra-nucleotide repeats (Table 2).  

 

 
Figure 2: Scatter pilots between PIC and number of repeats in genomic-, transcriptomic-microsatellites and 

combined data 

The number of microsatellite alleles in genomic- and transcriptomic-microsatellites was different. To understand 

the possible relationship between polymorphism of genomic- and transcriptomic-microsatellite markers, scatter 
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plots were made between number of alleles detected and the PIC values. The scatter plot between number of 

alleles (3-10) and PIC showed the widest variations. This indicated that there was a low level of correlation 

between PIC values and 3-10 alleles. As presented in Figure 3 and Table 2 we found that there were 

considerable degree of relationship between the allele number greater than 10 and PIC values. These findings 

indicated that markers with higher number of alleles potentially produce higher level of PIC.  

Correlation analyses between expected heterozygosity and PIC revealed close relationships between these two 

entities. In the present study, the highest correlation value between He and PIC was found in hexa-nucleotides of 

transcriptomic-microsatellites while the lowest correlation between He and PIC was found in di-nucleotides of 

genomic-microsatellites. In general, higher correlation values between expected heterozygosity and 

polymorphism were found in transcriptomic-microsatellites. 

 
Figure 3: Scatter pilots between PIC and number of alleles in genomic-, transcriptomic-microsatellites and 

combined data 

Correlation analyses between observed heterozygosity and PIC indicated that these two entities were not related 

with an exception of tetra-nucleotides of transcriptomic-microsatellites. Observed heterozygosity values and 

PIC values were correlated in tetra-nucleotides of transcriptomic-microsatellites. Low correlation values 

between observed heterozygosity and PIC values indicated that observed heterozygosity was dependent upon 

sample size and could not be used in identification of informative microsatellite markers. 

 

4. Conclusions 

Present study used 5 loci from cotton and maize and 472 microsatellite loci from other plant species presented in 

Table 1. Results clearly indicated that polymorphic information content values of genomic-microsatellites were 
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higher than transcriptomic-microsatellites. Analysis revealed that PIC values of genomic- and transcriptomic-

microsatellites increased as the number of allele increased. The number of alleles was higher in genomic-

microsatellites than transcriptomic-microsatellites. Although it is expected that loci with longer motifs and more 

number of repeats are much more likely to be more variable than shorter motif and fewer number of repeats due 

to faster mutation rate, we could not confirm any relationship between numbers of repeats and polymorphism, 

and between the motif length and polymorphism. 

Results clearly showed that there were differences between expected heterozygosity and observed 

heterozygosity values of genomic- and transcriptomic-microsatellites. Based on five loci used in cotton and 

maize, results also revealed that genomic- and transcriptomic-microsatellite markers produce more null alleles. 

We noted that cotton and maize differed in the level of homoplasy. Based on the descriptive statistics we 

suggested that functional markers obtained from transcriptomic-microsatellites might not be suitable for 

phylogenetic and evolutions studies but they could be very useful in genetic fingerprinting and agro-genomic 

studies. 
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