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Abstract A twin rotor system is a static testbed to simulate and control certain dynamics of rotor craft aerial 

vehicles. The control of pitch dynamics of a twin rotor mechanism using nonlinear adaptive control method has 

been considered. The system parameters are assumed unknown and the technique of nonlinear adaptation using 

manifold immersion is performed for their estimation. Reference tracking is obtained. The experimental 

validation of the theoretically proposed controller is presented by implementing discrete time realization of 

control algorithm using digital controller interfaced in real time with Simulink. The potential of proposed 

algorithm relies upon the flexibility in the structure of control algorithm and promising transient behavior of 

closed loop system dynamics. 
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1. Introduction 

A twin rotor system is a platform that is used to simulate certain system dynamics found in the helicopters and 

other rotor crafts. This piece of equipment behaves as a static test bed for many aerial vehicles. It is a 

challenging system for modelling and control. It also acts as a benchmark to simulate and test new and advanced 

control techniques. A twin rotor mechanism is two degree of freedom system. It has pitch dynamics and roll 

dynamics, either of which are nonlinear and mutually coupled. Moreover, including in the dynamics of the 

motor-propeller actuator along with the motor amplifier, complicates the problem still more as it adds more state 

variables in system dynamics, which tantamount to increase in the order of the system. To add to the difficulty, 

there are various uncertain system parameters. Hence there is always a room for the better and effective control 

technique for twin rotor mechanism. 

There are various control techniques applied to twin rotor mechanism in literature. A nonlinear robust controller 

is designed for the twin rotor control system (TRCS) in [1], where the proposed controller is designed using 

dynamic surface control (DSC) technique, which is an advance version of integral Back-Stepping control 

approach through the use of dynamic low pass filters. The work in [2] focuses on the research of practical 

application of robust suboptimal control for the Twin Rotor multiple input multiple output (MIMO) System, 

where the MIMO system is represented as dynamically related single input single output (SISO) systems. The 

robust and suboptimal control algorithm is based on the auxiliary loop method for disturbances compensation 

and suboptimal linear quadratic regulator (LQR), which is applied to the simplified linearized model of the 

plant. The research in [3] considers a model based switching control scheme. The philosophy of the approach is 

to design a conventional linear or nonlinear feedback control scheme for a nominal plant model and to force the 

true system states to that of the nominal model by introducing a switching term. Model predictive control and 

passivity based control algorithm is proposed in [4, 5], which rely upon solving an optimization problem (OP) in 

order to minimize some user defined objective function (OF) subjected to constraints on the characteristic 

variables and energy shaping and damping injection (ESDI) techniques. Neuro sliding mode controller and 

Nonlinear robust observer based control are considered in [6, 7] and Adaptive Sliding Mode Tracking Control is 

used in [8]. 
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Most of these techniques consider the linear system model or a reduced order model of the system such as 

explicitly stated in [2]. Moreover, controllers do not have many tunable parameters to gain much control over 

system responses. Many controllers suffer degradation of response as the operation conditions change or the 

system parameters vary with time. We have applied a robust adaptive nonlinear control algorithm that relies on 

robustification of reduced order system controller against full order system dynamics [9]. The controller is also 

robust against unknow system parameters and has a lot of free tunable parameters to gain control over feedback 

dynamic response of the system output. 

 

2. Overview of the Hardware Setup 

Figure 1 shows the schematic diagram of the hardware setup. It consists of two rotors. One of the rotor actuates 

pitch dynamics and it is termed the main rotor. The other rotor actuates yaw dynamics and it is termed the tail 

rotor. These actuators consist of brushless DC motor-propeller assemblies connected to a rod that is mounted on 

a pillar-base support. Motors are driven by electronic speed controller. The hardware has two potentiometers to 

measure pitch and yaw angles. There is an adjustable counter weight in the assembly. 

 
Figure 1: An overview of the hardware setup. 

 

3. The Control Algorithm Synthesis 

Consider a nonlinear parameter uncertain system, 

     , e ep s p u f p g p u    (1) 

where 
np and 

m
eu  . The state vector p evolves on a smooth manifold  of dimension n , which is 

spanned by tangential manifold to the system map s . The system map s in Equation 1 has been decomposed into 

a drift vector field (.)f and a controlled vector field g . In Equation 1,  eu U p is the system forcing 

function with U a state dependent input set which belongs to the control bundle  
p

U p

 . The topological 

manifold immersion based nonlinear control approach involves defining a reduced order exosystem. The state 
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trajectories of the exosystem evolve on a C


 submanifold Q . The problem of controller design then 

boiled down to synthesize a control law that dynamically immerses the state trajectories of full order system to 

the manifold Q . Let us consider an exosystem with state vector
qq with q n , which contains origin in its 

reachable set. This can be achieved by defining the vector field  q  of the exosystem that governs the 

evolution of q as given by Equation 2. 

 q q    (2) 

Defining a smooth submanifold for the exosystem of Equation 2 as: 

  Q ; qnp p q q       (3) 

The controlled integral curves of system map s can be attracted by the submanifold Q if partial differential 

Equation 4 along with the condition in Equation 5 is satisfied [9]. 

       f q g q L        (4) 

2( ) 0     (0)  as tq t q      (5) 

Here  ( )q qL     is the so-called Lie derivative. Also      ,0q v q    on the submanifold Q  

and   ,u v p p  is the synthesized feedback control law that renders Q attractive.  . is the implicit 

description of Q  and it is given by parameterized form in Equation 6. 

    0p p q      (6) 

Introducing state variable  to define “off” the submanifold Q dynamics given by: 

 
  

,
, ,s u p

L s p p
q


 


 

 
 
 



    (7) 

In terms of  and any constant 0  , the synthesized controller   the system mapping is given by, 

  , ,p s p p    (8) 

For any general system of form, 

1 1 1 2 1 2

2  1 2

( ) ( )

( )T

p p p p

p p u

 

  

 

 




  (9) 

where (.)i and (.) are smooth mappings,  i are unknown parameters and 1 1 1( )p p is globally stable, 

then for constants 0  and 0k  , the geometric adaptive estimates of  i are given by [9]. 

 
  

 

1

2

1 1 2 1 2
1

ˆ

2 1 1

2

( ) ( )

ˆ

( )

p p p p

I
kp L V p

p





  

  




  
 

    
   
 


  (10) 

and the corresponding geomantic synthesized control law is given by, 

 
 

22 1 1

2 2  1 T

 1  1

( )
ˆ ˆ( , )

ˆ( ) ( )

kp L V p

u p
p p


  

  

 
   
  
 

  (11) 
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The vector
T

 1 2  1
ˆ( ) ( , )p p       is given by: 

2

 1 1 1
0

( ) ( , )
p

p p d        (12) 

 

2

2

2
2  1 2 1 1 2

T

2 1  1  1 1
0

ˆ( , ) ( )
2

ˆ                ( , ) ( , )
p

p
p k L V p p

p p d

   

      

 
  

 

 

  (13) 

According to [10], 
1 1
( )V p  is any mapping such that for some class-K function (.) , we have,  

1 1 1 1( ) ( )L V p p     (14) 

and 1 0  , 2 0  are constants. 

4. Experimental test bed and system dynamics  

Consider the experimental testbed of twin rotor mechanism in the Figure 2.  If   denotes pitch angle of main rod 

and  denotes the angular speed of main rotor motor then the system state variables for pitch dynamics are 

described by Equation 15. 

 
TT

1 2 3p p p p       
   (15) 

 
Figure 2: An overview of the experimental setup. 

If we consider the second order curve fit for the static thrust calibration of main rotor against its driving signal 

using arrangement in Figure 3, and results in Figure 4, then the dynamics of system are described by following 

system of Equation 16. Force decomposition is shown in Figure 5. 

 

   

 

Τ
2

2 1 2 2 3 3 3

T

4

T
2

3 1 2 2 3 3 3 4

0 0

, e e

f p p k p k p p k

g p k

s p u p k p k p p k k u

     



      

  (16) 



Naseer A                                                    Journal of Scientific and Engineering Research, 2017, 4(5):162-173 

 

Journal of Scientific and Engineering Research 

166 

 

 
Figure 3: Thrust calibration setup. 

 
Figure 4: Motor static thrust calibration curve fits. 

 
Figure 5: Force decomposition. 

Equation 2 and Equation 8 evaluate to following expressions. 
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 
Τ2

2 1 2 1q q k k         (17) 

   
T

1 2 1 1 2,p q q q q q        (18) 

  1 3 3

4

,p
k p

k

 


  



  (19) 

The reduced order system is given by Equation 20. 

1 2

2

2 1 2 2 1

3 1

p p

p k p k

p





 

 



  

  

 





 

  (20) 

The system in Equation 20 immerses to system described by Equation 21. 

1 2

2

2 1 2 1

p p

p k k 



  




  (21) 

Let us consider feedback linearization of Equation 21 as, 

1 : 0u u     (22) 

The immersion control law is given by, 

  1 3 3

4

,p
k p

k

 


  



  (23) 

Using Equation 21 and Equation 22 we get, 

 
T

2 1 2 2p p k p k u     (24) 

For the estimation of unknown parameters in Equation 24, using the results in Equation 9 through Equation 14, 

we get. 

1 1 2 1

1 1 2 2

( ) 0,    ( ) 1

,       0

( ) 1

p p

k k

p

 

 



 

  

 

  (25) 

2 1 1 1( ) 2L V p p    (26) 

1 2

2

2 2 1 3  1 2 4 1 2
ˆ

c p

c p c p c p p




 
  

  
  (27) 

ˆ

2 2

0 0

0p




 
   

 
  (28) 

 
1

T

2 2

1

0 2p p
p


 


  


  (29) 

T

1 2 2 2 1 2 1 1 2 2

2

ˆ2k p kp p
p


      


     
 

  (30) 

The parameter estimates in Equation 10 leads us to, 

5 1 6 2

2 2

7 1 8 2 9 1 2 10 2 1 11 1 1

ˆ
ˆ ˆ

c p c p

c p c p c p p c p c p


 

 
  

    


  (31) 



Naseer A                                                    Journal of Scientific and Engineering Research, 2017, 4(5):162-173 

 

Journal of Scientific and Engineering Research 

168 

 

The control law in terms of estimates parameters is given by, 

  2 2  1 2 1  1  1
ˆ ˆ ˆ( , ) 2 ( )u p kp p p             (32) 

At the last the reference tracking is achieved by modifications of control law as, 

  1 3 3
1

4

, ( )p
k p

t
k

 
 

  
 


  (33) 

A typical classical proportional derivative tracker law can be used to follow reference command as given by, 

( ) ( ( ))t e t    (34) 

  3

4

.
(.)

(.)p d

k

k

d
k k

dt

 
  

 
     (35) 

5. Simulation and Experimental Testing 

The actual values of the system parameters in the system modelling equations are given in Table 1.  

Table 1: Numerical values of the system parameters. 

Parameter Value Parameter Value 

3
k  145 

4
c

 
0.018 

4
k  7.15 

5
c  -0.25 

k  61 
6

c  -214 

1
  4.1 

7
c  5×10

-4
 

2
  1.0 

8
c  845.0 

  2.1×10
-3

 
9

c  0.25 

1
c  -6.25 

10
c  -750.0 

2
c  72.0 

11
c  -0.05 

3
c  -3.25 

12
c  0.125 

 

The Simulink model of the closed loop system with reference tracker is shown in Figure 6. 

 
Figure 6: Simulink model of the closed loop system 

The simulation result for pitch response is shown in Figure 7. The response is stable with zero steady state error. 
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Figure 7: Closed loop simulation response of Twin Rotor Pitch. 

 

The simulation result for pitch rate response is shown in Figure 8. The pitch rate decays to zero within 1.5 

seconds. 

 
Figure 8: Closed loop simulation response of Twin Rotor Pitch Rate. 

 

The simulation result for manipulated variable response is shown in Figure 9. The magnitude of variable is within 

practical limits and drives the plant output to the desired reference signal. 

 
Figure 9: Closed loop simulation response manipulated variable. 
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The schematic representation of experimental hardware setup is shown in Figure 10. 

 
Figure 10: Schematic representation of hardware setup. 

The experimental RCP Simulink model of the closed loop system with reference tracker is shown in Figure 11. 

 
Figure 11: RCP mode of operation of testbed 
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The experimental result for pitch response is shown in Figure 12. The response is stable with zero steady state 

error. 

 
Figure 12: Experimental closed loop response of Twin Rotor Pitch. 

 

The experimental result for pitch rate response is shown in Figure 13. The pitch rate decays to zero within 1.5 

seconds. 

 
Figure 13: Experimental closed loop response of Twin Rotor Pitch Rate. 

 

The experimental result for manipulated variable response is shown in Figure 14. The magnitude of variable is 

within practical limits and drives the plant output to the desired reference signal. 
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Figure 14: Experimental closed loop response of manipulated variable. 

 

6. Discussion and Conclusions 

A robust nonlinear adaptive controller for the pitch of twin rotor mechanism has been presented. System 

parameters are considered unknown and they are estimated using nonlinear manifold immersive adaptation. The 

proposed control technique is simulated in Simulink. The theoretical technique is tested in real time using digital 

controllers and data acquisition cards. The control algorithm has a lot of free tunable parameters. The results 

showed promising behavior of closed loop system in the presence of parameters uncertainties. Moreover, a 

greater control of closed loop system dynamics is possible owing to the flexibility in control algorithm. 
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