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A proof of projection method about classical iterative methods
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Abstract Gauss-Sediel and Successive Over Relaxation (SOR) are two classical iterative methods to solve the
large linear system AX = b . In this paper, we prove that the two iterative methods are two orthogonal projection
methods.
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1. Introduction

Givenan Nx N real matrix A, and a real N -vector b, we consider to find X belongingto R" such that
AX=b, (1.1)

where A is coefficient matrix and b is the right-hand side vector. Jacobi, Gauss-Seidel and SOR are three

efficient methods suitable for solving the problem (1.1). They are all iterative methods by modifying one or a
few components of an approximate vector solution at a time, and the criteria for modifying a component in order

to improve an iterate is to annihilate some component of the residual vector b — AX .
We split A into three parts
A=D-E-F
where D is the diagonal of A, — E is the strict lower part and — F its strict upper part. We let X, be the K -
th iterate. With the above notation, the Jacobi iteration in vector form can be written as

X, =D (E+F)x +D7b. (1.2)
Similarly, the Gauss-Seidel iteration in vector form can be written as
X, =(D-E)'Fx,+(D-E)'b. (1.3)

The difference between (1.2) and (1.3) is that the approximate solution of Gauss-Seidel is updated immediately
after the new component is determined.
By introducing a parameter @, the SOR iteration is based on the splitting

oA =(D—aE)—(oF +(1—w)D),
and the SOR iteration in vector form can be written as
X, = (D - @E) [oF + (1- w)DIx, +(D—E) b  (14)
A lot of application about these three iterative methods can be found in [2-4]
2. Projection Method

Most of the existing practical iterative techniques for solving large linear systems of equations utilize a
projection process in one way or another.

Let ~and L be two M — dimensional subspaces of R". In general, xis called search subspace and L the
subspace of constraints. A projection technique onto the subspace & and orthogonal to L is a process which
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finds an approximate solution X to (1.1) by imposing the conditions that X belong to & and that the new
residual vector be orthogonal to L .
Find X € i, suchthat b— AX L L.

If we exploit the knowledge of an initial guess X, to the solution, then the approximate problem should be
refined as

Find X € X, + &, such that b — AX L L.
Most standard techniques use a succession of such projections. Typically, a new projection step uses a new pair
of subspaces xand L, and an initial guess X, equal to the most recent approximation obtained from the
previous projection step, see [1] for details.
Theorem 3.1 An elementary Gauss-Seidel step as defined by (1.3) is a projection step with k¥ = L = span{ei }

Proof We rewrite (1.4) as
(D-E)x,,, =Fx, +Db,

from the perspective of component updates, this iterate process is actually a N steps update, namely N steps
projection. We assume that X, ,, has two components and X, ,, (i) is the i —th component of X, ,, . The update
equation of X, ., (1) is
Ay Xy 1 (D) + @55 X441 (2) + -+ gy Xieoa (1 = 1) + 3%, (1)

= = Q4 Xk (i+1) - Qi(i+2) Xk (i+2)—-—a;,X, (k) +b;.
This equation can be seen as the update from the vector

(Xes @ X1 (2), -+, X, (1), X, (1 +12),- -+, %, ()
to the vector

(Xk+l (1)’ X1 (2), T Xk+1(i)1 Xy (i +1), AR (n)) .
If i changes from 1 to N, all the components of the update is finished, i.e.

(Xk+l(1)1 Xk+1(2)! T Xk+1(i)1 Xy (i +1)" iy X (n))
= (X ) X1 (2), -+ % (1), X, (( +1),--+, X, () +£(0,0,---,01,0,---,0)’, (2.2)

here (A) represents the transpose of the matrix A . We denote the second vector (0,0,---,0,1,0,--,0) on the
right hand side of (2.1) as €, , and the left vector on the left hand side as X, ;). So (2.1) can be rewritten as
Xs1i) = Xikawiog +te(i)-
The | —th component of the residual vector b — AX equal to zero, i.e.
(e(i))'(b - Ax(k+1,i)) =0.
So Gauss-Seidel step is a projection step with x = L = span{ei }
Theorem 3.2 An elementary SOR step as defined by (1.4) is a projection step with x = L = span{ei }
Proof We rewrite (1.4) as
(D-abL)x,,, =(1-@)D+aU)x, +ab,
from the perspective of component updates, this iterate process is actually a N steps update, namely N steps

projection. We assume that X, ,, has two components and X, ,, (i) is the i —th component of X, ,, . The update
equation of X, ., (1) is
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@3, X, 1 (1) + @8, X, 5 (2) + -+ @85y X, (1 = 1) + @ X, (i)

= (1-m)a;x, (i) — o8y, X, (1 +1) =@, X, (i +2) = — By, X, (K) + b,

This equation can be seen as the update from the vector
(K (@), X1 (20, % (), % (1 +2),-, %, ()
to the vector
(Xk+1(1)! Xs1 (2)’ Xy (i): Xy (i +1)’ s Xy (n)) .

If i changes from 1 to N, all the components of the update is finished, i.e.

(Xk+l @), Xis1 (2),-- Xk+1(i)1 Xk (i+1),--, Xy (n)

= (s @ %y -+ % 0%, (4D, %, () #1(00,-+-,010,-0) . (22
(2.2) can be rewritten as
Xs1i) = X(kawiog +te(i)'

The 1 —th component of the residual vector b — AX equal to zero, i.e.

(e(i) )'(b— Ax(k+l,i)) =0.

So Gauss-Seidel step is a projection step with k¥ = L = span{ei }
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