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Abstract Gauss-Sediel and Successive Over Relaxation (SOR) are two classical iterative methods to solve the 

large linear system bAx  . In this paper, we prove that the two iterative methods are two orthogonal projection 

methods. 

 

Keywords orthogonal projection, Gauss-Sediel, SOR 

1. Introduction 

Given an nn  real matrix A , and a real n -vector b , we consider to find x  belonging to 
nR  such that 

                                     bAx  ,                                     (1.1)  

where A  is coefficient matrix and b  is the right-hand side vector. Jacobi, Gauss-Seidel and SOR are three 

efficient methods suitable for solving the problem (1.1). They are all iterative methods by modifying one or a 

few components of an approximate vector solution at a time, and the criteria for modifying a component in order 

to improve an iterate is to annihilate some component of the residual vector Axb  . 

We split A  into three parts 

                                 FEDA                               

where D  is the diagonal of A , E is the strict lower part and F its strict upper part. We let kx   be  the k -

th iterate. With the above notation, the Jacobi iteration in vector form can be written as 

                              bDxFEDx kk

11

1 )( 

  .                         (1.2) 

Similarly, the Gauss-Seidel iteration in vector form can be written as 

                             bEDFxEDx kk

11

1 )()- 

 （ .                      (1.3) 

The difference between (1.2) and (1.3) is that the approximate solution of Gauss-Seidel is updated immediately 

after the new component is determined. 

By introducing a parameter  , the SOR iteration is based on the splitting 

))1(()( DFEDA   , 

and the SOR iteration in vector form can be written as 

       bEDxDFEDx kk  11

1 )(])1([)-( 

    (1.4) 

A lot of application about these three iterative methods can be found in [2-4] 

2. Projection Method 

Most of the existing practical iterative techniques for solving large linear systems of equations utilize a 

projection process in one way or another. 

Let  and L  be two m dimensional subspaces of 
nR . In general,  is called search subspace and L  the 

subspace of constraints. A projection technique onto the subspace  and orthogonal to L is a process which 
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finds an approximate solution x~  to (1.1) by imposing the conditions that x~  belong to  and that the new 

residual vector be orthogonal to L . 

Find x~ , such that LxAb  ~
. 

If we exploit the knowledge of an initial guess 0x  to the solution, then the approximate problem should be 

refined as  

 Find  0
~ xx , such that LxAb  ~

. 

Most standard techniques use a succession of such projections. Typically, a new projection step uses a new pair 

of subspaces  and L , and an initial guess 0x  equal to the most recent approximation obtained from the 

previous projection step, see [1] for details. 

Theorem 3.1 An elementary Gauss-Seidel step as defined by (1.3) is a projection step with  iespanL 

. 

Proof  We rewrite (1.4) as  

bFxxED kk  1)（ , 

from the perspective of component updates, this iterate process is actually a n steps update, namely n steps 

projection. We assume that 1kx  has two components and )(1 ixk  is the i th component of 1kx . The update 

equation of )(1 ixk  is  

)()1()2()1( 11)1(1211 ixaixaxaxa kiikiikiki     

    = ininkiikii bkxaixaixa   )()2()1( )2()1(  . 

This equation can be seen as the update from the vector 

))(,),1(),(,),2(),1(( 11 nxixixxx kkkkk    

to the vector 

))(,),1(),(,),2(),1(( 111 nxixixxx kkkkk   . 

If i changes from 1  to n , all the components of the update is finished, i.e. 

))(,),1(),(,),2(),1(( 111 nxixixxx kkkkk    

= ))(,),1(),(,),2(),1(( 11 nxixixxx kkkkk   + )0,,0,1,0,,0,0( t ,            (2.1) 

here  A represents the transpose of the matrix A . We denote the second vector )0,,0,1,0,,0,0(  on the 

right hand side of (2.1) as )(ie , and the left vector on the left hand side as ),1( ikx  . So (2.1) can be rewritten as  

)()1,1(),1( iikik texx   . 

The i th component of the residual vector Axb   equal to zero, i.e. 

                            0)()( ),1()( 
 iki Axbe . 

So Gauss-Seidel step is a projection step with  iespanL  . 

Theorem 3.2 An elementary SOR step as defined by (1.4) is a projection step with  iespanL  . 

Proof  We rewrite (1.4) as  

bxUDxLD kk    ))1(() 1（ , 

from the perspective of component updates, this iterate process is actually a n steps update, namely n steps 

projection. We assume that 1kx  has two components and )(1 ixk  is the i th component of 1kx . The update 

equation of )(1 ixk  is  
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)()1()2()1( 11)1(1211 ixaixaxaxa kiikiikiki      

= ininkiikiikii bkxaixaixaixa    )()2()1()()1( )2()1(  . 

This equation can be seen as the update from the vector 

))(,),1(),(,),2(),1(( 11 nxixixxx kkkkk    

to the vector 

))(,),1(),(,),2(),1(( 111 nxixixxx kkkkk   .  

If i changes from 1  to n , all the components of the update is finished, i.e. 

))(,),1(),(,),2(),1(( 111 nxixixxx kkkkk    

= ))(,),1(),(,),2(),1(( 11 nxixixxx kkkkk   + )0,,0,1,0,,0,0( t ,            (2.2) 

(2.2) can be rewritten as  

)()1,1(),1( iikik texx   . 

The i th component of the residual vector Axb   equal to zero, i.e. 

                            0)()( ),1()( 
 iki Axbe . 

So Gauss-Seidel step is a projection step with  iespanL  . 
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