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Abstract Designer nuclei with large neutron excess have been produced in the laboratories to understand the 

role played by excess neutrons in understanding the properties of large finite nuclei. Assuming the core of a 

nucleus is composed of neutron-proton pairs (np-pairs) and the unpaired neutrons constitute the surface region 

of the nucleus, we have used Bogoliubov technique to calculate the binding energy, binding fraction, specific 

heat, entropy, transition temperature and the nuclear radius of such nuclei. 
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Introduction 

Superconductivity in condensed matter systems was discovered in 1911. Its microscopic explanation was given 

by a pairing theory [1] proposed in 1957. A series of applications [2-3] to nuclear structure were proposed in 

which pair-wise coupling of nucleons to a state of zero angular momentum takes place. In the theoretical and 

experimental studies of pairing phenomena in finite nuclei and infinitely extended nuclear systems, such as 

neutron star matter, the study of superfluidity and pairing has a long history [4-6]. In fact pairing lies at the heart 

of nuclear physics and the quantum many-body problem. Interest in nucleon-nucleon pairing has intensified in 

recent years due to experimental developments on two different fronts. In the field of astrophysics, a series of x-

ray satellites has brought a flow of data on thermal emission from neutron stars, comprising both upper limits 

and actual flux measurements. The recent launching of the Chandra x-ray observatory provides further impetus 

to do more detailed theoretical investigations. In different laboratories, the expanding capabilities of radioactive-

beam and heavy-ion facilities have aggressively led to exploration of nuclei far from stability, with special focus 

on neutron-rich nuclei [7-8].  Pairing plays a significant role in modeling the structure and behavior of these 

newly discovered nuclei. 

As a rule, BCS is an approximate solution to the many-body problem, although it has been applied in nuclear 

structure calculations with some success [2-6]. Another method of solving the problem is to use the Hartree-

Fock (HF) theory. Solutions of the HF equations describe various nuclear ground-state properties [9], but they 

do not include an explicit pairing interaction. A general way to include pairing interaction into the many body 

system will require solving the Hartree-Fock-Bogoliubov (HFB) equations [10]. There are some applications to 

both stable and weakly bound nuclei [11-12].
 
Another method of solving the problem is that instead of solving 

the full HFB equations; one may first calculate HF single particle wave functions and use these as a basis for 

solving the BCS equations [13].  For stable nuclei with large one or two-neutron separation energies, the 

HF+BCS approximation to HFB is valid, but the treatment is not able to adequately address weakly bound 

nuclei due to the development of a particle (generally neutrons) gas on or near the nuclear surface. 

Now in nuclei with neuron number ZN  , the proton number, neutrons and protons occupy the same shell 

model orbitals. Consequently the large spatial overlaps between neutrons and proton single-particle 

wavefunctions are expected to enhance neutron-proton correlations (np-correlations) resulting in np-pairing. On 
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the other hand most of our knowledge about nuclear pairing comes from nuclei with a sizable neutron excess 

(N>Z) where the isotopic spin 1T  neutron-proton (np) and proton-proton (pp) pairing dominates. 

There is an indication that the spectra of the chain of tin isotopes point to a link between superfluidity in infinite 

star matter and the spectra of finite nuclei [14].  The link is provided by the OS1
 partial wave of the nucleon-

nucleon interaction. There could also exist proton and neutron BCS-like pairs. Such pair correlations are quite 

strong and reflect the well known coherence in the ground state of even-even nuclei. But the proton BCS-like 

pairing fields are not constant within an isotopic chain, or the proton pair matrix elements are not constant 

within the isotopic chain and such behavior is mainly caused by isoscalar neutron-proton pairing, showing that 

there are important neutron-proton correlations present in the ground state. On the other hand the proton and 

neutron occupation numbers show a much smoother behavior with increasing A. However, in the nuclear shell 

model the isotope nS132

50  could be chosen to have a closed-shell-core of nS100

50  and the neutron particles from 

nS101

50  to nS132

50  define model space. In this manuscript we shall use this concept to propose a nuclear model for 

a finite heavy nucleus with (N>Z). 

Pair correlations for four nuclei were studied [15] for various isovector and isoscalar pairs. The behavior was 

most interesting in the J=0 proton and neutron pairs. There is a large excess of this pairing at low temperatures, 

indicating a ground-state coherence of even-even nuclei. Proton pair correlations are independent of the nucleus, 

whereas the neutron-pair correlations show a different behavior. 

For some nuclei the vanishing of the 0J neutron-proton correlations increase by about a factor of 3 after the 

0J proton and neutron pairs have vanished. As the neutron number increases, the magnitude of the 

correlation reaches its highest value at higher temperatures. But the isovector 1J  correlations have a 

different behavior as the temperature changes; the neutron-proton pair correlations are large at lower 

temperatures with increasing neutron excess and the correlations fade slowly with increasing temperature. 

Ultimately the correlations between the neutrons and protons are dominated by the neutron-proton (np-pairing) 

pairing, and much less by nn-pairing or pp-pairing. 

From what has been mentioned above and the attempts, both theoretical and experimental, by many research 

workers, we come to the conclusion that the pairing is an essential feature of nuclear systems. We have to focus 

on the link between the nuclear-many-body problem and the underlying features of the nuclear force that may 

lead to pairing in nuclear systems. Both short-range and long-range correlations are central to the problem. 

However, it is the neutron-proton pairing that is most important in understanding the properties of finite nuclei. 

Now a recent communication [16] contains the production of ‘designer’ atomic nuclei, which are new, rare 

isotopes with unusual numbers of neutrons or protons, or unusual decay modes for example super heavy 

isotopes of light elements, such as Li11

3  have such a high ratio of neutrons to protons that the neutrons have a 

comparatively low binding energy. Quantum mechanically the wave function of the neutrons can extend far 

beyond the normal range of the nucleus. In the case of Li11

3 , the volume of the nucleus is roughly 10 times the 

volume of the normal Li6

3 nucleus [16], and the length of the Li11

3 nucleus is roughly 10fm  m1510 . A recent 

study of the charge radius of Li11

3 provides key information for ab initio nuclear theory [18]. It is found that the 

size of Li11

3 is that of a much heavier nucleus Ra220

88 and it has a diffuse surface of neutrons. 

Thus to study the properties of a large finite nucleus of mass number A with neutron excess or a light isotope 

with unusually large ratio of neutrons, N, to protons, Z, we have assumed that such a nucleus has a core 

composed of Z neutron-proton pairs, and this core is surrounded by the unpaired (N-Z) neutrons that stay in the 

surface region. In another article [19] on neutron-proton interactions and the new atomic masses, it is assumed 

that the core is not significantly altered, and PNV  which is the interaction of the last proton(s) with the last 

neutron(s), by construction, largely cancels out the interaction of the last nucleon with the core. In our opinion, 

the above method of looking at the possible interaction in a nucleus is an oversimplification of the exact 
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problem. Under no circumstances it can be assumed that the interaction between the nucleons in the surface 

region and or the core can be treated in isolation without disturbing the core. Thus for determining the properties 

of finite nuclei, especially binding energy, B, we have assumed that the core of the nucleus is composed of np-

pairs such that the neutron and proton interact with each other harmonically, and the unpaired neutrons in the 

surface region interact with the neutron-proton pairs in the core. We have used the Bogoliubov technique to 

study the problem, and have calculated the binding energy B, the specific heat C, the entropy S, the temperature 

T and the transition temperature, TC, of the nucleus. We have also calculated size of the nuclear radius R and the 

thickness of the surface region containing the excess neutrons. 

 

2. Theoretical Derivations 

We shall use Bogoliubov technique and the many-body theory to study the properties of a nucleus with large 

neutron excess. In this method we use a trial wave-function that exhibits the interaction of an unpaired neutron 

in the surface region with the np-pair in the core region of a large A nucleus. The trial wavefunction will be 

written as,  

 0  kkkkl aaVUa        (1) 

where 


kk aa  will refer to the neutron-proton pair in the core of the nucleus, and 


la will refer to the perturbing 

neutron that exists in the surface region of the nucleus. Thus if H
/
is the interaction between the np-pair in the 

core of the nucleus and the unpaired neutron in the surface region of the nucleus, the expectation value of this 

interaction can be written as, 

    00 //  lkkkkkkkkl aaaVUHaaVUaH      (2) 

where kU  and kV  are constants of the Bogoliubov transformation , and since we are dealing with fermions, we 

can write, 

122  kk VU           (3) 

Depending upon the values of kU  and kV , the trial wave function  can account for the following 

possibilities.  

(1) If  0kU  and  1kV  then this will mean that   contains the term 


kkl aaa , and this will mean 

that the np-pair and interacting neutron must exist to-gether for all the times. However this is not 

always true and we need not accept this possibility. 

(2) If  1kU  and  0kV  then this will mean that   contains the term 


la  only, and hence it means 

that np-pair plays no role in . This situation is not acceptable since the model is based on the 

existence of np-pairs in the wave function. 

(3) If 
2

1
kU  and

2

1
kV , then this will mean that the interacting neutron in the surface region exists as 

a separate entity since there will exist a term 0
2

1 

la , and the np-pair also exists as a separate entity, 

and the existence of the term 

kkl aaa
2

1  asserts that the unpaired neutron in the surface region 

interacts with np-pair in the core region. 

 

Thus in our calculations we have used the values of  

2

1
 kk VU

         

(4) 

Now the interaction term H
/
 is written as, 

43/ xx              (5) 
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where   and   are the constants of interaction to be defined later. Since the neutron and proton in the np-pair 

are assumed to interact with each other harmonically, the displacement operator x  is written in terms of the 

creation operator, 
a , and the annihilation operator, a , in the following form, 

 aax  

2

1


        (6) 

where 




           (7) 

 reduced mass of the np-pair;   refers to the natural frequency of oscillation of the oscillator which is a 

np-pair in our case. 

           Now the expectation value of H
/
 is written as, 

 43/ xx        (8) 

Substituting for x  from Eq.(6) in (8) we get, 

    

     0,0,
4

0,0,
8

4

4

3

3

naaaVUaaaaVUan

naaaVUaaaaVUan

lkkkkkkkkl

lkkkkkkkkl


















  

(9) 

After very lengthy calculations we get 

   
 

 
/

23452

234

234232

4

/

4501077948393786

60134104344

601341043441533246

4

n

k

kk

kkk

nnnnV

nnnnUV

nnnnVUnnnU

































 (10) 

Now the total binding energy n  can be written as, 

  ,...2,1,0,
2

1 //0 







 nZNn nn      (11) 

where 0  is the energy of the neutron-proton core (np-pairs) and 
/

n  is the interaction energy of the (N-Z) 

unpaired neutrons in the surface region with the Z np-pairs in the core. 

Substituting for 
/

n  from Eq.(10) in Eq.(11) we get, 

 

 
 

 






























4501077948393786

601341043442

1533246

42

1

23452

234

232

4

nnnnnV

nnnnVU

nnnU

n

k

kk

k

n



   (12) 

Now since 
2

1
 kk VU , Eq.(12) becomes, 

   58513781180467866
2

1

42

1 2345

4









 nnnnnnn




      (13) 

3. Binding Fraction f   

Binding fraction f  is the binding energy per nucleon when the nucleus is in the ground state; i.e., it is the value 

of 


 n  for 0n . Using Eq.(13) we get, 
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 585
2

1

42

1
0

4

0 











































f       (14) 

Here 











  is called the neutron excess parameter , 




  

 

4. Specific Heat 

To calculate the specific heat, C, it is necessary to include the probability amplitude Green’s function. The 

corresponding energy activation factor is 





e . Thus the total energy can be written as, 

    











 










 ennnnnnn 58513781180467866
2

1

42

1 2345

4
  (16) 

The specific heat C is written as, 

    







 













ennnnn

TT
C n 58513781180467866

8

2345

24
 (17) 

 

5. Transition Temperature TC ; 

The transition temperature of a nucleus is given by, 

0












 CTTT

C
          (18) 

Substituting for C from Eq.(17) in Eq.(18) gives, 





2


CT             (19) 

 

6. Temperature of a Nucleus 

 The temperature T of a nucleus is given by [14], 

 eV
C

T 





8
2

1

        (20) 

where C is the specific heat and A is the mass number of the nucleus. A general value for T could be, 

 MeV
CA

T 8


 , where   is some parameter     (21) 

 

7. Size of the Nucleus 

The size of the nucleus can be written as, 

nnp RRR             (22) 

where npR  refers to the radius of the core containing np-pairs, and nR  is the width of that part of the nucleus 

that contains the unpaired neutrons and this region is invariably known as the surface region of the nucleus. This 

can be written as, 

 2
1

22 2  xRR npnp   where   is given by Eq.(1) and x  is given by Eq.(6) (23) 

  2
1

22  yZNRR nn           (24) 

where 0 ia         (25) 

If each neutron in the surface region is treated as an oscillator, then 
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  aay
2

1


        (26) 

The most important question to be answered is as to what role the excess neutrons in the surface region play in 

abnormally increasing the size of the nucleus. For instance [16] the size of Li11

3
 is ten times the size of the 

normal nucleus Li6

3 . If the neutron excess (N-Z) or the neutron excess parameter 
A

ZN 
  can appear in the 

expression for nR , we could then establish the role of neutron excess in increasing the size of the nucleus in an 

abnormal fashion. 

Upon carrying out the substitutions in Eq.23 the expression for that part of the nucleus that contains the n-p 

pairs is obtained as, 

8

57 



npR          (27) 

The thickness of the surface region that contains the unpaired neutrons becomes, 

 
8

3 ZN
Rn




          (28) 

The role of the neutron excess in determining the thickness of the surface region can now be obtained from 

Eq.28 . 

 

8. Entropy S; 

The expression for entropy S is, 

  
T

mCdT

T

dQ
dSor

T

dQ
dS

      

(29) 

where m mass of the nucleus 

Carrying out the integration and substituting for C from Eq.(17) we get, 

   




















TT ee
T

nnnnnZNS































22

2

2345

4
58513781076467866

8
      (30) 

 

9. Numerical Calculations       

Since 
4x  must have the dimensions of energy

22 ML , the dimensions of     should be 
22  TML , since x  

which is the displacement operator has the dimension of length L . Therefore, a parameter 0a  which is 

assumed to be fundamental to the perturbation parameters   has been introduced. This parameter 0a  is defined 

as the bond length between the nucleons in the nucleus. This bond length, which is also called the radius 

constant is taken as 

3

1

13

0 103.1 Aa  cm        (31) 

The perturbation parameter can therefore be defined as, 

4

0a





                      (32) 

The following values for different physical quantities have been used. 

Planck’s constant/ 2  =  is given as 1.054
2710 erg-s. 

The neutron-proton reduced mass   is given as 
2510369.8  gm. 

Boltzmann’s constant  is given as 
16103807.1  erg/K 



Kanyeki FG & Khanna KM                   Journal of Scientific and Engineering Research, 2016, 3(6):366-377 

 

Journal of Scientific and Engineering Research 

372 

 

The angular radian frequency
122106  S  

 

10. Variation of binding fraction f  with mass number , Z, N and   

Giving different values to A, Z and N for different nuclei and using Eq.14 we obtain the values of binding 

fraction f presented in Table 1. In Fig. 1 the values of binding fraction are plotted against mass number A and 

the resulting points approximated to a linear characteristic. The graph shows that for medium heavy and heavy 

nuclei our values for f fit to within 0.5 MeV those obtained by the semi-empirical mass formula and the 

experimental data [24,26] and those obtained by us with the anharmonic perturbation method [22].  

Fig.2 and 3 show the variation of the binding fraction f  with the neutron number N and the proton number Z 

respectively. 

Further we can define a neutron excess parameter   such that, 

A

ZN 
 . 

For different values of A, Z, and N we can get the values of the neutron excess parameter . The values of f  

are given in table 1.  

Table 1: Variation of the binding fraction f (MeV/nucleon) with A, Z, N and   for 0n . 

 A Z N     f  

15 7 8 0.067 17.257 

39 19 20 0.026 10.493 

55 25 30 0.091 10.922 

56 26 30 0.071 10.663 

84 36 48 0.143 10.202 

101 44 57 0.129   9.830 

108 47 61 0.13   9.725 

137 56 81 0.182   9.231 

153 63 90 0.176   9.100 

161 66 95 0.18   9.019 

163 66 97 0.19   8.955 

169 69 100 0.183   8.945 

177 72 105 0.186   8.876 

207 82 125 0.208   8.586 

226 88 138 0.221   8.413 

235 92 143 0.217   8.405 

237 93 144 0.215   8.410 

239 94 145 0.213   8.415 

262 105 157 0.198   8.449 

 

Figure 1: Binding fraction  NucleonMeVf / against mass number A 
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11. Variation of C with En  

When Eq.16 is inserted in Eq.17 we can express the specific heat C in terms of En and , proton number Z this 

relationship is, 




















 







2

1
2

nC n
        (33) 

This expression shows that C varies directly as the difference between nE  and the proton number energy











2

1
nZ .  The variation of C with En is shown in Table 3 for 

161
Dy and 

163
Dy where it is seen that the 

specific heat for the heavier isotope is larger[14,22]. The variation of C against E for 
11

Li and 
220

Ra is shown in 

Fig. 3. This figure also shows that the peak specific heat for 
11

Li is around six times larger than that for the 

much heavier nucleus 
220

Ra. This is because of the much larger neutron excess parameter. 

Using Eq.(17), we have calculated the variation of  C with T for the three nuclei 
11

Li, 
163

Dy and 
220

Ra and this is 

shown in Fig. 4. The value of the transition temperature
2





C , turns out to be 19.602MeV. The specific 

heat curves are S-shaped and these results are similar to the those obtained earlier using other methods [14,28]. 

The S-shaped curve is interpreted as the liquid –gas phase transition in nuclear matter [25,30] and atomic 

nucleus[6,22]. The values of C are positive and this is mainly due to the Coulomb interaction [29]. The values of 

TC vary [7,14,26]  between 10-20MeV and[14,22] TC=18MeV . 

 

Figure 2: Variation of specific heat C against excitation energy E for Dy161

66  and Dy163

66 using eq.(33) 

 

Figure 3: Variation of specific heat C against excitation energy E for Li11

3   and Ra220

88  using eq.(33). 
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Figure 4: Variation of specific heat C against temperature T for Li11

3 , Dy163

66  and Ra220

88 using eq.(17). 

 

12. Variation of nuclear radius R with mass number A 

Using Eqs. (27) and (28) we have calculated the variation of  core radius nR  and the thickness of the surface 

region npR  with mass number A. Fig. 5 show the variation of these parameters with mass number. Using our 

method the calculation of the size of Li11

3  confirms that it is approximately the size [16] of Ra220

88 . 

 

Figure 5: Variation of n-p pair core radius npR (cm) and the surface thickness nR (cm) against mass number A 

using eqs. (27) and (28). 
 

13. Variation of S with T 

Using Eq.(32), we have calculated the variation of  entropy S with temperature T for the nuclei Li11

3
, Dy163

66
 and 

Ra220

88
. Fig. 6 shows this variation of S with T for these nuclei. 

 

Figure 6. Variation of entropy S (MeV/T) against temperature T (MeV) for Li11

3 , Dy163

66  and Ra220

88

,respectively. 
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14. Variation of S with En 

Using Eq.(32) and Eq.(16), we have calculated the variation of  entropy S with excitation energy n for the 

nuclei Li11

3 , Dy163

66  and Ra220

88 . Figure 7 shows this variation. Using Eq.(16) in Eq.(30), we obtained the 

entropy as, 




































T
nZES n

1

2

1
       (34)                                                                                 

According to this equation the variation of S with   as shown in Fig.7 can be explained. This expression shows 

S varies directly as the total energy of the nucleus   which is the expression inside the square brackets. For 

large nuclei n  is large and so is the entropy S. The repulsive energy of the protons must be subtracted from 

nE  to obtain the total energy of the nucleus E. The resulting variation of S is almost a linear[14,22] function of 

E. 

 

Figure 7: Variation of entropy S (MeV/T) against excitation energy E (MeV) for Li11

3 , Dy163

66  and Ra220

88   

respectively using eq.(34). 

 

15. Discussion and Conclusion 

Assuming that the neutron-proton pairing, rather than the neutron-neutron or proton-proton pairing, is at the 

heart of nuclear theory; a large finite nucleus with large neutron excess is considered to be composed of a core 

containing neutron-proton pairs, and the unpaired excess neutrons constitute the so-called surface region of the 

nucleus, we surmised the trial wave function that exhibits the interaction of an unpaired neutron in the surface 

region with the n-p pair in the core region. The Bogoliubov technique and many body theory has been used to 

obtain the different properties of the nucleus. 

Table1 shows that the binding fraction, f , is large compared to the values known in the literature[22,26], but 

the shape of the graph showing variation of  B and f  against A maintains the shape known in the books on 

nuclear theory [24]. But the large values of B and f  emphatically indicate that nuclei or systems with large 

neutron excess could be strongly bound. Hence neutron stars as strongly bound systems could be an acceptable 

possibility. 

                The variation of specific heat C, with excitation energy, E is exhibited in Figs.2 and 3. Fig 2 shows 

that the variation in C has the same shape for different nuclei but the heavier isotope has slightly large C values 

and this agrees with the results obtained earlier [14,22]. 

In Fig.7, the variation of C against E is exhibited for two very different nuclei. Although Li11

3  is a light nucleus, 

it has a very large neutron excess parameter,  =0.454; whereas Ra220

88 is a large nucleus, its neutron excess 
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parameter  =0.20. Here the variation of C with E is very large for Li11

3  compared to the similar variation for 

Ra220

88 .This shows that for nuclei with large values of  , variation of C with E will be large compared to the 

nuclei with small  . Similar trend is shown for the variation of C against T as shown in Fig.4. The variation of 

S against T, as shown in Fig. 6, and that of S against E as shown in Fig.7, also shows the same trend. It should 

be so since S and C are related to each other. 

Fig.5 exhibits the variation of the nuclear core radius, nR , and the variation of the surface thickness, npR , with 

A. The graph shows that the surface thickness, npR , increases faster with A, than the core radius, nR . This 

points to the fact that the nuclei with large neutron excess will have a large diffused surface region [15]. Our 

results show that the size of Li11

3 is quite large [16, 17]. 

Some of the calculations on specific heat vC have been done for the nuclei that we considered, and we find that 

the graphs of vC against T are more or less similar to what we have got. However, the theoretical approach we 

adopted is different from what has been done in these papers (30, 31, 32, 33). 
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