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Abstract In this paper, deterministic and stochastic differential equation models of the vertical/heterosexual 

transmission dynamics of HIV/AIDS in a population are formulated. The objectives are, first, to compare the 

effects of condom use, antiretroviral therapy (ART) separately and the combination of both as control strategies; 

and second, to compare the performance of the two models. The models were solved numerically for varying 

values of the control parameters and fixed published data. The numerical results show that ART outweighs 

condom use in performance, with the effective combination of both as a control strategy the best. At the level of 

model performance, both models compete favorably well, especially, when there is no or little control. 

However, under effective control strategy, either at ART or condom use level or a combination of both, the 

sample paths of the stochastic differential equation model demonstrate strong components of stochasticity as 

some paths tend to the disease-free equilibrium point while the trajectory of the deterministic model shows 

disease growth. The findings in this study that effective combination of ART and condom use as a control 

strategy are crucial for the control of HIV/AIDS. 

Keywords HIV/AIDS, antiretroviral therapy, condom use, deterministic model, stochastic model, stochastic 

differential equations, Wiener process and numerical simulation 

Introduction 

The human immune-deficiency virus (HIV) together with the associated acquired immune deficiency syndrome 

(AIDS) is still a monster [1-2]. Cumulatively, up to 50.6 million people now suffer from HIV/AIDS across the 

globe. About 34 million people were living with HIV/AIDS in 2010 (estimates range from 30.9 to 36.9 million) 

and about 1.8 million people die annually due to opportunistic infections and diseases. This is 0.5% of the world 

population. 68% of these live in sub-Saharan Africa. HIV/AIDS affects mostly people in the economically 

productive age range, reducing the work-force, and thereby, constraining development [3]. 

The basic routes of HIV transmission between persons are well understood. The major routes are through 

unprotected sexual intercourse (heterosexual and homosexual), mother- to-child or vertical transmission (at birth 

or through breastfeeding), unsafe injections in medical care, unsafe blood transfusions and shared injection 

equipment in injectable drug use [2-4]. 

Several intervention methods are available. These range from sex abstinence, use of condoms, education and use 

of antiretroviral drugs and counseling. These control measures outdo one another in performance. 

Condom use, as an intervention, prevents transmissions that are sexual in nature but is limited in the sense that it 

does not shield the fetus or the baby against vertical transmission.  

As pointed out in Williams et al (2011), the development of antiretroviral drugs to treat HIV has been a singular 

scientific achievement. Between 1995 and 2009 an estimated 14.4 million life-years has been gained globally 

among adults on ART but the rate of new infections is unacceptably high and still exceeds the number of people 

starting ART each year [2]. 

As presented in casels et al (2008), ART reduces viral load and the probability of transmission. It also reduces 

HIV/AIDS-related mortality and, therefore, increases the life expectancy of infected individuals [3]. 
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Many mathematical models of HIV/AIDS are available. For a survey, see Sani et al (2006) [5]. Stochastic 

models of HIV have been proposed and studied by researchers. For example, Peterson et al (1990) applied 

Monte-Carlo simulation technique in a population of intravenous drug users [6]. 

Greenhalgh and Hay (1997) studied a mathematical model of the spread of HIV/AIDS among injecting drug 

users [7]. Dalal et al (2007) examined a stochastic model of AIDS and condom use [8]. Dalal, et al (2008) also 

studied a stochastic model for internal HIV dynamics [9]. Ding et al (2009) carried out risk analysis for AIDS 

control based on a stochastic model with treatment rate [10]. Tuckwell and Le Corfec (1998) studied a 

stochastic model for early HIV-1 population dynamics [11]. Waema and Olowofeso (2005) studied a 

mathematical model for HIV transmission using generating function approach [12].  

 In this paper, the deterministic model proposed by Kimbir et al (2008) is the focus. We incorporate the term for 

mother-to-child transmission to obtain an extended deterministic model. We further formulate the stochastic 

counterpart of our extended model [13].  

The plan of this paper is as follows. Introductory part is presented in section 1. The deterministic model is 

presented in section 2. The stochastic counterpart of the deterministic model is developed in section 3. 

Numerical simulations are carried out in section 4. Discussion and conclusive remarks are passed in sections 5 

and 6 respectively. 

 

Formulation of the  Deterministic Model  

Kimbir and his collaborators proposed their model based on the following assumptions. The population is 

partitioned into three compartments: the number of susceptible individuals 𝑆 𝑡 , the number of infected 

individuals 𝐼(𝑡) and the number of people receiving ART 𝑅(𝑡). It is assumed that recruitment into the S-

compartment occurs at the rate 𝑏𝑁.  Death occurs in all the compartments at the rate 𝜇. In addition, there is 

AIDS-related death which occurs at the rate 𝛼0 in I-compartment.  Infected individuals are treated at the rate 𝛿. 

Members of the R-compartment die due to AIDS at the rate 𝛼. With the availability of free diagnosis, we 

assume that people are now aware of their HIV status and consequently the infected individuals should now go 

for antiretroviral therapy and counseling. People that have developed full-blown AIDS symptoms cannot 

transmit. Based on the above assumptions, Kimbir et al (2008) formulated the following model [13]. 

𝑑𝑆

𝑑𝑡
= 𝑏𝑁 − 𝐵 𝑡 𝑆 − 𝜇𝑆, 

𝑑𝐼

𝑑𝑡
= 𝐵 𝑡 𝑆 −  𝜇 + 𝛼0 + 𝛿 𝐼,                              (1) 

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 −  𝜇 + 𝛼 𝑅,  

 where 𝑁 𝑡 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 . 

 

The incidence rate is given by 𝐵 𝑡 =
𝑐𝛽𝐼 +𝑐 ′𝛽 ′𝑅

𝑁
, where 𝛽 is the probability of transmission by an individual in 𝐼-

compartment, 𝑐 is the number of sex partners for each member of the 𝐼-class,  𝛽′ and 𝑐 ′. 

 

The Extended Deterministic Model  

Let 𝜔 represent the proportion neonates perinatally infected. We now incorporate this term for mother-to-child 

transmission to obtain an extended deterministic model in the sequel. 

𝑑𝑆

𝑑𝑡
= 𝑏(1 − 𝜔)𝑁 − 𝐵 𝑡 𝑆 − 𝜇𝑆, 

𝑑𝐼

𝑑𝑡
= 𝑏𝜔𝑁 + 𝐵 𝑡 𝑆 −  𝜇 + 𝛼0 + 𝛿 𝐼,                              (2) 

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 −  𝜇 + 𝛼 𝑅,  

 where 𝑁 𝑡 = 𝑆 𝑡 + 𝐼 𝑡 + 𝑅 𝑡 .  

All other terms and parameters are as in model (1) 
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Stochastic Model of HIV/AIDS Transmission Dynamics 

In order to obtain the Corresponding stochastic differential equation (SDE) model for system (2), we need to 

identify the forgoing deterministic model as a birth, death and migration process. This SDE formulation assumes 

there is demographic variability in births, deaths and migrations. 

Let 𝑋1,   𝑋2,   𝑋3 denote random variables for the numbers of susceptible, infected individuals and infected 

individuals on antiretroviral drug. Let the incremental changes in susceptible, infected and infected individuals 

on ART during the small time period 𝛥𝑡 be denoted by 𝛥𝑥1 , 𝛥𝑥2 and 𝛥𝑥3  respectively. Then we define the 

vector 𝛥𝑥 as  

 𝛥𝑥(𝑡)  =  (𝛥𝑥1 (𝑡), 𝛥𝑥2  (𝑡), 𝛥𝑥3  (𝑡))𝑇 , 

Where 𝛥𝑥𝑖  (𝑡)  =  𝑥𝑖  (𝑡 +  𝛥𝑡) – 𝑥𝑖  (𝑡) for 𝑖 =  1, 2 and 3. 

The mean and the covariance matrix of 𝛥𝑥 have the forms 𝐸(𝛥𝑥)  =  𝜇𝛥𝑡 and 𝑉(𝛥𝑥)  =  𝐶𝛥𝑡, respectively, 

where 𝐶 is a positive definite matrix. From the work done by Allen et al (2008), an explicit form for the matrix  

𝐵 =  𝐶 exists for a given positive definite matrix 𝐶 of order 2. Furthermore, the method of obtaining such a 

square root matrix is explained in Allen (2008). Then, the SDE model of the deterministic model of interest can 

be obtained in the form of 𝑑𝑥 = 𝜇𝑑𝑡 + 𝐵𝑑𝑤, where 𝜇 and 𝐵 =  𝐶 are defined as above. The variable 𝑊 =

 𝑊(𝑡) is a three dimensional wiener process. The notation  

𝑑𝑊 =  (𝑑𝑊1 , 𝑑𝑊2, 𝑑𝑊3)𝑇  denotes the differential of the three dimensional Wiener process, because the wiener 

process is continuous but not differentiable. The incremental change in the wiener process satisfies. 

𝛥𝑊𝑖(𝑡)  =  𝑊𝑖 (𝑡 +  𝛥𝑡) –  𝑊𝑖 (𝑡) ~𝑁 0, ∆𝑡 . 

Therefore, in order to formulate the SDEs, the mean matrix 𝐸(𝛥𝑥) and the covariance matrix  𝑉(𝛥𝑥) need to be 

computed, so that the vector 𝜇 and the matrix 𝐵 can be obtained. 

The various transitions and probabilities for the system (1) are as follows. 

Table 1: The compartmental changes in small time period ∆𝑡 

Transition Probability 

(∆𝑋)1 =  [1, 0, 0] 
T
  𝑝1 = 𝑏(1 − 𝜔)𝑁∆𝑡  

(∆𝑋)2 =  [−1, 1, 0] 
T
  𝑝2 = 𝐵(𝑡)𝑋1∆𝑡    

(∆𝑋)3 =  [-1, 0, 0] 
T
  𝑝3 = 𝜇𝑋1∆𝑡  

(∆𝑋)4 =  [0, -1, 0] 
T
  𝑝4 = (𝜇 + 𝛼0)𝑋2∆𝑡    

(∆𝑋)5 =  [0, -1, 1] 
T
  𝑝5 = 𝛿𝑋2∆𝑡  

(∆𝑋)6 =  [0, 0, -1] 
T
  𝑝6 = (𝜇 + 𝛼)𝑋3∆𝑡    

(∆𝑋)7 =  [-1, 1, 0] 
T
 𝑝7 = 𝑏𝜔𝑁∆𝑡    

(∆𝑋)8 =  [0, 0, 0] 
T
 1 − (𝑝1 + 𝑝2 + 𝑝3 + 𝑝4 + 𝑝5 + 𝑝6 + 𝑝7) 

The system (2) will be changed into the stochastic differential equations in the form;    

∆𝑋 𝑡 = 𝐹(𝑡, 𝑋 𝑡 𝑑𝑡 + 𝐵 𝑡, 𝑋 𝑡  𝑑𝑤 𝑡                                     (3)          

Where, 𝐸 ∆𝑋 =   𝑝𝑖
7
𝑖=1 (ΔX)i  

            =  

𝑏(1 − 𝜔)𝑁 − 𝐵 𝑡 𝑋1 − 𝜇𝑋1

𝑏𝜔𝑁 + 𝐵 𝑡 𝑋1 − (𝜇 + 𝛼0 + 𝛿)𝑋2

𝛿𝑋2 − (𝜇 + 𝛼)𝑋3

 ∆t,                   

 Covariance matrix  𝐶 = 𝐸( ∆𝑋  ∆𝑋 )𝑇  

 =  𝑝𝑖(∆𝑋)𝑖
7
𝑖=1 (∆𝑋)𝑖

𝑇                                 

 =  

𝑏𝑁 + 𝐵 𝑡 𝑋1 −𝑏𝜔𝑁 − 𝐵 𝑡 𝑋1 0

−𝑏𝜔𝑁 − 𝐵 𝑡 𝑋1 𝑏𝜔𝑁 + (𝐵 𝑡 + 𝜇)𝑋1 + (𝜇 + 𝛼0 + 𝛿)𝑋2 0

0 0 (𝜇 + 𝛼)𝑋3

 ∆𝑡     

And  𝐵 =  𝐶 .  

Table 2: Data for HIV/AIDS model 

                 Parameter Value 

𝑏 0.0366 

𝜇 0.0166 
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𝑐 2 

𝑐 ′ 2 

𝛽 0.011-0.95 [1] 

𝛽′ 0.011-0.95 [1] 

𝛿 Variable 

𝛼0 0.001 

𝛼 0.0005 

𝜔 Variable 

𝑆 50,000 

𝐼 2 

𝑅 0 

 

Numerical Simulation 

The control parameters for the model are transmission coefficient for members in R-class, 𝛽′, the proportion of 

infected members on ART,𝛿 and the proportion of neonates perinatally infected, 𝜔. While we keep the values of 

other parameters in Table 2 fixed, we have allowed the values of β’,  𝛿 and 𝑤 to vary and investigated their 

effects on the spread of HIV/AIDS. The dynamics of the HIV/AIDS models (2 and 3) for various values of 

these control parameters are as shown in Figures  1 −  7  below.  

 
Figure 1: Sample paths of the stochastic model (black) and the trajectory of the deterministic model (blue) 

c=2,c’,=2,β=0.5,β'=0.5,δ=0,ω=0.01,p=0 (Without control) 

 
Figure 2: Sample paths of the stochastic model (black) and the trajectory of the deterministic model (blue) c=2, 

c’,=2,β=0.5,β'=0.011,δ=0.8,ω=0.001, p=0 (ART) 

0 2 4 6 8 10
0

1

2

3

4

5

6
x 10

4

Time

N
um

be
r 

of
 H

IV
 I

nf
ec

tiv
es

0 2 4 6 8 10
0

100

200

300

400

500

Time

N
um

be
r 

of
 H

IV
 I

nf
ec

tiv
es



Abu O & Emeje MA                                Journal of Scientific and Engineering Research, 2016, 3(4):442-448 

 

Journal of Scientific and Engineering Research 

446 

 

 
Figure 3: Sample paths of the stochastic model (black) and the trajectory of the deterministic model(blue) 

c=2, c’,=2,β=0.5,β'=0.011,δ=1,ω=0.001,p=0 (ART) 

 
Figure 4: Sample paths of the stochastic model (black) and the trajectory of the deterministic model (blue) 

c=2, β=0.5,,δ=0,ω=0.01,p=0.8 (Condom) 

 
Figure 5: Sample paths of the stochastic model (black) and the trajectory of the deterministic model 

(blue) 

c=2, β=0.5, δ=0, ω=0.01, p=1 (Condom) 
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Figure 6: Sample paths of the stochastic model (black) and the trajectory of the deterministic model (blue) 

c=2 c'=2, β'=0.011, β=0.5, δ=0.8, ω=0.001, p=0.8 (ART and Condom) 

 
Figure 7: Sample paths of the stochastic model (black) and the trajectory of the deterministic model (blue) 

c=2 c'=2, β'=0.011,β=0.5, δ=1,ω=0.001,p=1 (ART and Condom) 

 

The numerical results in this article are shown in Figures 1 through 7. Figure 1 shows a scenario where there is 

no control. In absence of any control measure, there is a very rapid growth in the number of cases. Figures 2 

through 3show the results in a situation where there is effective ART. Figure 2 shows a slow upward trend in the 

number of cases while Figure 3 depicts a downward trend with all the realizations tending to the disease-free 

equilibrium state, though the trajectory of the deterministic model shows a much slower upward trend. Figures 4 

through 5 show the results in a situation where there is condom use. The sample paths and the trajectory of the 

models show that condom only reduces the pace of growth of new cases. Figures 6 through 7show that there is 

control under effective combination of ART and condom use as a control strategy. 

 

Conclusion 

In this paper, deterministic and stochastic differential equation models for vertical and heterosexual transmission 

dynamics of HIV/AIDS in a population are formulated and investigated. The models are presented in sections 2 

and 3. The models were solved numerically to investigate the effects of ART, condom use and both on the 

transmission dynamics and to also examine the model performance. The main results can be seen in Figures1 

through 7. The results show that ART is a better control intervention than condom use, with the effective 
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combination of both the best. The model compete favorably well in the absence of any intervention. However, 

stochastic components ensue in the sample paths of the stochastic differential equation model, with a significant 

variability in the spread compared to the deterministic counterpart when there is effective control. The findings 

in this research point out that effective combination of ART and condom as a control strategy is sufficient for 

the control of HIV/AIDS.   
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