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Abstract. Numerical simulations and experimental investigations of single module vibration-driven 
system with friciton have been stuidied in this paper. Friction models can be divided into two classes, 
namely static and dynamic models. Thus, we just compare the anisotropic Coulomb friction and that of 
the LuGre model. Through numerical simulations, one can find the LuGre model ha has a good 
agreement with the experimental data from both qualitative and quantitative viewpoints. Moreover, 
through changing the physical parameters of the system, the vibration-driven system with the LuGre 
model can dispaly lots of dynamic behaviors expect for the four types movement forms, such as 
quasi-periodic motion and periodic two motion. 
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1   Introduction 

Vibration-driven robots have advantages over other vehicles such as legged, wheeled and propelled robots.  
They are simple in design, and can be fabricated into small sizes. The micro robots can be used to detect 
the narrow pipes, rescue the life in disaster and inspect the human cardiovascular, etc. The 
vibration-driven system can move rectilinearly owing to the periodic motion of the internal mass and the 
resistances between the whole system and the environment. In the recent years, these systems have 
attracted lots of scholars’ attention.  

Russia’s academy of science, F.L Chernous’ko was the first one  to  study the dynamic systems with 
movable internal mass. In 2005, F.L Chernous’ko studied a single module vibration-driven system in 
anisotropic Coulomb friction medium [1]. From then on, many scholars studied these systems from 
different viewpoints. Until now, according to the number of module, the system can be divided into single 
module [2-11], two-module [12, 13] and multi-module [14-15]. Therein, they discussed the vibration-driven 
system under different driving force, like velocity control mode (two-phase motion) [5], acceleration control  
mode (three-phase motion) [7, 9, 12]  and harmonic excitation [3]. In [12, 13], the authors analyzed a single 
driven-vibration system with two internal masses. In 2013,  Hongbin Fang and Jian Xu [8]  discussed the 
single module vibration-driven system with the Coulomb dry friction in terms of sliding bifurcation, they 
found that these sliding bifurcations organized different types of transitions between slip and sticking 
motions in the system. In this paper, by simulation and experiments data, we can find four types of 
movement forms of the single module vibration-driven system, i.e., three types of stick-slip motion and one 
type of non stick-slip motion.  

Friction is a complicated phenomenon in mechanical systems. Several friction effects have been found, 
such as Coulomb friction effect, viscous friction effect, Stribeck effect, time lag effect, etc. The magnitude 
of friction force between the contacting surfaces depends on several factors, such as the relative velocity of 
the surfaces, the normal  load,  the interface material, the lubrication condition and time [16, 17]. Until now, 
there are tens of kinds of friction models [18-20]. According to whether the mathematical expressions of 
friction models can be written in the differential form or not,  the friction models can be divided into two 
classes, i.e., dynamic and static models. The simplest fiction model Coulomb friction belongs to static 
model. Examples of dynamic models are the Bristle model, the Dahl model and the LuGre model. The 
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dynamic friction model can describe many friction effects that the static model cannot [21-24]. Some 
scholars modified these dynamic models to make the models have a great agreement with experiment data 
[25-25]. One should notice the identification of the dynamic models, which is still a difficultly. In the 
present study of vibration-driven system, the scholars just use the Coulomb friction [1, 3,-5, 9, 10, 14], the 
viscous friction [7, 10, 12, 28]  or the quadratic friction [10], they never consider the dynamic friction model. 
In this paper, the single module of vibration-driven system with LuGre model will be discussed.  

The rest of the paper is organized as follows: Section 2 describes the single module of vibration-driven 
system and anisotropic friction models in detail. In Section 3, we will describe the experiment settings and 
measurement set-up. In Section 4, the simulations of the vibration-driven system with Coulomb friction 
and LuGre model will be compared with experimental data. Many dynamic behaviours of the 
vibration-driven system with LuGre model will be presented in the Section 5. The paper is concluded in 
Section 6. 

2   Single Module of Vibration-driven System and Friction 

2.1   Mechanical Model 

A mass m  vibrates periodically relative to an absolutely rigid body M , which can move on a horizontal 
plane due to the interaction with mass m  and the anisotropic friction between the body M  and the 
plane. To describe the motion of the vibration-driven system, the absolute displacement of the body M  is 
denoted by x , and the displacement of the mass m  relative to the body M by ξ . Then the corresponding 
velocity and acceleration of the body M  and mass m  is x , x  and ξ , ξ  , respectively.  

ξ

x

m

M

Figure 1. Mechanical model. 

The equation of the whole system is governed by 

( )ξ
 = −
 + = −




,
,

Mx F R
m x F

 (2.1) 

where F  is the interaction force between the body M  and mass m . Harmonic excitation is chosen as 

( ) ( )ξ ω= sint A t   (2.2) 

The friction force between the body M  and the plane isR  . Specific forms of friction R  of Coulomb 
friction and that of LuGre model will be introduced in the next section.  

Substituting (2.2) into (2.1) and eliminating the force F , we obtain 

( )µω ω= −
+

 2 sin Rx A t
M m

(2.3)

 Where ( )µ = ∈
+

0,1m
M m

. For the significance of anisotropic friction force R in the vibration-driven 

system, we consider two friction models in detail, namely, the Coulomb friction and the LuGre model. 
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2.2   Two Friction Models 

According to whether the mathematical expressions of friction models can be written in the differential 
form or not, the friction models can be divided into two classes, i.e., dynamic and static models. Static 
friction model can describe a friction phenomenon as a function of the relative velocity of the contacted 
surfaces, for example, the Coulomb friction model which is the relative simple friction model in form. The 
dynamic friction models contain bristle model, Dahl model and LuGre model. However, to simulate the 
dynamic behavior of systems with friction of bristle model, very tiny step size and long simulation time are 
needed. Besides, the simulation performance is generally not good enough [19]. For the Dahl  model, friction 
phenomenon of stick-slip and Stribeck cannot be simulated [25]. Thus, in the paper we just study the 
dynamic system with friction of the LuGre ,one among the dynamic modes. 
2.2.1 The Coulomb Friction Model   
The mathematical expression of Coulomb friction model is defined as follows 

( )
( )
( ) ( )

( ) ( )
( )

µ

µ

µ µ

µ µ

µ

+

−

+ +

− +

−

 + >

− + <
= + = > +


= − + ≤ ≤ +
− +

if 0,

if 0,

if 0 and ,

if 0 and ,

otherwise.

e

e e

M m g v

M m g v

R M m g v f M m g

f v M m g f M m g

M m g

 (2.4) 

Here, ef  is the resultant of all forces, except for the Coulomb friction that body M subjected to. g  is 
acceleration of gravity. µ+

 and µ−
 is the forward and backward dynamic friction coefficients, 

respectively. For µ µ−≠+  , the friction is anisotropic. In this case, the anisotropic friction will make the
whole system have a net periodic displacement. 

2.2.2 LuGre Model 

LuGre model is an extension of the Dahl model.  Furthermore, it can capture the Stribeck effect and 
describe stick-slip effect, which Dahl model cannot. When coupled to the single degree of freedom system 
shown in Fig.1, the governed equation of the vibration-driven system becomes a three dimensional  
first-order differential equation. The anisotropic LuGre model is constructed as follows 

σ σ σ= + + 0 1 2R z z x  . (2.5) 

( ) ( )

( ) ( )
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(2.6) 

where σ 0  is the stiffness of the bristle, σ1  is micro damping coefficient, σ 2  is viscous friction 
coefficient and sv  is Stribeck velocity which is empirical. 

Substituting (2.6) into (2.5), and we can find out that the friction force R  is a function of z  and x . 
z  denotes an internal state variable standing for the average deformation of the bristle. 

Until now, the excitation force and friction models are known. In the next section, we will introduce the 
experiment settings briefly. 
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3   The Experiments Settings 

In this part, we will present the experiment design and setup. Based on the above section, the driving 
force is sinusoidal and the friction force is anisotropic. Now, the following experiment design can meet 
both of the conditions. 

3.1   The Driving Force 

Fig. 2 shows the prototype of the vibration-driven system. The prototype consists of three main parts: 
the spring steel beam, the piezoelectric patches and the lumped mass. The two piezoelectric patches 
are attached to the top of the spring steel beam. When one of them stretches and the other one 
contracts, it equals to imposing a torque on the spring steel beam at the both top and bottom ends of 
the two piezoelectric patches. The internal mass m  is implemented by the lump mass at the end of 
spring steel beam. A voltage whose amplitude is in the range of 10 to 150V  is applied to the 
piezoelectric patches, which allows to excite the cantilever beam in a frequency below 5000HZ . Under 
the actuation of the piezoelectric patches, the beam vibrates and then the lumped mass vibrates 
sinusoidally. Due to the small amplitude of the bottom mass, we can omit the vertical movement of 
the bottom mass, thus the lumped mass just makes the horizontal motion. The cantilever beam 
actuated by piezoelectric patches is controlled by the following equation 

( ) ( ) ( )( )ρ δ δ∂ ∂ ∂ ∂  + + = − + − < < ∂ ∂∂ ∂

4 2

1 04 2
2 0 ,0u u uEI c A T t x x l x δ

t xx x
. (3.1) 

where EI  is flexural rigidity, c , ρ  and 1A  is damping, linear density and cross-section area of the 
spring steel beam, respectively. ( )T t  and 0l  denote bending moment and length of the piezoelectric
patches. L  is the length of the beam. 

The bending moment of the piezoelectric patches imposed on the beam [32] is 

( ) ( ) ( )= +31 1 2 2T t d h h bE V t  . (3.2) 

Here, 31d  is piezoelectric constant, b  is the width of the piezoelectric patches, 2E  is electric field 
intensity, and ( )V t  is voltage. 1h  , 2h  is shown in Fig. 2. 

Using the method of separation of variables, 

( ) ( ) ( )η
∞

=

= ∑
1

, i i
i

u x t Y x t  . (3.3) 

where ( )iY x  is the normal modal and ( )ηi t  is the normal coordinate. For the vibration of the beam,
( )iY x  owns the following form: 

( ) β β β β= + + +1 2 3 4cos sin cosh sinhi i i i i i i i iY x C x C x C x C x  , (3.4) 

where ρ ω
β = = 

2
4 , 1,2,i
i

A
i

EI
 , the boundary conditions of the beam are 

( ) ( )
( ) ( ) ( )ω

′= = =

′′ ′′′= = = − 2
0

0 : 0 0, 0 0′

: 0, .

x Y Y

x L Y L EIY L m Y L
(3.5) 

Solving (3.1)-(3.4) yields 

( ) ( )

( )ζω

β β β β

ω ωϕ ω ζ ϕ ϕ ω ω ϕ
ω ω

=

−

 = − + − 

   
 ⋅ + − + −        

∑
1

, cos cosh siϕ siϕh

siϕ cos siϕ cos siϕ siϕi

N

i i i i i i
i

t i
i d i d i

d i

u x t C x x r x x

B e t t B t
 . (3.6) 
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The steady solution is 

( ) ( ) ( )β β β β ω ϕ
=

 = − + − − ∑
1

, cos cosh siϕ siϕh siϕ
N

i i i i i i i
i

u x t C x x r x x B t  . (3.7) 

According to(3.7), it is easy to find that the vibration of the beam is sinusoidal. That is to say
( ) ( )ξ = ,t u L t , this condition meets the demand of the driving force given in(2.2).

1h 2h

Neutral Axis

Piezoelectric material
Electrode

Figure 2. Piezoelectric beam. 

0l

L

M

m

PZT

R

R

beam

lumped mass

Figure 3. The experiments settings of the single module vibration-driven system. 

3.2   The Anisotropic Friction 

In order to make the whole system move forward, we construct the following experimental rig shown 
in Fig.4. Thus, the anisotropic friction could be expressed as: 

( )
( )
( )
( )

θ θ θ

θ θ θ

θ µ θ θ µ

θ µ θ θ µ

+ +

− −

+ +

− −

= − = − =

= + = + =

= − = − =

= + = + =

0

0

0

0

sin cos sin ,

sin cos sin ,

sin cos sin ,

sin cos sin .

S S

S S

C C

C C

F F Mg f Mg f Mg

F F Mg f Mg f Mg

F F Mg Mg Mg

F F Mg Mg Mg

(3.8) 

Where 
+f , 

−f   and µ+
 , µ−

 is the forward (backward) static friction coefficient and the forward 

(backward) Coulomb coefficient, respectively. 
+SF , 

−SF , 
+CF  and 

−CF  are the corresponding 

friction forces. θ  is the angle of the inclined track. On the inclined slope, anisotropic friction is 
achieved. 
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θ

M m+

 

Figure 4. The inclined track. 

Until now, both of the driving force and the friction force meet the theoretical requirements. In the next 
section, devices measuring the velocity of the system will be introduced.  

3.3   The Measurement Setup 

Fig .5 displays the measurement setup of the experiment. The velocity of the prototype is measured by the 
testing equipment-Polytec scanning vibrometer (precision 0.001mm/s). The signal generator outputs 
sinusoidal voltage signal, which is amplified by the power supply of piezoelectric ceramic and applied to the 
piezoelectric patches.  

signalOutput

Display device

Polytec scanning vibrometer

 

Figure 5. The measurement setup 

Using the equipment-Polytec scanning vibrometer, we can obtain the absolute velocity and the 
convected velocity of the whole system. Moreover, the relative velocity can be obtained with the absolute 
velocity ξ+ x  and the convected velocity x  . Thus, the driving force of the system is obtained. 

In the next section, we simulate the dynamic behavior of the single module vibration-driven system and 
compare it with the experimental data. 

28 Journal of Advances in Applied Mathematics, Vol. 2, No. 1, January 2017

JAAM Copyright © 2016 Isaac Scientific Publishing



4.   The Comparison of the Numerical Simulation and Experimental Data 

4.1   Four Types of Movement Forms  

In 2013, Hongbin Fang [9] talked about the single module vibration-driven system with Coulomb dry 
friction in terms of sliding bifurcation. He found that these sliding bifurcations organized different types of 
transitions between slip and stick motions in the system. The vibration-driven system in this paper shows 
four types of motion with harmonic excitation shown in Fig.5. The Figure is plotted by using Coulomb 
friction. We have carried out numerical simulations of equations (2.3) through the 4th order Runge-Kutt a 
method.  

For the brevity to identify, we name the four types of motions in the following ways. From Fig.6, type 
four is exactly different from the other types .It is a non-stick-slip motion. If the stick time internal has two 
parts in a period,  we call it type one. If the time history of the velocity of the system is always nonnegative, 
we name it type two.  

In order to verify which friction model is in a better agreement with the experimental data. Coulomb 
model and LuGre model of the friction R are utilized to simulate the dynamic behaviors of the single 
module vibration-driven system. In the past researches, many scholars use Coulomb friction, linear viscous 
friction and quadratic friction to do the numerical simulation of the vibration-driven system. Because of 
the complexity of the actual circumstance, the experimental data may not have a good agreement with the 
numerical results.  

 

 

Figure 6. Four types of the vibration-driven system with the Coulomb friction. 

Values of the physical parameters are as follows 

 ω π µ= = = = =
+

9.48g, 62.59g, 65.4 , 0.1315mm M
M m

 

The friction coefficients in the experiment are µ =0 0.18 , =0 0.21f  . Six groups of experiments of  
different friction coefficients are conducted to study dynamic behaviors of the single module 

 

 
type one

 

 
type two

 

 
type three

 

 
type four

Journal of Advances in Applied Mathematics, Vol. 2, No. 1, January 2017 29

Copyright © 2016 Isaac Scientific Publishing JAAM



vibration-driven system. The anisotropy of the friction coefficients can be implemented by adjusting the 
angle of the inclined plane shown in Fig. 4. From (3.8), the relationship between the angle of the slope and 
the backward and forward friction coefficients are  

 µ µ θ θ µ µ θ θ θ θ θ θ+ − + −= − = + = − = +0 0 0 0cos sin , cos sin , cos sin , cos sinf f f f  . (4.1) 

4.2   The Numerical Simulation of Two Friction Models 

In the following content, dynamic behaviors of vibration-driven system with friction of the two different 
models are compared both qualitatively and quantitatively. From the point of quantitative analysis, we 
compare the mean steady-state velocity of the experiment results and numerical simulation of the 
vibration-driven system with the two friction models.  

We should notice that in the following simulations the parameters of the LuGre model are selected as 
follows 

σ σ σ −= × = = = ×5 3
0 1 24 10 N/m, 100Ns/m, 0.04Ns/m, 2 10 m/ssv  

4.2.1 The First Type of Movement Forms  
The simulation is implemented under the condition that the angle of the slope is θ =1.7°. 

 

Figure 7. The time history of the dimension velocity v  resulting from numerical simulation of Coulomb friction in 
dotted curve and LuGre model in dashed curve of the exact equation of the motion and the experimental data in solid 
curve. 

Firstly, we will give a definition of mean steady state velocity v  of the rigid body M , 

( ) ( )+ −
= 0 0x t pT x t

v
pT

, where π
ω

=
2T  is the periodic of the harmonic excitation,  x  is the displacement 

of the rigid body, 0t  is a time point meets ≤ ≤00 t T . p  is an arbitrary integer.  

From Fig.7, the simulation results of the system with Coulomb friction model have two parts of stick 
time internals. In the sticking parts, the velocity of body M  is nearly zero (neglect the computational 
errors). However, the experiment results and simulation with LuGre model just show two small curves. 

Through simulation, one can know that the average velocity of the experimental data is about 
0.0017m/s . The mean velocity of the numerical simulation with the Coulomb friction roughly equals 
to 0.0020m/s . The result of the LuGre model is about 0.0018m/s . The simulation result of the LuGre 
model is closer to the experimental data. Moreover, the qualitative feature of the LuGre model is more 
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consistent with the experimental data.  
4.2.2 The Second Type of Movement Forms  
The simulation is implemented under the condition that the angle of the slope is θ =4.7°. 

 

Figure 8. The time history of the dimension velocity v  resulting from numerical simulation of Coulomb friction in 
dotted curve and LuGre model in dashed curve of the exact equation of the motion and the experimental data in solid 
curve. 

We can get the average velocity of the experiment, the simulation results with Coulomb friction and 
LuGre model is 0.0040 m/s , 0.0040 m/s , 0.0037 m/s , respectively. 

When the velocity of the rigid body under the simulation of the anisotropic dry Coulomb friction is 
always zero, we name the corresponding time internals sticking internals. 

From Fig.8, it’s easily found that, the results of both experiment and simulation with LuGre model are 
in good agreement. Many tiny curves can be found in the sticking internals of them two, which is 
apparently different from simulation with the Coulomb friction model.  
4.2.3 The Third Type of Movement Forms  
Simulation is implemented under the condition that the angle of the slope is θ =2.7°. 

By simple calculation, we can obtain the average velocity of the experimental data .The numerical  
simulation of the differential equation with Coulomb friction and LuGre model is                 
0.0036 m/s , 0.0038 m/s , 0.0037 m/s , respectively.  

To conclude, from Fig.7-Fig.9 one may find that the stick-slip motion of the numerical simulation with 
the Coulomb friction is very apparent. Within sticking internals, the velocity of body M  remains 
unchanged. However, the experimental data and the numerical simulation with the LuGre model will have 
tiny changes around the zero velocity.  

 

Figure 9. The time history of the dimension velocity v  resulting from numerical simulation of Coulomb friction in 
dotted curve and LuGre model in dashed curve of the exact equation of the motion and the experimental data in solid 
curve. 
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4.2.4 The Fourth Type of Movement Forms  
Simulation is implemented under the condition that the angle of the slope is θ =5.7°. 

 

Figure 10. The time history of the dimension velocity v  resulting from numerical simulation of Coulomb friction in 
dotted curve and LuGre model in dashed curve of the exact equation of the motion and the experimental data in solid 
curve.  

The approximate average velocity of the experimental data, the numerical simulation with the Coulomb 
friction and the LuGre model is 0.0254 m/s , 0.0287 m/s , 0.0281 m/s , respectively. Through numerical 
simulation, we can draw the conclusion that, when the motion of the whole system belongs to the fourth 
type, then the simulation results of the Coulomb friction and the LuGre model are nearly the same. That 
is to say,  it is hard to distinguish the vibration-driven system with the Coulomb friction and the friction of 
LuGre model from the nonstick-slip motion. 

5   The Dynamical Behavior of the System with the LuGre Model   

In section 4, we just discuss the four types of movement forms of the single module vibration-driven system. 
The physical parameters values in the system are selected according to the experiment measuring. In fact, 
because of the lack of measuring methods and measuring tools, the measuring results may have some 
errors.  

Next, we will study what will happen of the dynamical behaviors under different parameter values.  
The equation motion of the vibration-driven system with the LuGre model is 
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, ω==t t  . For the sake 

of brevity, we omit the asterisks. Then the above equations can be rewritten as 
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
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By substituting equation (4.1) into the definition of 1k  , 2k  and 3k  and after some simplifying, we have 

 
θ θ θ

µ θ µ θ µ θ
− + +

= = =
− + −

0 0 0
1 2 3

0 0 0

tan tan tan
, ,

tan tan tan
f f f

k k k   (5.2) 

Due to the physical meanings of the friction coefficients, we may know that > > >1 2 31, 1, 1k k k . All the 
parameters in the LuGre models are given in section 4. 

Now we will discuss the effects of these parameters on the vibration-driven system with the LuGre model.  
Due to space limitations in this paper, we just discuss the magnitude of the excitation and the friction. 
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Next, they will be analyzed one by one.  

5.1   The Effect of the Excitation Amplitude A  

In the following discussion, the values of other parameters will be unchanged without pointing out, except 
for the excitation amplitude A . The parameter values of the LuGre model are taken as 

 σ σ σ= × = = =5
0 1 24 10 N/m, 100Ns/m, 0.04Ns/m, 0.002m/ssv  . (5.3) 

For the physical parameters,  we just talk about the excitation amplitude A , the excitation frequency ω  
and the friction coefficients ratio 1 2 3, ,k k k  . In fact, these three dimensionless parameters are just controlled 
by the static friction coefficient 0f , dynamic friction coefficient µ0  and the angle of inclination θ  as  
given in(4.1).  

Firstly, we will discuss the effect of the excitation amplitude A  when the other parameters remain 
unchanged. We need note that the velocity of the dimensional equation is ωA  times of the dimensionless 
one. And the new period of the dimensionless system is π2  . 

We take the other parameters as ω π µ θ °= = = =0 065.4 , 0.18, 0.21, 1.7f . Through numerical simulation,  
it is found that the velocity of the rigid body can display different dynamic behaviors by changing the 
magnitude of the excitation amplitude A  . Moreover, it can predict the system behavior whereas the 
experiment can’t do, as the shortcomings of the experimental equipments and measuring methods. Fig.10 
shows that under the low excitation amplitude, the dimensionless velocity meet simple harmonic vibration.  
By subtracting the rigid displacements, we obtain the phase portrait of the rigid body. The phase portrait 
shows that the steady state velocity of the rigid body is monocyclic. 

  

Figure 11. The time history of the velocity and phase portrait, where −= 610A m . 

As the increase of the excitation amplitude A , the system can illustrate different kinds of movement 
forms which have a good agreement with the experimental data. The following figures give the evidences.  

  

Figure 12. The time history of the velocity and phase portrait, where −= × 43 10A m . 

0 20 40 60 80
-2

-1

0

1

2
x 10

-3

t

v

-2 -1 0 1 2

x 10
-3

-2

0

2
x 10

-3

x

v

40 50 60
-2

0

2

4
x 10

-3

t

v

-2 0 2 4

x 10
-3

-2

0

2

4
x 10

-3

x

v

34 Journal of Advances in Applied Mathematics, Vol. 2, No. 1, January 2017

JAAM Copyright © 2016 Isaac Scientific Publishing



  
Figure 13. The time history of the velocity and phase portrait, where −= × 44 10A m . 

  
Figure 14. The time history of the velocity and phase portrait, where −= × 45 10A m . 

  
Figure 15. The time history of the velocity and phase portrait, where −= × 46 10A m . 

  
Figure 16. The time history of the velocity and phase portrait, where −= × 48 10A m . 
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Obviously, by variation the excitation amplitude A , one can simulate all the four movement forms that 
found in the experiment. Furthermore, the phase portrait of the system is always periodic.  

5.2   The Effect of the Excitation frequency ω   

The excitation frequency has the same effect as the excitation amplitude A . The following figures  
illustrate the system’s motion as the excitation frequency changes.  

 

 
Figure 17. The time history of the velocity and phase portrait, where ω π −= 130 s . 

 
Figure 18. The time history of the velocity and phase portrait, where ω π −= 146 s . 

 
Figure 19. The time history of the velocity and phase portrait, where ω π −= 152 s . 
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Figure 20. The time history of the velocity and phase portrait, where ω π −= 165 s . 

 
Figure 21. The time history of the velocity and phase portrait, where ω π −= 180 s . 

This part can be analyzed as the above part. One should notice that the excitation frequency in the 
experiment has limits. The frequency of excitation must be below 5000 HZ .  

In conclusion, by varying the amplitude and frequency of the excitation, one can obtain all the four types 
of movement forms as the experimental data.  

5.3   The Effect of the Dynamic Friction Coefficient µ0   

The vibration-driven system can move due to the internal mass interaction with the rigid body and the 
anisotropic friction force. That is to say, friction force plays a crucial role in the vibration-driven system.  

As the friction coefficient is non-negative, i.e., µ µ− +> ≥ 0 , thus, from equation (4.1), one can deduce 
that µ θ≥ =0 tan 0.03 . Moreover, the dynamic friction coefficient µ0  is no more than the static friction 
coefficient 0f  as the common sense. Then, the range of the dynamic friction coefficient is 

µ≤ ≤00.03 0.21  . 

  
Figure 22. The time history of the velocity and phase portrait, where µ =0 0.03 . 
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Figure 23. The time history of the velocity and phase portrait, where µ =0 0.04 . 

 
Figure 24. The time history of the velocity and phase portrait, where µ =0 0.05 . 

  
Figure 25. The time history of the velocity and phase portrait, where µ =0 0.10 . 

 
Figure 26. The time history of the velocity and phase portrait, where µ =0 0.21 . 

It’s obvious that, see Fig. 22, when the dynamic friction coefficient is µ =0 0.03 , the rigid body does a 
quasi-period motion. We should also pay attention to the situation of µ =0 0.04 . Then the motion of body 
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M  displays the dynamic behavior of period two shown in Fig. 23. 
Different from the above two parts, when the dynamic friction coefficient µ0  is smaller enough than the 

static friction coefficient 0f , then the system shows some strange dynamic behaviors, such as quasi-period 
motion and period two motion. From Fig.24-Fig.26, for the larger dynamic friction coefficient, no matter 
how we change its value, the vibration-driven system just displays the third and fourth type movement 
forms. In the simulation, no first and second type movement forms appear.  

5.4   The Effect of the Static Friction Coefficient 0f    

In this part, we just talk about the effect of the static fiction coefficient 0f  on the dynamic behavior of the 
vibration-driven system. In the other authors’ researches, they didn’t consider the static friction. They 
regarded the dynamic friction coefficient as the static friction coefficient. Actually, the static friction plays 
an important role in the vibration-driven system. We all know that the dynamic friction is not more than 
the static friction, i.e., µ ≤0 0f  . That is to say, the range of the static friction coefficient is ≤ ≤00.18 1f . 
The Figs.27-30 show under different static friction coefficients, the vibration-driven system can illustrate 
different dynamic behaviors. 

  
Figure 27. The time history of the velocity and phase portrait, where =0 0.18f . 

 
Figure 28. The time history of the velocity and phase portrait, where =0 0.35f . 
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Figure 29. The time history of the velocity and phase portrait, where =0 0.5f . 

 
Figure 30. The time history of the velocity and phase portrait, where =0 1f . 

From these figures, one can find that, the dimensionless velocity v  changes with the static friction 
coefficient 0f . Moreover, through adjusting the static friction coefficient, one can obtain all the four types 
movement forms. 

6   Summary and Conclusion 

In this paper mathematical modeling of the single module vibration-driven system with Coulomb friction 
and LuGre model is shown,  respectively. Numerical analysis of the system was carried out for a set of 
system parameters and physical parameters. There are four types of movement forms of the rigid body 
from the experimental results, i.e., three type of stick-slip motion and one type of nonstick-slip motion.  

We do an experiment to find out a better friction model which is a better agreement with the experiment 
data. From the view point of quantitative and qualitative, it is found that the LuGre model is a better 
friction model after doing numerical simulations.  

Then one applies the LuGre model to predict other dynamic behaviors of the single module 
vibration-driven system. Under different physical  parameters, the system shows different movement forms.  
In this paper, we just talk about the excitation amplitude, the excitation frequency, the static and dynamic 
friction coefficients. However, for lack of space, we omit the study of the other parameters.  

Through numerical simulations, one can find other dynamical behaviors of the system which can’t be 
observed in the experiment. For example, Fig.22 and Fig.23 display new kinds of movement forms which 
are different from the known four types. By changing the magnitude of the amplitude and frequency of the 
excitation and static friction coefficient, one can obtain all the four types movement forms, except the 
dynamic friction coefficient. Moreover, if the dynamic friction coefficient is much smaller than the static 
one, the system will display quasi-periodic and periodic two motions.  
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